1
|
Yen HC, Hsu CT, Wu SY, Kan CC, Chang CW, Chang HM, Chien YA, Wei YH, Wu CY. Alterations in coenzyme Q 10 status in a cybrid line harboring the 3243A>G mutation of mitochondrial DNA is associated with abnormal mitochondrial bioenergetics and dysregulated mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149492. [PMID: 38960080 DOI: 10.1016/j.bbabio.2024.149492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chia-Tzu Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Yu Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Kan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Ming Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-An Chien
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Yen Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Barros CDS, Coutinho A, Tengan CH. Arginine Supplementation in MELAS Syndrome: What Do We Know about the Mechanisms? Int J Mol Sci 2024; 25:3629. [PMID: 38612442 PMCID: PMC11011289 DOI: 10.3390/ijms25073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Celia H. Tengan
- Division of Neurology, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (C.D.S.B.); (A.C.)
| |
Collapse
|
3
|
Miyahara H, Tamai C, Inoue M, Sekiguchi K, Tahara D, Tahara N, Takeda K, Arafuka S, Moriyoshi H, Koizumi R, Akagi A, Riku Y, Sone J, Yoshida M, Ihara K, Iwasaki Y. Neuropathological hallmarks in autopsied cases with mitochondrial diseases caused by the mitochondrial 3243A>G mutation. Brain Pathol 2023; 33:e13199. [PMID: 37534760 PMCID: PMC10580013 DOI: 10.1111/bpa.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
The mitochondrial (m.) 3243A>G mutation is known to be associated with various mitochondrial diseases including mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Their clinical symptoms have been estimated to occur with an increased mitochondrial DNA (mtDNA) heteroplasmy and reduced activity of oxidative phosphorylation (OXPHOS) complexes, but their trends in the central nervous system remain unknown. Six autopsied mutant cases and three disease control cases without the mutation were enrolled in this study. The mutant cases had a disease duration of 1-27 years. Five of six mutant cases were compatible with MELAS. In the mutant cases, cortical lesions including a laminar necrosis were frequently observed in the parietal, lateral temporal, and occipital lobes; less frequently in the frontal lobe including precentral gyrus; and not at all in the medial temporal lobe. The mtDNA heteroplasmy in brain tissue samples of the mutant cases was strikingly high, ranging from 53.8% to 85.2%. The medial temporal lobe was preserved despite an inhospitable environment having high levels of mtDNA heteroplasmy and lactic acid. OXPHOS complex I was widely decreased in the mutant cases. The swelling of smooth muscle cells in the vessels on the leptomeninges, with immunoreactivity (IR) against mitochondria antibody, and a decreased nuclear/cytoplasmic ratio of choroidal epithelial cells were observed in all mutant cases but in none without the mutation. Common neuropathological findings such as cortical laminar necrosis and basal ganglia calcification were not always observed in the mutant cases. A high level of mtDNA heteroplasmy was observed throughout the brain in spite of heterogeneous cortical lesions. A lack of medial temporal lesion, mitochondrial vasculopathy in vessels on the leptomeninges, and an increased cytoplasmic size of epithelial cells in the choroid plexus could be neuropathological hallmarks helpful in the diagnosis of mitochondrial diseases.
