1
|
Choudhari M, Hejmady S, Narayan Saha R, Damle S, Singhvi G, Alexander A, Kesharwani P, Kumar Dubey S. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharm 2021; 599:120351. [PMID: 33545286 DOI: 10.1016/j.ijpharm.2021.120351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/25/2022]
Abstract
A basic understanding of the blood-brain barrier (BBB) is essential for the novel advancements in targeting drugs specific to the brain. Neoplasm compromising the internal structure of BBB that results in impaired vasculature is called as blood tumor barrier (BTB). Besides, the BBB serves as a chief hindrance to the passage of a drug into the brain parenchyma. The small and hydrophilic drugs majorly display an absence of desired molecular characteristics required to cross the BBB. Furthermore, all classes of biologics have failed in the clinical trials of brain diseases over the past years since these biologics are large molecules that do not cross the BBB. Also, new strategies have been discovered that use the Trojan horse technology with the re-engineered biologics for BBB transport. Thus, this review delivers information about the different grades of tumors (I-IV) i.e. examples of BBB/BTB heterogenicity along with the different mechanisms for transporting the therapeutics into the brain tumors by crossing BBB. This review also provides insights into the emerging approaches of peptide delivery and the non-invasive and brain-specific molecular Trojan horse targeting technologies. Also, the several challenges in the clinical development of BBB penetrating IgG fusion protein have been discussed.
Collapse
Affiliation(s)
- Manisha Choudhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ranendra Narayan Saha
- Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Shantanu Damle
- Colorcon Asia Pvt. Ltd., Verna Industrial Estate, Verna 403722, Goa, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceutical Technology (Formulations), Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India, Sila Village, Nizsundarighopa, Changsari, Kamrup (R), Guwahati, Assam 781101, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; R&D Healthcare Division Emami Ltd., 13, BT Road, Belgharia, Kolkata 700056, India.
| |
Collapse
|
2
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
3
|
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. ACTA ACUST UNITED AC 2016; 6:225-248. [PMID: 28265539 PMCID: PMC5326671 DOI: 10.15171/bi.2016.30] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Dahan A, Zimmermann EM, Ben-Shabat S. Modern prodrug design for targeted oral drug delivery. Molecules 2014; 19:16489-505. [PMID: 25317578 PMCID: PMC6271014 DOI: 10.3390/molecules191016489] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32608, USA
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
5
|
Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012; 9:1001-13. [PMID: 22703376 DOI: 10.1517/17425247.2012.697055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The molecular revolution greatly impacted the field of drug design and delivery in general, and the utilization of the prodrug approach in particular. The increasing understanding of membrane transporters has promoted a novel 'targeted-prodrug' approach utilizing carrier-mediated transport to increase intestinal permeability, as well as specific enzymes to promote activation to the parent drug. AREAS COVERED This article provides the reader with a concise overview of this modern approach to prodrug design. Targeting the oligopeptide transporter PEPT1 for absorption and the serine hydrolase valacyclovirase for activation will be presented as examples for the successful utilization of this approach. Additionally, the use of computational approaches, such as DFT and ab initio molecular orbital methods, in modern prodrugs design will be discussed. EXPERT OPINION Overall, in the coming years, more and more information will undoubtedly become available regarding intestinal transporters and potential enzymes that may be exploited for the targeted modern prodrug approach. Hence, the concept of prodrug design can no longer be viewed as merely a chemical modification to solve problems associated with parent compounds. Rather, it opens promising opportunities for precise and efficient drug delivery, as well as enhancement of treatment options and therapeutic efficacy.
