1
|
Rong J, Harmon D, Cao Z, Song Y, Zeng L, Simpson GJ. Diffusion and Exchange Kinetics of Microparticle Formulations by Spatial Fourier Transform Fluorescence Recovery after Photobleaching with Patterned Illumination. Mol Pharm 2024; 21:5539-5550. [PMID: 39387804 DOI: 10.1021/acs.molpharmaceut.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The mechanism of active pharmaceutical ingredient (API) mobility during release in microparticle formulation was investigated using periodically structured illumination combined with spatial Fourier transform fluorescence recovery after photobleaching (FT-FRAP). FT-FRAP applies structured photobleaching across a given field of view, allowing for the monitoring of molecular mobility through the analysis of recovery patterns in the FT domain. Encoding molecular mobility in the FT domain offers several advantages, including improved signal-to-noise ratio, simplified mathematical calculations, reduced sampling requirements, compatibility with multiphoton microscopy for imaging API molecules within the formulations, and the ability to distinguish between exchange and diffusion processes. To prepare microparticles for FT-FRAP analysis, a homogeneous mixture of dipyridamole and pH-independent methyl methacrylate polymer (Eudragit RS and RL) was processed using laminar jet breakup induced by vibration in a frequency-driven encapsulator. The encapsulated microparticles were characterized based on particle size distribution, encapsulation efficiency, batch size, and morphology. Utilizing FT-FRAP, the internal diffusion and exchange molecular mobility within RL and RS microparticles were discriminated and quantified. Theoretical modeling of exchange- and diffusion-controlled release revealed that both RL and RS microparticles exhibited similar exchange decay rates, but RL displayed a significantly higher diffusion coefficient. This difference in diffusion within RL and RS microparticles was correlated with their macroscopic dissolution performance.
Collapse
Affiliation(s)
- Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dustin Harmon
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yang Song
- Takeda Pharmaceutics, Cambridge, Massachusetts 02139, United States
| | - Lu Zeng
- Takeda Pharmaceutics, Cambridge, Massachusetts 02139, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Murphy JN, Kobti JL, Dao M, Wear D, Okoko M, Pandey S, Vukotic VN. Therapeutic coordination polymers: tailoring drug release through metal-ligand interactions. Chem Sci 2024; 15:7041-7050. [PMID: 38756811 PMCID: PMC11095386 DOI: 10.1039/d4sc00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Developing tunable materials which exhibit sustained drug release is a considerable challenge. Herein, we report the concept of Therapeutic Coordination Polymers (TCPs); non-porous coordination polymers constructed from biocompatible components which demonstrate tunable zero-order drug release kinetics upon degradation of metal-ligand bonds. TCPs were constructed from three principal components: (i) a cationic metal center (M = Mg2+, Mn2+, Zn2+, or Cu2+); (ii) an anionic drug (Diclofenac); and (iii) an alkyl bis-imidazole organic ligand which behaves as a "linker" between metal centers. Most drug-release materials, such as amorphous polymer dispersions, or metal-organic frameworks rely on a diffusion-based mechanism for drug release, but the degradation-controlled release of drugs from non-porous one-periodic coordination polymers has been largely unexplored. TCPs described herein exhibit a high wt% of pharmaceutical (>62%), tailorable zero-order drug release rate kinetics which span over three orders of magnitude, and stimuli-responsive drug release behavior making them well suited for extended drug-release applications.
Collapse
Affiliation(s)
- Jennifer N Murphy
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
- Department of Chemistry, University of Guelph 50 Stone Rd E Guelph ON N1G 2W1 Canada
| | - Joy-Lynn Kobti
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Michelle Dao
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Darcy Wear
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON M5R 0A3 Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Michael Okoko
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - V Nicholas Vukotic
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| |
Collapse
|
3
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
4
|
Choudhari M, Damle S, Saha RN, Dubey SK, Singhvi G. Emerging Applications of Hydroxypropyl Methylcellulose Acetate Succinate: Different Aspects in Drug Delivery and Its Commercial Potential. AAPS PharmSciTech 2023; 24:188. [PMID: 37715004 DOI: 10.1208/s12249-023-02645-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has multi-disciplinary applications spanning across the development of drug delivery systems, in 3D printing, and in tissue engineering, etc. HPMCAS helps in maintaining the drug in a super-saturated condition by inhibiting its precipitation, thereby increasing the rate and extent of dissolution in the aqueous media. HPMCAS has several distinctive characteristics, such as being amphiphilic in nature, having an ionization pH, and a succinyl and acetyl substitution ratio, all of which are beneficial while developing formulations. This review provides insights regarding the various types of formulations being developed using HPMCAS, including amorphous solid dispersion (ASD), amorphous nanoparticles, dry coating, and 3D printing, along with their applicability in drug delivery and biomedical fields. Furthermore, HPMCAS, compared with other carbohydrate polymers, shows several benefits in drug delivery, including proficiency in imparting stable ASD with a high dissolution rate, being easily processable, and enhancing bioavailability. The various commercially available formulations, regulatory considerations, and key patents containing the HPMCAS have been discussed in this review.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd. Verna Industrial Estate, Verna, Goa, 403722, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
- R&D Healthcare Emami Ltd., Belgharia, Kolkata, 700056, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Vidya Vihar, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
5
|
Wolfgang M, Kern A, Deng S, Stranzinger S, Liu M, Drexler W, Leitgeb R, Haindl R. Ultra-high-resolution optical coherence tomography for the investigation of thin multilayered pharmaceutical coatings. Int J Pharm 2023; 643:123096. [PMID: 37268027 DOI: 10.1016/j.ijpharm.2023.123096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Optical Coherence Tomography (OCT) has recently gained attention as a promising technology for in-line monitoring of pharmaceutical film-coating processes for (single-layered) tablet coatings and end-point detection with commercial systems. An increasing interest in the investigation of multiparticulate dosage forms with mostly multi-layered coatings below 20 µm final film thickness demands advancement in OCT technology for pharmaceutical imaging. We present an ultra-high-resolution (UHR-) OCT and investigate its performance based on three different multiparticulate dosage forms with different layer structures (one single-layered, two multi-layered) with layer thicknesses in a range from 5 to 50 µm. The achieved system resolution of 2.4 µm (axial) and 3.4 µm (lateral, both in air) enables the assessment of defects, film thickness variability and morphological features within the coating, previously unattainable using OCT. Despite the high transverse resolution, the provided depth of field was found sufficient to reach the core region of all dosage forms under test. We further demonstrate an automated segmentation and evaluation of UHR-OCT images for coating thicknesses, where human experts struggle using today's standard OCT systems.