Collapse
Affiliation(s)
- Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Masanori Inoue
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | | | - Daisuke Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Nao Tahara
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kazuhiro Takeda
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Shusei Arafuka
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Hideyuki Moriyoshi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| | - Kenji Ihara
- Department of PediatricsOita University Faculty of MedicineOitaJapan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Research of AgingAichi Medical UniversityAichiJapan
| |
Collapse
|
4
|
Chemical reversal of abnormalities in cells carrying mitochondrial DNA mutations. Nat Chem Biol 2020; 17:335-343. [PMID: 33168978 DOI: 10.1038/s41589-020-00676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are the major cause of mitochondrial diseases. Cells harboring disease-related mtDNA mutations exhibit various phenotypic abnormalities, such as reduced respiration and elevated lactic acid production. Induced pluripotent stem cell (iPSC) lines derived from patients with mitochondrial disease, with high proportions of mutated mtDNA, exhibit defects in maturation into neurons or cardiomyocytes. In this study, we have discovered a small-molecule compound, which we name tryptolinamide (TLAM), that activates mitochondrial respiration in cybrids generated from patient-derived mitochondria and fibroblasts from patient-derived iPSCs. We found that TLAM inhibits phosphofructokinase-1 (PFK1), which in turn activates AMPK-mediated fatty-acid oxidation to promote oxidative phosphorylation, and redirects carbon flow from glycolysis toward the pentose phosphate pathway to reinforce anti-oxidative potential. Finally, we found that TLAM rescued the defect in neuronal differentiation of iPSCs carrying a high ratio of mutant mtDNA, suggesting that PFK1 represents a potential therapeutic target for mitochondrial diseases.
Collapse
|
5
|
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int J Mol Sci 2020; 21:ijms21165830. [PMID: 32823799 PMCID: PMC7461575 DOI: 10.3390/ijms21165830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.
Collapse
|
6
|
Langdahl JH, Frederiksen AL, Hansen SJ, Andersen PH, Yderstraede KB, Dunø M, Vissing J, Frost M. Mitochondrial Point Mutation m.3243A>G Associates With Lower Bone Mineral Density, Thinner Cortices, and Reduced Bone Strength: A Case-Control Study. J Bone Miner Res 2017; 32:2041-2048. [PMID: 28603900 DOI: 10.1002/jbmr.3193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is associated with several clinical manifestations including diabetes mellitus (DM), neurological disorders, renal and hepatic diseases, and myopathy. Although mitochondrial dysfunction is associated with increased bone resorption and decreased bone formation in mouse models, effects of alterations in mitochondrial function on bone remodeling and mass have not been investigated in humans. We recruited 45 carriers (29 females, 16 males) with the m.3243A>G mutation and healthy controls matched for gender, age, height, and menopausal status. DXA and HRpQCT scans were performed, and bone turnover markers (BTMs) P1NP and CTX were measured. Cases and controls were well matched except for body weight, which was lower in cases (63.6 ± 18.1 kg versus 74.6 ± 14.8 kg, p < 0.01), and manifest DM was present in 25 of 45 cases (none in controls). Bone scans showed lower BMD at the lumbar spine, total hip, and femoral neck in cases. Mean lumbar spine, total hip, and femoral neck T-scores were -1.5, -1.3, and -1.6 in cases, respectively, and -0.8, -0.3, and -0.7 in controls (all p < 0.05). The m.3243A>G mutation was associated with lower BMD, cortical but not trabecular density, cortical thickness, and estimated bone strength. Furthermore, BTMs were lower in the m.3243A>G group before but not after adjustment for DM. The mitochondrial point mutation m.3243A>G was associated with decreased bone mass and strength. Although the coexistence of DM may have influenced bone turnover, the bone phenotype observed in m.3243A>G cases appeared to mirror age-related deterioration in bone, suggesting that mitochondrial dysfunction may cause a premature aging of bone. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Jakob Høgild Langdahl
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stinus Jørn Hansen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Per Heden Andersen
- Department of Endocrinology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | | | - Morten Dunø
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Copenhagen, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
7
|
Chico L, Orsucci D, Lo Gerfo A, Marconi L, Mancuso M, Siciliano G. Biomarkers and progress of antioxidant therapy for rare mitochondrial disorders. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1178570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniele Orsucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Letizia Marconi
- Department of Cardiothoracic and Vascular, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Fernández-Millán E, Martín MA, Goya L, Lizárraga-Mollinedo E, Escrivá F, Ramos S, Álvarez C. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation. Free Radic Biol Med 2016; 95:16-26. [PMID: 26968794 DOI: 10.1016/j.freeradbiomed.2016.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation.