Collapse
Affiliation(s)
- Arik Dahan
- Ben-Gurion University of the Negev, School of Pharmacy, Faculty of Health Sciences, Department of Clinical Pharmacology, P.O. Box 653, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
6
|
Nakanishi T, Tamai I. Solute Carrier Transporters as Targets for Drug Delivery and Pharmacological Intervention for Chemotherapy. J Pharm Sci 2011; 100:3731-50. [DOI: 10.1002/jps.22576] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 01/11/2023]
|
7
|
Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011; 16:704-14. [PMID: 21624498 DOI: 10.1016/j.drudis.2011.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/04/2011] [Accepted: 05/11/2011] [Indexed: 01/04/2023]
Abstract
All cells necessarily contain tens, if not hundreds, of carriers for nutrients and intermediary metabolites, and the human genome codes for more than 1000 carriers of various kinds. Here, we illustrate using a typical literature example the widespread but erroneous nature of the assumption that the 'background' or 'passive' permeability to drugs occurs in the absence of carriers. Comparison of the rate of drug transport in natural versus artificial membranes shows discrepancies in absolute magnitudes of 100-fold or more, with the carrier-containing cells showing the greater permeability. Expression profiling data show exactly which carriers are expressed in which tissues. The recognition that drugs necessarily require carriers for uptake into cells provides many opportunities for improving the effectiveness of the drug discovery process.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
8
|
Naruhashi K, Kurahashi Y, Fujita Y, Kawakita E, Yamasaki Y, Hattori K, Nishimura A, Shibata N. Comparison of the Expression and Function of ATP Binding Cassette Transporters in Caco-2 and T84 cells on Stimulation by Selected Endogenous Compounds and Xenobiotics. Drug Metab Pharmacokinet 2011; 26:145-53. [DOI: 10.2133/dmpk.dmpk-10-rg-075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Mitsuoka K, Kato Y, Miyoshi S, Murakami Y, Hiraiwa M, Kubo Y, Nishimura S, Tsuji A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur J Pharm Sci 2010; 40:202-8. [PMID: 20307658 DOI: 10.1016/j.ejps.2010.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/02/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
Abstract
Oligopeptide transporters are abundantly expressed in various types of cancer cells. We here synthesized two novel dipeptides, l-phenylalanyl sarcosine (Phe-Sar) and 4-(4-methoxyphenyl)-l-phenylalanyl sarcosine (Bip(OMe)-Sar), and examined their effect on the growth of human pancreatic cancer AsPC-1 cells, which are known to highly express oligopeptide transporter PEPT1/SLC15A1. Growth of AsPC-1 cells was inhibited by these two peptides and a typical PEPT1/SLC15A1 substrate Gly-Sar. Growth inhibition by Gly-Sar, Phe-Sar and Bip(OMe)-Sar was concentration-dependent with half-maximal inhibitory concentration of 50, 0.91 and 0.55mM, respectively. These peptides also inhibited PEPT1-mediated [(3)H]Gly-Sar uptake with half-maximal inhibitory concentration of 2.6, 0.81 and 0.27mM, respectively. Thus, the rank order of the tumor cell growth inhibition by these three peptides was the same as that of PEPT1-inhibitory activity. Growth of AsPC-1 cells was also inhibited by 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH), which is a typical inhibitor of amino acid transporter system L. The growth inhibition by BCH and Gly-Sar was additive, suggesting that these compounds act at distinct loci. Oligopeptide transporters thus appear to be a promising target for inhibition of pancreatic cancer progression. These results also proposed the idea that oligopeptide transporter is required for growth of AsPC-1 cells.
Collapse
Affiliation(s)
- Keisuke Mitsuoka
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pang KS, Morris ME, Sun H. Formed and preformed metabolites: facts and comparisons. J Pharm Pharmacol 2010; 60:1247-75. [DOI: 10.1211/jpp.60.10.0001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
The administration of metabolites arising from new drug entities is often employed in drug discovery to investigate their associated toxicity. It is expected that administration of metabolites can predict the exposure of metabolites originating from the administration of precursor drug. Whether exact and meaningful information can be obtained from this has been a topic of debate. This communication summarizes observations and theoretical relationships based on physiological modelling for the liver, kidney and intestine, three major eliminating organs/tissues. Theoretical solutions based on physiological modelling of organs were solved, and the results suggest that deviations are expected. Here, examples of metabolite kinetics observed mostly in perfused organs that did not match predictions are provided. For the liver, discrepancies in fate between formed and preformed metabolites may be explained by the heterogeneity of enzymes, the presence of membrane barriers and whether transporters are involved. For the kidney, differences have been attributed to glomerular filtration of the preformed but not the formed metabolite. For the intestine, the complexity of segregated flows to the enterocyte and serosal layers and differences in metabolism due to the route of administration are addressed. Administration of the metabolite may or may not directly reflect the toxicity associated with drug use. However, kinetic data on the preformed metabolite will be extremely useful to develop a sound model for modelling and simulations; in-vitro evidence on metabolite handling at the target organ is also paramount. Subsequent modelling and simulation of metabolite data arising from a combined model based on both drug and preformed metabolite data are needed to improve predictions on the behaviours of formed metabolites.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Huadong Sun
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| |
Collapse
|
11
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
12
|
Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 2008; 7:205-20. [PMID: 18309312 DOI: 10.1038/nrd2438] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is generally thought that many drug molecules are transported across biological membranes via passive diffusion at a rate related to their lipophilicity. However, the types of biophysical forces involved in the interaction of drugs with lipid membranes are no different from those involved in their interaction with proteins, and so arguments based on lipophilicity could also be applied to drug uptake by membrane transporters or carriers. In this article, we discuss the evidence supporting the idea that rather than being an exception, carrier-mediated and active uptake of drugs may be more common than is usually assumed - including a summary of specific cases in which drugs are known to be taken up into cells via defined carriers - and consider the implications for drug discovery and development.