Collapse
Affiliation(s)
| | - Alice Kern
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria.
| | - Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
6
|
Chang HHR, Chen K, Lugtu-Pe JA, AL-Mousawi N, Zhang X, Bar-Shalom D, Kane A, Wu XY. Design and Optimization of a Nanoparticulate Pore Former as a Multifunctional Coating Excipient for pH Transition-Independent Controlled Release of Weakly Basic Drugs for Oral Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15020547. [PMID: 36839869 PMCID: PMC9964771 DOI: 10.3390/pharmaceutics15020547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Bioavailability of weakly basic drugs may be disrupted by dramatic pH changes or unexpected pH alterations in the gastrointestinal tract. Conventional organic acids or enteric coating polymers cannot address this problem adequately because they leach out or dissolve prematurely, especially during controlled release applications. Thus, a non-leachable, multifunctional terpolymer nanoparticle (TPN) made of cross-linked poly(methacrylic acid) (PMAA)-polysorbate 80-grafted-starch (PMAA-PS 80-g-St) was proposed to provide pH transition-independent release of a weakly basic drug, verapamil HCl (VER), by a rationally designed bilayer-coated controlled release bead formulation. The pH-responsive PMAA and cross-linker content in the TPN was first optimized to achieve the largest possible increase in medium uptake alongside the smallest decrease in drug release rate at pH 6.8, relative to pH 1.2. Such TPNs maintained an acidic microenvironmental pH (pHm) when loaded in ethylcellulose (EC) films, as measured using pH-indicating dyes. Further studies of formulations revealed that with the 1:2 VER:TPN ratio and 19% coating weight gain, bilayer-coated beads maintained a constant release rate over the pH transition and exhibited extended release up to 18 h. These results demonstrated that the multifunctional TPN as a pHm modifier and pH-dependent pore former could overcome the severe pH-dependent solubility of weakly basic drugs.
Collapse
Affiliation(s)
- Hao Han R. Chang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kuan Chen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jamie Anne Lugtu-Pe
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Nour AL-Mousawi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Xuning Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Daniel Bar-Shalom
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anil Kane
- Patheon by Thermo Fisher Scientific, Toronto Region Operations (TRO), Mississauga, ON L5N 3X4, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Correspondence: ; Tel.: +1-(416)-978-5272
| |
Collapse
|
7
|
Novel Esomeprazole Magnesium-Loaded Dual-Release Mini-Tablet Polycap: Formulation, Optimization, Characterization, and In Vivo Evaluation in Beagle Dogs. Pharmaceutics 2022; 14:pharmaceutics14071411. [PMID: 35890307 PMCID: PMC9323828 DOI: 10.3390/pharmaceutics14071411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Esomeprazole magnesium (EMP) is a proton pump inhibitor (PPI) that reduces acid secretion. EMP has a short plasma half-life (approximately 1.3 h); hence, nocturnal acid breakthrough (NAB) frequently occurs, disturbing the patient’s nighttime comfort and sleep. We aimed to develop a novel esomeprazole magnesium-loaded dual-release mini-tablet polycap (DR polycap) with a prolonged onset time and improved bioavailability to prevent NAB. The formulation of the EPM mini-tablet core resulted in rapid drug release. The core was coated with an inner coating and an Eudragit® L30D-55 aqueous dispersion coating to prepare the first-release mini-tablet. In addition, the core was coated with an inner coating and an aqueous dispersion of Eudragit® S100 and Eudragit® L100 coating to prepare the second-release mini-tablet. Each mini-tablet type was characterized using an in vitro dissolution test and microscopic examination. After testing, 10 of each mini-tablets were placed together in hard capsules to form DR polycaps. The combination of mini-tablets was optimized via in vitro release testing and in vivo pharmacokinetic studies. The AUC0–24h of the DR polycap was similar to that of a comparable commercial product (Nexium®); Cmax was lower by approximately 50%, and Tmax was extended by approximately 1.7-fold. In conclusion, DR polycap is an alternative to commercial products with improved NAB and dosing compliance because of its dual-release characteristics.
Collapse
|
8
|
Delayed sustained drug release from electrostatic powder coated tablets with ultrafine polymer blends. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Benzine Y, Siepmann F, Neut C, Danede F, Francois Willart J, Siepmann J, Karrout Y. Injection-molded capsule bodies and caps based on polymer blends for controlled drug delivery. Eur J Pharm Biopharm 2021; 168:1-14. [PMID: 34438018 DOI: 10.1016/j.ejpb.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
A variety of polymer:polymer blends was used to prepare hot melt extrudates and empty capsules (bodies and caps) by injection-molding using a benchtop extruder (Babyplast). KollidonSR:inulin and Carbothane:inulin blends were investigated. The impact of the blend ratio on the water uptake and dry mass loss kinetics upon exposure to 0.1 MHCl, phosphate buffer pH6.8 and culture medium optionally inoculated with fecal samples from Inflammatory Bowel Disease (IBD) patients were studied. Hot melt extrudates were loaded with up to 60% theophylline, capsules were filled with drug powder. Increasing the inulin content led to increased water uptake and dry mass loss rates, resulting in accelerated drug release from the dosage forms, irrespective of the type of polymer blend. This can be attributed to the higher hydrophilicity/water-solubility of this polymer compared to KollidonSR and Carbothane. Interestingly, the presence of fecal samples in culture medium increased the water uptake and dry mass loss of hot melt extrudates to a certain extent, suggesting partial system degradation by bacterial enzymes. However, these phenomena did not translate into any noteworthy impact of the presence of colonic bacteria on theophylline release from the investigated extrudates or capsules. Hence, drug release can be expected to be independent of the location "small intestine vs. colon" from these dosage forms, which can be advantageous for long term release throughout the entire gastro intestinal tract.