Collapse
Affiliation(s)
- E Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| | - M A Martín
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Calle Jose Antonio Novais 10, Madrid, Spain
| | - L Goya
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Calle Jose Antonio Novais 10, Madrid, Spain
| | - E Lizárraga-Mollinedo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Escrivá
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Calle Jose Antonio Novais 10, Madrid, Spain
| | - C Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Hsu YHR, Yogasundaram H, Parajuli N, Valtuille L, Sergi C, Oudit GY. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis. Heart Fail Rev 2015; 21:103-116. [PMID: 26712328 DOI: 10.1007/s10741-015-9524-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Hayashi G, Cortopassi G. Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med 2015; 88:10-7. [PMID: 26073122 PMCID: PMC4593728 DOI: 10.1016/j.freeradbiomed.2015.05.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
Mitochondria are a source of reactive oxygen species (ROS). Mitochondrial diseases are the result of inherited defects in mitochondrially expressed genes. One potential pathomechanism for mitochondrial disease is oxidative stress. Oxidative stress can occur as the result of increased ROS production or decreased ROS protection. The role of oxidative stress in the five most common inherited mitochondrial diseases, Friedreich ataxia, LHON, MELAS, MERRF, and Leigh syndrome (LS), is discussed. Published reports of oxidative stress involvement in the pathomechanisms of these five mitochondrial diseases are reviewed. The strongest evidence for an oxidative stress pathomechanism among the five diseases was for Friedreich ataxia. In addition, a meta-analysis was carried out to provide an unbiased evaluation of the role of oxidative stress in the five diseases, by searching for "oxidative stress" citation count frequency for each disease. Of the five most common mitochondrial diseases, the strongest support for oxidative stress is for Friedreich ataxia (6.42%), followed by LHON (2.45%), MELAS (2.18%), MERRF (1.71%), and LS (1.03%). The increased frequency of oxidative stress citations was significant relative to the mean of the total pool of five diseases (p<0.01) and the mean of the four non-Friedreich diseases (p<0.0001). Thus there is support for oxidative stress in all five most common mitochondrial diseases, but the strongest, significant support is for Friedreich ataxia.
Collapse
Affiliation(s)
- Genki Hayashi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
|
12
|
Voets AM, Lindsey PJ, Vanherle SJ, Timmer ED, Esseling JJ, Koopman WJH, Willems PHGM, Schoonderwoerd GC, De Groote D, Poll-The BT, de Coo IFM, Smeets HJM. Patient-derived fibroblasts indicate oxidative stress status and may justify antioxidant therapy in OXPHOS disorders. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1971-8. [PMID: 22796146 DOI: 10.1016/j.bbabio.2012.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Oxidative phosphorylation disorders are often associated with increased oxidative stress and antioxidant therapy is frequently given as treatment. However, the role of oxidative stress in oxidative phosphorylation disorders or patients is far from clear and consequently the preventive or therapeutic effect of antioxidants is highly anecdotic. Therefore, we performed a systematic study of a panel of oxidative stress parameters (reactive oxygen species levels, damage and defense) in fibroblasts of twelve well-characterized oxidative phosphorylation patients with a defect in the POLG1 gene, in the mitochondrial DNA-encoded tRNA-Leu gene (m.3243A>G or m.3302A>G) and in one of the mitochondrial DNA-encoded NADH dehydrogenase complex I (CI) subunits. All except two cell lines (one POLG1 and one tRNA-Leu) showed increased reactive oxygen species levels compared with controls, but only four (two CI and two tRNA-Leu) cell lines provided evidence for increased oxidative protein damage. The absence of a correlation between reactive oxygen species levels and oxidative protein damage implies differences in damage prevention or correction. This was investigated by gene expression studies, which showed adaptive and compensating changes involving antioxidants and the unfolded protein response, especially in the POLG1 group. This study indicated that patients display individual responses and that detailed analysis of fibroblasts enables the identification of patients that potentially benefit from antioxidant therapy. Furthermore, the fibroblast model can also be used to search for and test novel, more specific antioxidants or explore ways to stimulate compensatory mechanisms.