Collapse
Affiliation(s)
- Paul D Dobson
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
13
|
Ballestero MR, Monte MJ, Briz O, Jimenez F, Gonzalez-San Martin F, Marin JJG. Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem Pharmacol 2006; 72:729-38. [PMID: 16844096 DOI: 10.1016/j.bcp.2006.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/07/2006] [Accepted: 06/07/2006] [Indexed: 11/23/2022]
Abstract
Drug targeting might help to overcome resistance to chemotherapy. Here we investigated whether colon cancer and polyps do express functional carriers involved in the uptake of cytostatic bile acid derivatives, in this case Bamet-UD2 [cis-diammine-bisursodeoxycholate-platinum(II)], which has been reported to be taken up by colon cancer cells "in vitro", efficiently induce apoptosis and overcome resistance to cisplatin. Although at lower levels than in ileum, a detectable expression of ASBT, OATP8/1B3, OCT1 and OSTalpha in colon tissue was found, which was not impaired in colon cancer or polyps. The expression of OATP-A/1A2 and OSTbeta was also found in colon, but this was markedly decreased in neoplastic colon tissue. In contrast, the expression of OATP-C/1B1 was low in colon but significantly enhanced in neoplastic colon tissue. MDR1 and MRP2 were poorly expressed in colon as compared with ileum, whereas MRP3 expression was higher in colon than in ileum. The abundance of mRNA for these ABC proteins was not changed in colon cancer or polyps. When RNA from different tissues was injected to Xenopus laevis oocytes their ability to take up taurocholate and Bamet-UD2 was enhanced (healthy ileum>healthy colon approximately neoplastic colon tissue). In all cases, uptake was lower for taurocholate than for Bamet-UD2, probably due to that ASBT mediates sodium-dependent uptake of both substrates, whereas additional transporters expressed in these tissues can participate in Bamet-UD2 uptake. In conclusion, our results suggest that the use of cytostatic bile acid derivatives might be a good pharmacological strategy for the treatment of colon tumors.
Collapse
Affiliation(s)
- Maria R Ballestero
- Group of Experimental Hepatology and Drug Targeting (HEVEFARM), Department of Physiology and Pharmacology, University of Salamanca, Campus Miguel de Unamuno, ED-S09, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 2006; 112:71-105. [PMID: 16714062 DOI: 10.1016/j.pharmthera.2006.03.003] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 09/19/2005] [Accepted: 03/13/2006] [Indexed: 11/19/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used for the treatment of hypercholesterolemia. Their efficacy in preventing cardiovascular events has been shown by a large number of clinical trials. However, myotoxic side effects, sometimes severe, including myopathy or rhabdomyolysis, are associated with the use of statins. In some cases, such toxicity is associated with pharmacokinetic alterations. In this review, the pharmacokinetic aspects and physicochemical properties of statins are reviewed in order to understand the mechanism governing their pharmacokinetic alterations. Among the statins, simvastatin, lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4) while fluvastatin is metabolized by CYP2C9. Cerivastatin is subjected to 2 metabolic pathways mediated by CYP2C8 and 3A4. Pravastatin, rosuvastatin and pitavastatin undergo little metabolism. Their plasma clearances are governed by the transporters involved in the hepatic uptake and biliary excretion. Also for other statins, which are orally administered as open acid forms (i.e. fluvastatin, cerivastatin and atorvastatin), hepatic uptake transporter(s) play important roles in their clearances. Based on such information, pharmacokinetic alterations of statins can be predicted following coadministration of other drugs or in patients with lowered activities in drug metabolism and/or transport. We also present a quantitative analysis of the effect of some factors on the pharmacokinetics of statins based on a physiologically based pharmacokinetic model. To avoid a pharmacokinetic alteration, we need to have information about the metabolizing enzyme(s) and transporter(s) involved in the pharmacokinetics of statins and, along with such information, model-based prediction is also useful.