Collapse
Affiliation(s)
- Youcef Benzine
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Florence Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | | | | | - Youness Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
10
|
Yousaf SS, Isreb A, Khan I, Mewsiga E, Elhissi A, Ahmed W, Alhnan MA. Impact of nanosizing on the formation and characteristics of polymethacrylate films: micro- versus nano-suspensions. Pharm Dev Technol 2021; 26:729-739. [PMID: 34034606 DOI: 10.1080/10837450.2021.1931886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aqueous-based film coating suspensions are associated with reliance on alkalinising reagents and poor film formation. The impact of particle size in this process and resultant film properties remains unclear. This study offers the first direct comparison of film formation properties between aqueous micro- and nano-suspensions of the enteric polymer Eudragit S100. High-pressure homogenisation was employed to produce nano-suspensions of the enteric polymer. Formed enteric suspensions (micro- and nano-) were evaluated in terms of size, morphology, and ability to form film; with resultant films analysed in terms of; film thickness, mechanical and thermoplastic properties, water uptake, weight loss, and drug permeability in acidic medium. High-pressure homogenisation yielded particles within a submicron range (150-200 nm). Produced nano-suspensions formed significantly thinner films (p < 0.01), at lower plasticiser concentrations, than films cast from micro-suspensions (differences in thickness up to 100 µm); however, exhibited comparative gastro-resistant properties (p > 0.05) in terms of water uptake (∼25% w/w), weight loss (<16% w/w) and drug permeability (<0.1%). Interestingly, nano-suspension-based films exhibited lower glass transition temperatures (Tg) (p < 0.01), when compared to films cast from micro-suspensions (∼7-20 °C difference), indicating enhanced plasticisation. This was reflected in film mechanical properties; where nano-suspension-based films demonstrated significantly lower tensile strength (p < 0.01) and higher percentage elongation (p < 0.05), suggesting high elasticity. Thinner, highly elastic films were formed from nano-suspensions, compared to films cast from micro-suspensions, exhibiting comparative properties; obviating the need for alkalinising agents and high concentrations of plasticiser.
Collapse
Affiliation(s)
- Sakib Saleem Yousaf
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Abdelbary Elhissi
- College of Pharmacy, Pharmaceutical Sciences Section, Qatar University, Doha, Qatar
| | - Waqar Ahmed
- College of Science/School of Mathematics and Physics, University of Lincoln, Lincoln, UK
| | - Mohamed A Alhnan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK.,Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Paulo F, Paula V, Estevinho LM, Santos L. Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Abstract
Abstract
Background
Polymers are essential components of many drug delivery systems and biomedical products. Despite the utility of many currently available polymers, there exists a demand for materials with improved characteristics and functionality. Due to the extensive safety testing required for new excipient approval, the introduction and use of new polymers is considerably limited. The blending of currently approved polymers provides a valuable solution by which the limitations of individual polymers can be addressed.
Main body
Polymer blends combine two or more polymers resulting in improved, augmented, or customized properties and functionality which can result in significant advantages in drug delivery applications. This review discusses the rationale for the use of polymer blends and blend polymer-polymer interactions. It provides examples of their use in commercially marketed products and drug delivery systems. Examples of polymer blends in amorphous solid dispersions and biodegradable systems are also discussed. A classification scheme for polymer blends based on the level of material processing and interaction is presented.
Conclusion
The use of polymer blends represents a valuable and under-utilized resource in addressing a diverse range of drug delivery challenges. It is anticipated that new drug molecule development challenges such as bioavailability enhancement and the demand for enabling excipients will lead to increased applications of polymer blends in pharmaceutical products.
Graphical abstract
Collapse
|
13
|
Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Goel H, Razdan K, Singla R, Talegaonkar S, Khurana RK, Tiwary AK, Sinha VR, Singh KK. Engineered Site-specific Vesicular Systems for Colonic Delivery: Trends and Implications. Curr Pharm Des 2020; 26:5441-5455. [PMID: 32787754 DOI: 10.2174/1381612826666200813132301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
Steering drug-loaded, site-specific, coated lipid vesicles to the target receptor sites have the potential of plummeting adverse effects and improving the pharmacological response in diverse pathologies of the large bowel, especially the colon. Colonic delivery via oral route has its own challenges, often governed by several glitches such as drug degradation or absorption in the upper GIT, instability of proteins/peptides due to high molecular weight, and peptidase activity in the stomach. Consequently, colon-specific coated liposomal systems (CSLS) offer a potential alternate for not only site-specificity, but protection from proteolytic activity, and prolonged residence time for greater systemic bioavailability. On the other hand, liposomal delivery via the oral route is also cumbersome owing to several barriers such as instability in GIT, difficulty in crossing membranes, and issues related to production at the pilot scale. New advancements in the field of CSLS have successfully improved the stability and permeability of liposomes for oral delivery via modulating the compositions of lipid bilayers, adding polymers or ligands. Despite this ostensible propitiousness, no commercial oral CSLS has advanced from bench to bedside for targeted delivery to the colon as yet. Nevertheless, CSLS has quite fascinated the manufacturers owing to its potential industrial viability, simplistic and low-cost design. Hence, this review aims to decipher the convolutions involved in the engineering process of industrially viable CSLS for colonic delivery.