Collapse
Affiliation(s)
- A M Voets
- Department of Genetics and Cell Biology, Maastricht University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chistiakov DA, Sobenin IA, Bobryshev YV, Orekhov AN. Mitochondrial dysfunction and mitochondrial DNA mutations in atherosclerotic complications in diabetes. World J Cardiol 2012; 4:148-56. [PMID: 22655163 PMCID: PMC3364501 DOI: 10.4330/wjc.v4.i5.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is particularly prone to oxidation due to the lack of histones and a deficient mismatch repair system. This explains an increased mutation rate of mtDNA that results in heteroplasmy, e.g., the coexistence of the mutant and wild-type mtDNA molecules within the same mitochondrion. In diabetes mellitus, glycotoxicity, advanced oxidative stress, collagen cross-linking, and accumulation of lipid peroxides in foam macrophage cells and arterial wall cells may significantly decrease the mutation threshold required for mitochondrial dysfunction, which in turn further contributes to the oxidative damage of the diabetic vascular wall, endothelial dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Dimitry A Chistiakov, Igor A Sobenin, Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, 117997 Moscow, Russia
| | | | | | | |
Collapse
|
14
|
Perazzo JC, Tallis S, Delfante A, Souto PA, Lemberg A, Eizayaga FX, Romay S. Hepatic encephalopathy: An approach to its multiple pathophysiological features. World J Hepatol 2012; 4:50-65. [PMID: 22489256 PMCID: PMC3321490 DOI: 10.4254/wjh.v4.i3.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/19/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complex syndrome, ranging from subtle behavioral abnormalities to deep coma and death. Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure. Multiplicity of factors are involved in its pathophysiology, such as central and neuromuscular neurotransmission disorder, alterations in sleep patterns and cognition, changes in energy metabolism leading to cell injury, an oxidative/nitrosative state and a neuroinflammatory condition. Moreover, in acute HE, a condition of imminent threat of death is present due to a deleterious astrocyte swelling. In chronic HE, changes in calcium signaling, mitochondrial membrane potential and long term potential expression, N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations, and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed. The main molecule indicated as responsible for all these changes in HE is ammonia. There is no doubt that ammonia, a neurotoxic molecule, triggers or at least facilitates most of these changes. Ammonia plasma levels are increased two- to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite, glutamine (GLN), lead to hyperammonemic conditions. Removal of hepatic ammonia is a differentiated work that includes the hepatocyte, through the urea cycle, converting ammonia into GLN via glutamine synthetase. Under pathological conditions, such as liver damage or liver blood by-pass, the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered. This editorial will focus on issues where, to the best of our knowledge, more research is needed in order to clarify, at least partially, controversial topics.