Collapse
Affiliation(s)
- Yoshihisa Shitara
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | |
Collapse
|
15
|
Takano M, Yumoto R, Murakami T. Expression and function of efflux drug transporters in the intestine. Pharmacol Ther 2006; 109:137-61. [PMID: 16209890 DOI: 10.1016/j.pharmthera.2005.06.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 02/08/2023]
Abstract
A variety of drug transporters expressed in the body control the fate of drugs by affecting absorption, distribution, and elimination processes. In the small intestine, transporters mediate the influx and efflux of endogenous or exogenous substances. In clinical pharmacotherapy, ATP-dependent efflux transporters (ATP-binding cassette [ABC] transporters) expressed on the apical membrane of the intestinal epithelial cells determine oral bioavailability, intestinal efflux clearance, and the site of drug-drug interaction of certain drugs. The expression and functional activity of efflux transporters exhibit marked interindividual variation and are relatively easily modulated by factors such as therapeutic drugs and daily foods and beverages. In this article, we will summarize the recent findings regarding the intestinal efflux transporters, especially P-glycoprotein (P-gp or human multidrug resistance gene [MDR] 1), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP).
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Programs for Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | |
Collapse
|
16
|
Sai Y, Tsuji A. Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discov Today 2005; 9:712-20. [PMID: 15341785 DOI: 10.1016/s1359-6446(04)03198-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A comprehensive list of drug transporters has recently become available as a result of extensive genome analysis, as well as membrane physiology and molecular biology studies. This review covers recent progress in identification and characterization of drug transporters, illustrative cases of successful drug delivery to, or exclusion from, target organs via transporters, and novel experimental approaches to therapeutics using heterologously transduced transporters in tissues. We aim to provide clues that could lead to efficient strategies for the use of transporters to deliver drugs and/or to optimize lead compounds.
Collapse
Affiliation(s)
- Yoshimichi Sai
- Department of Pharmaceutics, Kyoritsu University of Pharmacy, Tokyo 105-8512, Japan
| | | |
Collapse
|
17
|
Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004; 447:610-8. [PMID: 12905028 DOI: 10.1007/s00424-003-1101-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 04/25/2003] [Accepted: 04/29/2003] [Indexed: 02/07/2023]
Abstract
Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.
Collapse
Affiliation(s)
- Hannelore Daniel
- Molecular Nutrition Unit, Institute of Nutritional Sciences, Technical University of Munich, Hochfeldweg 2, 85354, Freising-Weihenstephan, Germany
| | | |
Collapse
|
18
|
Abstract
Prodrug design strategies have been employed to improve the delivery of drugs with undesirable pharmacokinetic properties such as chemical stability and lack of specificity. Targeted prodrug design represents a new strategy for site-directed and efficient drug delivery. Targeting of drugs to transporters and receptors to aid in site-specific carrier-mediated absorption is emerging as a novel and clinically significant approach. Various prodrugs have been successful in achieving the goals of enhanced bioavailability and are, therefore, considered to be an important tool in biopharmaceutics. This review highlights the advances in prodrug design targeted towards membrane transporters/receptors in the past few years.