Collapse
Affiliation(s)
- Honey Goel
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Karan Razdan
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Richu Singla
- Department of Microbiology, Viral Research Diagnostics Laboratory (VRDL), Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot, India
| | | | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Vivek Ranjan Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
15
|
Khoder M, Schropp V, Zeitler S, Pereira B, Habashy R, Royall PG, Wang JTW, Alhnan MA. A novel natural GRAS-grade enteric coating for pharmaceutical and nutraceutical products. Int J Pharm 2020; 584:119392. [DOI: 10.1016/j.ijpharm.2020.119392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/23/2023]
|
16
|
Cui C, Sun J, Wang X, Yu Z, Shi Y. Factors Contributing to Drug Release From Enteric-Coated Omeprazole Capsules: An In Vitro and In Vivo Pharmacokinetic Study and IVIVC Evaluation in Beagle Dogs. Dose Response 2020; 18:1559325820908980. [PMID: 32180688 PMCID: PMC7057410 DOI: 10.1177/1559325820908980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
This study was performed to explore factors influencing the release of the proton pump inhibitor omeprazole from enteric-coated capsules in vitro and absorption in vivo in beagle dogs. Enteric-coated pellets with different enteric coating materials and coating levels were designed and prepared. All self-prepared formulations were characterized in vitro as well as in vivo and compared to the brand and generic commercial products. Evaluation of the corresponding release profiles suggested that coating material was the most critical factor. Enteric coating level determined the lag time before initiation of drug release, and subcoating level affected the drug release rate. Pharmacokinetic studies were performed in beagle dogs to further confirm the influence of formulation factors on drug absorption. Medium at pH 6.8 was a more biorelevant condition for in vitro drug release tests, although medium at pH 6.0 was better for discriminating release profiles of different formulations. A multiple level C in vitro/in vivo correlation was preliminarily established by which Tmax and Cmax of omeprazole formulations could be predicted with release parameters such as Tlag and T25. These results may facilitate quality evaluation and potentially improve the clinical efficacy of generic omeprazole products.
Collapse
Affiliation(s)
- Cheng Cui
- National Institutes for Food and Drug Control, Beijing, China.,Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Jiabei Sun
- National Institutes for Food and Drug Control, Beijing, China
| | - Xueqing Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenxi Yu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yaqin Shi
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
17
|
Benzine Y, Siepmann F, Neut C, Danede F, Willart J, Siepmann J, Karrout Y. Hot melt extruded polysaccharide blends for controlled drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Jiang H, Fu J, Li M, Wang S, Zhuang B, Sun H, Ge C, Feng B, Jin Y. 3D-Printed Wearable Personalized Orthodontic Retainers for Sustained Release of Clonidine Hydrochloride. AAPS PharmSciTech 2019; 20:260. [PMID: 31332579 DOI: 10.1208/s12249-019-1460-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Orthodontic retainers are wearable customizable medical devices for dental protection or alignment. Here, clonidine hydrochloride (CH)-loaded wearable personalized 3D printed orthodontic retainers were studied for local sustained-release of drugs. CH powders were mixed with PEG 4000, Tween 80, poly(lactic acid), and polycaprolactone. The mixture was hot-melt extruded to form a filament that was 3D printed to a customizable original orthodontic retainer with the fused deposition modeling (FDM) method. The original retainer showed a burst release of CH in the early stage of the dissolution process though a sustained release appeared in the late stage. The in vivo burst release of CH would lead to unexpected side effect. The original retainer was modified by coating with hydrophilic polymers or washing with buffered solutions to obtain the coated or washed retainer. The coated retainer still showed a burst release while the washed retainer showed an optimal sustained release. Many CH microparticles existed on the surface of original retainers according to the scanning electron microscopic image so that the burst release was unavoidable. The hydrophilic polymer coating method did not change the release profile because the polymer was also rapidly dissolved. However, most of the surface CH can be eliminated by washing so that the burst release dissappeared in the washed retainer. Furthermore, the simulated CH concentration-time profiles in the circulation of humans of the washed retainer showed the stable and appropriate drug levels for more than 3 days. Wearable personalized 3D printed drug-loaded orthodontic retainers are a promising drug-device for sustained release of drugs.
Collapse
|
19
|
Highly Soluble Drugs Directly Granulated by Water Dispersions of Insoluble Eudragit® Polymers as a Part of Hypromellose K100M Matrix Systems. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8043415. [PMID: 30949510 PMCID: PMC6425467 DOI: 10.1155/2019/8043415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to investigate the suitability of insoluble Eudragit® water dispersions (NE, NM, RL, and RS) for direct high-shear granulation of very soluble levetiracetam in order to decrease its burst effect from HPMC K100M matrices. The process characteristics, ss-NMR analysis, in vitro dissolution behavior, drug release mechanism and kinetics, texture profile analysis of the gel layer, and PCA analysis were explored. An application of water dispersions directly on levetiracetam was feasible only in a multistep process. All prepared formulations exhibited a 12-hour sustained release profile characterized by a reduced burst effect in a concentration-dependent manner. No effect on swelling extent of HPMC K100M was observed in the presence of Eudragit®. Contrary, higher rigidity of formed gel layer was observed using combination of HPMC and Eudragit®. Not only the type and concentration of Eudragit®, but also the presence of the surfactant in water dispersions played a key role in the dissolution characteristics. The dissolution profile close to zero-order kinetic was achieved from the sample containing levetiracetam directly granulated by the water dispersion of Eudragit® NE (5% of solid polymer per tablet) with a relatively high amount of surfactant nonoxynol 100 (1.5%). The initial burst release of drug was reduced to 8.04% in 30 min (a 64.2% decrease) while the total amount of the released drug was retained (97.02%).
Collapse
|
20
|
Can drug release rate from implants be tailored using poly(urethane) mixtures? Int J Pharm 2019; 557:390-401. [DOI: 10.1016/j.ijpharm.2018.11.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
|
21
|
Patel H, Gohel M. A Review on Enteric Coated Pellets Composed of Core Pellets Prepared by Extrusion-Spheronization. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:83-90. [PMID: 30747090 DOI: 10.2174/1872211313666190212115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Enteric coated dosage form bypasses the stomach and releases the drug into the small intestine. Advantages of enteric coated pellets in comparison with enteric coated tablets are a) Pellets provide rapid onset of action and faster drug release due to the smaller size than tablets and b) Pellets exhibit less residence time of acid-labile drugs in the stomach compared to tablets. Dosage form coat can be damaged by longer resistance time in the stomach. The present review summarizes the current state of enteric coated pellets where core pellets are prepared by extrusion-spheronization technique and the enteric coating is applied in a fluidized bed processor. Two approaches are involved in the preparation of core pellets. In the first approach, a mixture of drug and excipient(s)/co-processed excipient is passed through extruders to prepare core pellets. In the second approach, excipient core pellets are prepared by extrusion technique and the drug is layered onto it before the enteric coating. The excipients present in the core pellets decide immediate or extended release of drug in the intestine. The coprocessed excipient pellets provide less batch variability and provide a platform for layering of many drugs before enteric coating. Some patents included enteric coating pellets [CN105456223 (A), CN105596310 (A), CN105616371 (A), CN105663095 (A), CN101611766B, CN106511862 (A), CN106668018 (A), CN106727381 (A), CN106924222 (A), TW200624127 (A), US 2017/0165248A1, US 2017/0224720A1] are discussed.
Collapse
Affiliation(s)
- Hetal Patel
- Department of Pharmaceutics, Maliba Pharmacy College, Gopal Vidyanagar, Surat, Gujarat, India
| | - Mukesh Gohel
- Department of Pharmacy, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
22
|
Kajthunyakarn W, Sakloetsakun D, Pongjanyakul T. Sodium caseinate-magnesium aluminum silicate nanocomposite films for modified-release tablets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:827-839. [DOI: 10.1016/j.msec.2018.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
|
23
|
Cova TF, Murtinho D, Pais AACC, Valente AJM. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front Chem 2018; 6:271. [PMID: 30027091 PMCID: PMC6041395 DOI: 10.3389/fchem.2018.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cellulose and cyclodextrins possess unique properties that can be tailored, combined, and used in a considerable number of applications, including textiles, coatings, sensors, and drug delivery systems. Successfully structuring and applying cellulose and cyclodextrins conjugates requires a deep understanding of the relation between structural, and soft matter behavior, materials, energy, and function. This review focuses on the key advances in developing materials based on these conjugates. Relevant aspects regarding structural variations, methods of synthesis, processing and functionalization, and corresponding supramolecular properties are presented. The use of cellulose/cyclodextrin conjugates as intelligent platforms for applications in materials science and pharmaceutical technology is also outlined, focusing on drug delivery, textiles, and sensors.
Collapse
Affiliation(s)
| | | | | | - Artur J. M. Valente
- Coimbra Cemistry Centre, CQC, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Gårdebjer S, Larsson M, Gebäck T, Skepö M, Larsson A. An overview of the transport of liquid molecules through structured polymer films, barriers and composites - Experiments correlated to structure-based simulations. Adv Colloid Interface Sci 2018; 256:48-64. [PMID: 29804691 DOI: 10.1016/j.cis.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Films engineered to control the transport of liquids are widely used through society. Examples include barriers in packaging, wound care products, and controlled release coatings in pharmaceutics. When observed at the macroscopic scale such films commonly appear homogeneous, however, a closer look reveals a complex nano- and microstructure that together with the chemical properties of the different domains control the transport properties. In this review we compare and discuss macroscopic transport properties, measured using the straightforward, yet highly powerful technique "modified Ussing chambers", also denoted side-by-side diffusion cells, for a wide range of structured polymer films and composites. We also discuss and compare the macroscopic observations and conclusions on materials properties with that of lattice Boltzmann simulations of transport properties based on underlying material structure and chemistry. The survey of the field: (i) highlights the use and power of modified Ussing Chambers for determining liquid transport properties of polymer films, (ii) demonstrates the predictability in both directions between macroscopic observations of transport using modified Ussing chambers and structure-based simulations, and (iii) provides experimental and theoretical insights regarding the transport-determining properties of structured polymer films and composites.
Collapse
|
25
|
Zhu Q, Cheng H, Huo Y, Mao S. Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens. Int J Pharm 2018; 544:100-111. [DOI: 10.1016/j.ijpharm.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/17/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022]
|
26
|
Zhu Q, Liu C, Sun Z, Zhang X, Liang N, Mao S. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery. Eur J Pharm Biopharm 2018; 128:220-229. [PMID: 29730260 DOI: 10.1016/j.ejpb.2018.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
Abstract
Contact lenses (CLs) are ideally suited for controlled ocular drug delivery, but are limited by short release duration, poor storage stability and low drug loading. In this study, we present a novel inner layer-embedded contact lens capable of pH-triggered extended ocular drug delivery with good storage stability. Blend film of ethyl cellulose and Eudragit S100 was used as the inner layer, while pHEMA hydrogel was used as outer layer to fabricate inner layer-embedded contact lens. Using diclofenac sodium(DS) as a drug model, influence of polymer ratio in the blend film, EC viscosity, drug/polymer ratio, inner layer thickness and outlayer thickness of pHEMA hydrogel on drug release behavior was studied and optimized for daily use. The pH-triggered drug eluting pattern enables the inner layer-embedded contact lens being stored in phosphate buffer solution pH 6.8 with ignorable drug loss and negligible changes in drug release pattern. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 24 h in tear fluid, indicating significant improvement in drug corneal residence time. A level A IVIVC was established between in vitro drug release and in vivo drug concentration in tear fluid. In conclusion, this inner layer embedded contact lens design could be used as a platform for extended ocular drug delivery with translational potential for both anterior and posterior ocular diseases therapy.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zheng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Puccetti M, Giovagnoli S, Zelante T, Romani L, Ricci M. Development of Novel Indole-3-Aldehyde-Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. J Pharm Sci 2018; 107:2341-2353. [PMID: 29715478 DOI: 10.1016/j.xphs.2018.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