Collapse
Affiliation(s)
- Banmeet S Anand
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
19
|
Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJG. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol Pharmacol 2002; 61:853-60. [PMID: 11901224 DOI: 10.1124/mol.61.4.853] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Molecular bases for targeting bile acid-cisplatin derivatives Bamet-R2 [cis-diammine-chloro-cholylglycinate-platinum(II)] and Bamet-UD2 [cis-diammine-bisursodeoxycholate-platinum(II)] toward liver cells were investigated. Carriers for bile acids [human Na(+)-taurocholate cotransporting polypeptide (NTCP)], organic anions [organic anion transporting polypeptide (OATP)], and organic cations [organic cation transporter (OCT)] were expressed in Xenopus laevis oocytes (XO) and Chinese hamster ovary (CHO) cells. Drug uptake was measured by flameless atomic absorption of platinum. Rat Oatp1- or rat Ntcp-transfected CHO cells were able to take up Bamets, but not cisplatin, severalfold more efficiently than wild-type cells. This uptake was enhanced by butyrate-induced expression of both carriers. Uptake of both Bamets by Ntcp-transfected CHO cells was stimulated by extracellular sodium. The amount of Bamets, but not cisplatin, taken up by XO was enhanced when expressing OATP-A, OATP-C, NTCP, OCT1, or OCT2, a nonhepatic OCT isoform used for comparative purposes. Bamet uptake by XO was inhibited by known substrates of these carriers (glycocholate for NTCP and OATP-C, ouabain for OATP-A, and quinine for OCT1 and OCT2). Drug uptake versus substrate concentration revealed saturation kinetics (K(m) was in the 8-58 microM range), with the following order of efficiency of transport (V(max)/K(m)) for Bamet-R2: OATP-C > OCT2 > OATP-A > NTCP > OCT1; and the following order of efficiency of transport for Bamet-UD2: OATP-C > OCT2 > OATP-A > OCT1 > NTCP. Increasing the generation of cationic forms of Bamets by incubation in the absence of chloride increased drug uptake by OATP-A, OCT1, and OCT2 but reduced that achieved by NTCP and OATP-C. These results suggest a role for carriers of organic anions and cations in Bamet-R2 and Bamet-UD2 uptake, which may determine their ability to accumulate in liver tumor cells and/or be taken up and efficiently excreted by hepatocytes.
Collapse
Affiliation(s)
- Oscar Briz
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Kusuhara H, Sugiyama Y. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 2002; 78:43-54. [PMID: 11772448 DOI: 10.1016/s0168-3659(01)00480-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cumulative studies have revealed the importance of transporters in drug disposition in the body. Recently, organic anion transporters such as organic anion transporting polypeptides (OATPs), organic anion transporters (OATs) and multidrug resistance associated proteins (MRPs) have been identified. Their broad substrate specificity as well as the multiplicity of transporter gene products make these transporters suitable detoxification systems in the body. OATPs and OATs are responsible for the hepatic and renal uptake of organic anions, respectively, while MRP2 is a major transporter involved in the biliary excretion of organic anions. OATPs and MRP2 are involved in the hepatobiliary transport of pravastatin and temocaprilat. These are good examples of hepatobiliary transport maximizing their pharmacological effects, but minimizing their side-effects. Taking into consideration tissue-selective expression and substrate specificity, transporters are useful for delivering small molecules to target tissues. MRPs are also suggested to be involved in the barrier function in the small intestine, blood-brain barrier and blood-cerebrospinal fluid barriers by extruding their ligands into the luminal side. In this manuscript, we have summarized recent studies by others and ourselves on the role of these transporters in the tissue selective distribution and elimination of drugs.