Considering the recent evidence on the therapeutic potential of postbiotics, this study focused on 2 main goals: (1) to develop an enteric microparticle (MP) formulation for intestinal localized delivery of indole-3-aldehyde (3-IAld) (a microbial-derived metabolite produced by the host's lactobacilli during the catabolic pathway of tryptophan) and (2) to provide support in the employment of spray-drying as innovative one-step manufacturing technique for enteric products. For this purpose, special attention was taken in the knowledge of the influence of equipment setup and feedstock properties on MP enteric behavior. Eudragit® S100 and L100 and ethyl cellulose were used as wall materials and NaOH and ethanol solutions as solvent systems. 3-IAld loading was maintained at 10% w/w. As postulated, feedstock properties influenced spray-drying regime. In addition, they prevailed over other spray-drying process factors in determining MP enteric behavior. Albeit the high buckling regime that produced crumped particles, gastro resistance was obtained by spray-drying 2:1 Eudragit® S100:L100 with 30% w/w ethyl cellulose in ethanol solution. These results support the use of spray-drying as a method for manufacturing gastro-resistant MP. The obtained 3-IAld-loaded enteric MP will be useful to investigate novel postbiotic-based treatments in different therapeutic areas.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, via Gambuli 1, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123, Perugia, Italy
| |
Collapse
|
28
|
Moore HA, Marucci M, Härdelin L, Hjärtstam J, Stading M, von Corswant C, Larsson A. New insights on the influence of manufacturing conditions and molecular weight on phase-separated films intended for controlled release. Int J Pharm 2018; 536:261-271. [PMID: 29157964 DOI: 10.1016/j.ijpharm.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The aim of this work was to investigate how manufacturing conditions influence phase-separated films of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) with different molecular weights of HPC. Two HPC grades, SSL and M, with weight average molecular weights (Mw) of 30×103g/mol and 365×103g/mol, respectively, were combined with EC 10 cps (70:30w/w EC/HPC) and spray-coated from ethanol solutions onto a rotating drum under well-controlled process conditions. Generally, a low spray rate resulted in a more rapid film drying process and, consequently, in smaller HPC-rich domains in the phase-separated film structure. For EC/HPC films with the low Mw HPC (SSL) the most rapid drying process resulted in a shift from a HPC-discontinuous to a partly bicontinuous structure and an increase in the permeability for water. In contrast, films containing the high Mw HPC (M) all showed bicontinuous structures, which resulted in overall higher water permeabilities and polymer release compared to the low Mw films. Interestingly, a maximum in permeability was observed for the high Mw films at intermediate spray rates. Below this spray rate the permeability decreased due to a lower amount of polymer released and at higher spray rates, the permeability decreased due to a loss of pore connectivity (or increased tortuosity). To conclude, this study shows that different Mw systems of EC/HPC can respond differently to variations in manufacturing conditions.
Collapse
Affiliation(s)
- Helene Andersson Moore
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Mariagrazia Marucci
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Linda Härdelin
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| | - Johan Hjärtstam
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Mats Stading
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christian von Corswant
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; AstraZeneca R&D Gothenburg, SE-431 83 Mölndal, Sweden
| | - Anette Larsson
- SuMo BIOMATERIALS, VINN Excellence Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
29
|
Chen K, Chang HHR, Shalviri A, Li J, Lugtu-Pe JA, Kane A, Wu XY. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability. Eur J Pharm Biopharm 2017; 120:116-125. [PMID: 28887098 DOI: 10.1016/j.ejpb.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Kuan Chen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Hao Han R Chang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Alireza Shalviri
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Jamie Anne Lugtu-Pe
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Anil Kane
- Patheon Inc., Toronto Region Operations (TRO), Mississauga, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada.
| |
Collapse
|
30
|
Khlibsuwan R, Siepmann F, Siepmann J, Pongjanyakul T. Chitosan-clay nanocomposite microparticles for controlled drug delivery: Effects of the MAS content and TPP crosslinking. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Ali R, Dashevsky A, Bodmeier R. Poly vinyl acetate and ammonio methacrylate copolymer as unconventional polymer blends increase the mechanical robustness of HPMC matrix tablets. Int J Pharm 2017; 516:3-8. [DOI: 10.1016/j.ijpharm.2016.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
|
32
|
Andersson H, Häbel H, Olsson A, Sandhagen S, von Corswant C, Hjärtstam J, Persson M, Stading M, Larsson A. The influence of the molecular weight of the water-soluble polymer on phase-separated films for controlled release. Int J Pharm 2016; 511:223-235. [PMID: 27349793 DOI: 10.1016/j.ijpharm.2016.06.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
Hydroxypropyl cellulose (HPC) and ethyl cellulose (EC) can be used for extended release coatings, where the water-soluble HPC may act as a pore former. The aim was to investigate the effect of the molecular weight of HPC on the microstructure and mass transport in phase-separated freestanding EC/HPC films with 30% w/w HPC. Four different HPC grades were used, with weight averaged molecular weights (Mw) of 30.0 (SSL), 55.0 (SL), 83.5 (L) and 365 (M) kg/mol. Results showed that the phase-separated structure changed from HPC-discontinuous to bicontinuous with increasing Mw of HPC. The film with the lowest Mw HPC (SSL) had unconnected oval-shaped HPC-rich domains, leaked almost no HPC and had the lowest water permeability. The remaining higher Mw films had connected complex-shaped pores, which resulted in higher permeabilities. The highest Mw film (M) had the smallest pores and very slow HPC leakage, which led to a slow increase in permeability. Films with grade L and SL released most of their HPC, yet the permeability of the L film was three times higher due to greater pore connectivity. It was concluded that the phase-separated microstructure, the level of pore percolation and the leakage rate of HPC will be affected by the choice of HPC Mw grade used in the film and this will in turn have strong impact on the film permeability.
Collapse
Affiliation(s)
- Helene Andersson
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden; SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Henrike Häbel
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Mathematical Statistics, SE-412 96 Gothenburg, Sweden
| | - Anna Olsson
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Physics, SE-412 96 Gothenburg, Sweden
| | - Sofie Sandhagen
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| | | | | | - Michael Persson
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden; Akzo Nobel Pulp and Performance Chemicals AB, 445 80 Bohus, Sweden
| | - Mats Stading
- SP Food and Bioscience, Structure and Material Design, PO BOX 5301, SE-402 29 Gothenburg, Sweden; Chalmers University of Technology, Department of Material and Manufacturing Technology, SE-412 96 Gothenburg, Sweden
| | - Anette Larsson
- SuMo BIOMATERIALS, VINN Excellent Centre, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Chalmers University of Technology, Department of Chemistry and Chemical Engineering, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
33
|
Hacene YC, Singh A, Van den Mooter G. Drug loaded and ethylcellulose coated mesoporous silica for controlled drug release prepared using a pilot scale fluid bed system. Int J Pharm 2016; 506:138-47. [PMID: 27107901 DOI: 10.1016/j.ijpharm.2016.04.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/29/2023]
Abstract
The goal of this study was to test the feasibility to load non-ordered, non-spherical mesoporous silica with the model drug paracetamol, and subsequently coat the loaded particles using one single pilot scale fluid bed system equipped with a Wurster insert. Mesoporous silica particles (Davisil(®)) with a size ranging from 310 to 500μm and an average pore diameter of 15nm were loaded with paracetamol to 18.8% drug content. Subsequently, loaded cores were coated with ethylcellulose to obtain controlled drug release. Coating processing variables were varied following a full factorial design and their effect on drug release was assessed. Increasing coating solution feed rate and decreasing fluidizing air temperature were found to increase drug release rates. Increasing pore former level and decreasing coating level were found to increase drug release rates. The release medium's osmolality was varied using different sodium chloride concentrations, which was found to affect drug release rates. The results of this study clearly indicate the potential of non-ordered, non-spherical mesoporous silica as a reservoir carrier for the controlled release of drugs. Although non-spherical, we were able to reproducibly coat this carrier using a bottom spray fluid bed system. However, a major hurdle that needs to be tackled is the attrition the material suffers from during fluid bed processing.
Collapse
Affiliation(s)
| | - Abhishek Singh
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
34
|
|
35
|
Shah N, Sharma OP, Mehta T, Amin A. Design of experiment approach for formulating multi-unit colon-targeted drug delivery system: in vitro and in vivo studies. Drug Dev Ind Pharm 2015; 42:825-35. [PMID: 27019195 DOI: 10.3109/03639045.2015.1082581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The objective of the present investigation was to develop systematically optimized multiunit formulation for colon targeted delivery of metronidazole (MTZ) by employing design of experiment (DoE) and evaluate it for in vitro as well as in vivo drug release study. METHODS Core of mini-tablets of MTZ was prepared using drug along with suitable swelling agents to provide pH sensitive pulsatile drug delivery. Eudragit® S 100 (ES) and ethyl cellulose (EC) were used as coating polymers to prevent initial drug release in gastric region. The coating composition was systematically optimized using 3(2)-full factorial design and optimized formulation was evaluated in vitro and then in vivo, to confirm colon targeting ability of the developed system. Stability study of optimized formulation was performed for 6 months as per ICH guidelines. RESULTS The optimized coating composition was selected from the results of design batches. The optimized formulation showed 6.99 ± 1.5% drug release up to 5 h and 100% drug release within 7.2 ± 0.2 h indicating pH sensitive pulsatile behavior of formulation. Similar drug release profile was observed while performing in vivo study in rabbits with a lag time of 4 h and Cmax of 190 ± 4.9 ng/ml being achieved after 7 h. Stability study indicated insignificant difference in properties of tablets and their drug release patterns. CONCLUSION Optimization of coating composition (EC and ES) and thickness could offer pH sensitive pulsatile release of drugs at colon. Furthermore, in vivo results confirmed the successful development of colon targeted formulation of MTZ.
Collapse
Affiliation(s)
- Nitesh Shah
- a Department of Pharmaceutics and Pharmaceutical Technology , Institute of Pharmacy, Nirma University , Ahmedabad , Gujarat , India
| | - Om Prakash Sharma
- a Department of Pharmaceutics and Pharmaceutical Technology , Institute of Pharmacy, Nirma University , Ahmedabad , Gujarat , India
| | - Tejal Mehta
- a Department of Pharmaceutics and Pharmaceutical Technology , Institute of Pharmacy, Nirma University , Ahmedabad , Gujarat , India
| | - Avani Amin
- a Department of Pharmaceutics and Pharmaceutical Technology , Institute of Pharmacy, Nirma University , Ahmedabad , Gujarat , India
| |
Collapse
|
36
|
Rongthong T, Sungthongjeen S, Siepmann F, Siepmann J, Pongjanyakul T. Quaternary polymethacrylate–magnesium aluminum silicate films: Water uptake kinetics and film permeability. Int J Pharm 2015; 490:165-72. [DOI: 10.1016/j.ijpharm.2015.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/21/2015] [Accepted: 05/17/2015] [Indexed: 11/17/2022]
|
37
|
Exploring the drug migration process through ethyl cellulose-based films from infrared-spectral insights. Eur J Pharm Biopharm 2015; 93:46-51. [DOI: 10.1016/j.ejpb.2015.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/17/2022]
|
38
|
Frederiksen K, Guy RH, Petersson K. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur J Pharm Biopharm 2015; 91:9-15. [DOI: 10.1016/j.ejpb.2015.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022]
|
39
|
Wang J, Sun Y, Li B, Fan R, Li B, Yin T, Rong L, Sun J. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
How to easily provide zero order release of freely soluble drugs from coated pellets. Int J Pharm 2015; 478:31-38. [DOI: 10.1016/j.ijpharm.2014.10.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 11/21/2022]
|
41
|
Freire FD, Câmara MB, Dantas MG, Aragão CFS, Lima e Moura TFAD, Raffin FN. Gastric-resistant isoniazid pellets reduced degradation of rifampicin in acidic medium. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoniazid and rifampicin are considered the first-line medication for preventing and treating tuberculosis. Rifampicin is degraded in the stomach acidic environment, especially when combined with isoniazid, factor contributing to treatment failure. In this study, gastric-resistant isoniazid pellets were obtained to physical contact of this drug with rifampicin and to bypass the stomach´s acidic environment. The pellets were fabricated using the extrusion-spheronization technique. The coating process was conducted in a fluid spray coater using Acrycoat L 100(r) solution as the coating agent. The pellets obtained were submitted to a dissolution test in HCl 0.1 N and phosphate buffer media. The results indicated that optimum gastric-resistance was only attained with the highest amount of coating material, with isoniazid almost fully released in phosphate buffer. The amount of rifampicin released from its mixture with non-coated isoniazid pellets in HCl 0.1 N was less than that released from its mixture with the enteric-coated pellets. Acrycoat L 100(r) was shown to be an effective enteric/gastric-resistant coating since the stability of rifampicin appeared to be enhanced when physical contact of this drug with isoniazid was prevented at low pH.