Collapse
Affiliation(s)
- Hiroyuki Kusuhara
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | |
Collapse
|
21
|
Bayerle-Eder M, Fuchsjäger-Mayrl G, Sieder A, Polska E, Roden M, Stulnig T, Bischof MG, Waldhäusl W, Schmetterer L, Wolzt M. Effect of pravastatin on responsiveness to N-monomethyl-L-arginine in patients with hypercholesterolaemia. Atherosclerosis 2002; 160:177-84. [PMID: 11755936 DOI: 10.1016/s0021-9150(01)00559-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Improvement of endothelial function in hypercholesterolaemia is attributed to lipid lowering and to pleiotropic effects of statin therapy. We investigated whether responsiveness to inhibition of constitutive NO formation with N-monomethyl-L-arginine (L-NMMA) is improved after 7 and 28 days of pravastatin. Twelve female and four male subjects with mild or moderate primary hypercholesterolaemia were randomized to pravastatin (20 mg per oral (p.o.) n=8) or placebo (n=8) in a double blind parallel group design. Vascular responsiveness was studied by intravenous bolus infusions of L-NMMA (cumulative doses of 3 and 6 mg/kg). Mean arterial blood pressure (MAP) and pulse rate (PR) were measured noninvasively, pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation amplitudes (FPA) and renal plasma flow (RPF) was measured by the PAH clearance method. Pravastatin lowered plasma cholesterol levels by 16 and 24% after 7 and 28 days of treatment, respectively (P<0.01). L-NMMA caused comparable changes in MAP, PR and RPF between groups. L-NMMA reduced FPA to a similar extent in both groups before and after 7 days of treatment, but the response to L-NMMA was significantly enhanced after 28 days of pravastatin (21%; P<0.001 vs baseline) and greater than after placebo (15%; P<0.01 vs pravastatin). Pravastatin enhances responsiveness to L-NMMA in the ocular microvasculature. Improved responsiveness is associated with changes in total cholesterol levels.
Collapse
Affiliation(s)
- Michaela Bayerle-Eder
- Department of Clinical Pharmacology, Allgemeines Krankenhaus Wien, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Johnston TP, Nguyen LB, Chu WA, Shefer S. Potency of select statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int J Pharm 2001; 229:75-86. [PMID: 11604260 DOI: 10.1016/s0378-5173(01)00834-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poloxamer-407 (P-407) is a nonionic surfactant that induces atheroma formation in the aortas of C57BL/6 mice with long-term (14 weeks) administration. The objectives of the present study were to determine the mechanism(s) responsible for the induction of hypercholesterolemia as well as to determine whether this animal model may be of potential use in rank ordering the efficacy (lipid lowering) of various statin drugs. The effect of long-term (16 weeks) administration of P-407 on the catalytic activities of rate-limiting enzymes of cholesterol biosynthesis [HMG-CoA reductase (HMGR)] and catabolism [microsomal cholesterol 7alpha-hydroxylase (C7alphaH) and mitochondrial sterol 27 hydroxylase (S27H)] was assessed in C57BL/6 mice. Effects of P-407 on these enzymes were compared in mice fed an atheroma-inducing diet (high-cholesterol, supplemented with cholic acid) and animals maintained on a basal diet and injected with saline (controls) after 16 weeks. The mean value for the activities of C7alphaH in P-407-injected mice was 24.3+/-3.8 pmol min(-1) mg(-1) and was significantly (P<0.05) less than the mean value determined for sham-injected control animals (37.0+/-14.3 pmol min(-1) mg(-1)). In contrast, the mean values for the catalytic activities of S27H and HMGR did not change with P-407 administration. Neither C7alphaH nor S27H activity in mice fed the high-cholesterol diet differed from values for control animals, whereas the mean HMGR activity was drastically reduced (-94%, P<0.05). The hypercholesterolemic effect of P-407 is not due to altered cholesterol biosynthesis, but is mediated by reduced cholesterol catabolism due to decreased activity of the rate limiting enzyme (C7alphaH) in the classic bile acid synthetic pathway. Plasma triglyceride lowering resulting from the oral administration of equal doses of various statin drugs appeared, in general, to be positively correlated with their relative aqueous solubility and paralleled the efficacy of these agents to lower low-density-lipoprotein-associated cholesterol (LDL-C) in humans. The plasma triglyceride lowering effect of the five statin drugs tested produced the following rank order; pravastatin sodium (-44%)>atorvastatin calcium (-36%)>simvastatin (-33%)>lovastatin (-25%)>fluvastatin sodium (-19%). While reductions in plasma total cholesterol following administration of the statin drugs was not as profound as that observed with triglycerides, the relative rank order or trend was preserved. The percent reduction in plasma triglycerides in the present model appears to be a useful parameter with which to predict the relative reduction in plasma LDL-C expected for these agents in humans.
Collapse
Affiliation(s)
- T P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO 64110-2499, USA.
| | | | | | | |
Collapse
|