Collapse
|
42
|
Kanis LA, Marques EL, Zepon KM, Pereira JR, Pamato S, de Oliveira MT, Danielski LG, Petronilho FC. Cellulose acetate butyrate/poly(caprolactonetriol) blends: Miscibility, mechanical properties, and in vivo inflammatory response. J Biomater Appl 2014; 29:654-61. [PMID: 25015652 DOI: 10.1177/0885328214542488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports the results of the characterization of cellulose acetate butyrate and polycaprolactone-triol blends in terms of miscibility, swelling capacity, mechanical properties, and inflammatory response in vivo. The cellulose acetate butyrate film was opaque and rigid, with glass transition (T g ) at 134℃ and melting temperature of 156℃. The cellulose acetate butyrate/polycaprolactone-triol films were transparent up to a polycaprolactone-triol content of 60%. T g of the cellulose acetate butyrate films decreased monotonically as polycaprolactone-triol was added to the blend, thus indicating miscibility. FTIR spectroscopy revealed a decrease in intramolecular hydrogen bonding in polycaprolactone-triol, whereas no hydrogen bonding was observed between cellulose acetate butyrate and -OH from polycaprolactone-triol. The increase in polycaprolactone-triol content in the blend decreased the water uptake. An increase in polycaprolactone-triol content decreased the modulus of elasticity and increased the elongation at break. A cellulose acetate butyrate/polycaprolactone-triol 70/30 blend implanted in rats showed only an acute inflammatory response 7 days after surgery. No change in inflammation mediators was observed.
Collapse
Affiliation(s)
- Luiz A Kanis
- TECFARMA, University of Southern Santa Catarina, Tubarão, SC, Brazil Post Graduated Program in Health Science, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Ellen L Marques
- TECFARMA, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Karine M Zepon
- TECFARMA, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Jefferson R Pereira
- Post Graduated Program in Health Science, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Saulo Pamato
- Post Graduated Program in Health Science, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Marcelo T de Oliveira
- Post Graduated Program in Health Science, University of Southern Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia G Danielski
- LAFICEXP, Universidade University of Southern Santa Catarina, Tubarão, SC, Brazil
| | | |
Collapse
|
43
|
Isik M, Sardon H, Mecerreyes D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 2014; 15:11922-40. [PMID: 25000264 PMCID: PMC4139821 DOI: 10.3390/ijms150711922] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022] Open
Abstract
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.
Collapse
Affiliation(s)
- Mehmet Isik
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 San Sebastian, Spain.
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 San Sebastian, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avda. Tolosa 72, 20018 San Sebastian, Spain.
| |
Collapse
|
44
|
de Barros JM, Scherer T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. A Laminated Polymer Film Formulation for Enteric Delivery of Live Vaccine and Probiotic Bacteria. J Pharm Sci 2014; 103:2022-2032. [DOI: 10.1002/jps.23997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/04/2014] [Accepted: 04/09/2014] [Indexed: 01/12/2023]
|
45
|
Kan SL, Lu J, Liu JP, Zhao Y. Preparation and in vitro/in vivo evaluation of esomeprazole magnesium-modified release pellets. Drug Deliv 2014; 23:866-73. [DOI: 10.3109/10717544.2014.919545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shu-Ling Kan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Jing Lu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Jian-Ping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| | - Yi Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
46
|
Fang Y, Wang G, Zhang R, Liu Z, Liu Z, Wu X, Cao D. Eudragit L/HPMCAS blend enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability. AAPS PharmSciTech 2014; 15:513-21. [PMID: 24590548 DOI: 10.1208/s12249-013-0035-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022] Open
Abstract
The objectives of the present work were to use blends of Eudragit L and hydroxypropyl methylcellulose acetate succinate (HPMCAS) as enteric film coatings for lansoprazole (LSP) pellets. The enteric-coated pellets were prepared with a fluid-bed coater. The influence of the blend ratio, type of plasticizer, plasticizer level, coating level, and curing conditions on gastric stability in vitro drug release and drug stability was evaluated. Furthermore, the bioavailability of the blend-coated pellets in beagle dogs was also performed. The blend-coated pellets exhibited significant improvement of gastric stability and drug stability compared to the pure polymer-coated pellets. Moreover, the AUC values of blend-coated pellets were greater than that of the pure polymer-coated pellets. It was concluded that the using blends of Eudragit L and HPMCAS as enteric film coatings for LSP pellets improved the drug stability and oral bioavailability.
Collapse
|
47
|
Yang M, Xie S, Li Q, Wang Y, Chang X, Shan L, Sun L, Huang X, Gao C. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm 2014; 465:187-96. [DOI: 10.1016/j.ijpharm.2014.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/27/2014] [Accepted: 02/12/2014] [Indexed: 11/27/2022]
|
48
|
Optimization of Chronomodulated Delivery System Coated with a Blend of Ethyl Cellulose and Eudragit L100 by Central Composite Design: In Vitro and In Vivo Evaluation. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9176-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Accelerated fenofibrate release from spray-dried microparticles based on polymer blends. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
|