Collapse
Affiliation(s)
- Juan Carlos Perazzo
- Juan Carlos Perazzo, Silvina Tallis, Amalia Delfante, Pablo Andrés Souto, Abraham Lemberg, Francisco Xavier Eizayaga, Salvador Romay, Laboratory of Portal Hypertension and Hepatic Encephalopathy, Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 950, CP 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Ikawa M, Arakawa K, Hamano T, Nagata M, Nakamoto Y, Kuriyama M, Koga Y, Yoneda M. Evaluation of systemic redox states in patients carrying the MELAS A3243G mutation in mitochondrial DNA. Eur Neurol 2012; 67:232-7. [PMID: 22517274 DOI: 10.1159/000336568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/14/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To clarify the change of systemic redox states in patients carrying the A3243G mutation in mitochondrial DNA (A3243G), we evaluated oxidative stress and antioxidant activity in the serum of patients. METHODS Oxidative stress and antioxidant activity in the serum samples obtained from 14 patients carrying A3243G and from 34 healthy controls were analyzed using the diacron-reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests, respectively. RESULTS The mean d-ROMs level of all patients was significantly greater than that of the controls (p < 0.005), and the mean BAP/d-ROMs ratio of all patients was significantly lower than that of the controls (p < 0.02). In the patients with a history of stroke-like episodes (n = 10), both mean d-ROMs and BAP levels were increased compared with those of the controls (both p < 0.01). The mean BAP level of the patients without a history of stroke-like episodes (n = 4) was significantly decreased compared with that of the controls (p < 0.001), but the mean d-ROMs levels were not significantly different. CONCLUSION d-ROMs and BAP tests indicated that patients carrying A3243G are always exposed to underlying oxidative stress, even at a remission state of stroke-like episodes.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Desquiret-Dumas V, Gueguen N, Barth M, Chevrollier A, Hancock S, Wallace DC, Amati-Bonneau P, Henrion D, Bonneau D, Reynier P, Procaccio V. Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1019-29. [PMID: 22306605 DOI: 10.1016/j.bbadis.2012.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/17/2022]
Abstract
The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.
Collapse
Affiliation(s)
- Valerie Desquiret-Dumas
- Department of Biochemistry and Genetics, Angers University Hospital, School of Medicine, Angers, F-49000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qi Z, He J, Zhang Y, Shao Y, Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radic Biol Med 2011; 50:794-800. [PMID: 21185935 DOI: 10.1016/j.freeradbiomed.2010.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
Abstract
Oxidative stress can impair mitochondrial function and fuel utilization and is closely linked with the development of insulin resistance in skeletal muscle in diabetes mellitus as well as fatty liver disease. In vitro data indicate that cellular levels of reactive oxygen species depend on the expression and activity of p53, which plays a key role in energy metabolism and as a crucial transcription factor for SCO cytochrome oxidase deficient homolog 2 (SCO2) and tumor p53-induced glycolysis and apoptosis regulator (TIGAR), which regulate mitochondrial respiration and glycolysis in cells. The aims of this study were: (1) to investigate whether exercise training could attenuate the development of oxidative stress in skeletal muscle in rats with diabetes mellitus (DM) and (2) to evaluate the potential role of p53 and its transcriptional targets in exercise-induced mitochondrial adaptation in skeletal muscle in rats with DM. Goto-Kakizaki (GK) rats, which develop type 2 DM (T2DM) early in life, were randomly divided into two groups: (1) subjected to regular exercise on a treadmill at 20m/min for 30-60min, 6 days per week for 8 weeks (GK exercising, n=7), and (2) rested controls (GK control, n=7). Exercise training increased serum adiponectin and decreased serum insulin and levels of glycosylated hemoglobin (P<0.05). Skeletal muscle GSH content and GSH:GSSG ratio increased in GK exercising rats vs GK controls (P<0.05). Skeletal muscle COX activity (P<0.05), mtDNA markers (P<0.01), and COXII protein levels (P<0.05) increased in response to exercise training. Exercise training decreased p53 protein levels and TIGAR expression in skeletal muscle (P<0.05), but SCO2 expression was unchanged. These data indicate that exercise training can attenuate oxidative stress and increase mitochondrial DNA content in skeletal muscle in rats with T2DM and that exercise-induced suppression of p53 and TIGAR expression may play a role in preventing oxidative stress in insulin resistance.
Collapse
Affiliation(s)
- Zhengtang Qi
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | | | | | | | | |
Collapse
|
18
|
Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH. Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta Gen Subj 2009; 1790:1021-9. [DOI: 10.1016/j.bbagen.2009.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
|
19
|
Wani AA, Rangrez AY, Kumar H, Bapat SA, Suresh CG, Barnabas S, Patole MS, Shouche Y. Analysis of reactive oxygen species and antioxidant defenses in complex I deficient patients revealed a specific increase in superoxide dismutase activity. Free Radic Res 2009; 42:415-27. [DOI: 10.1080/10715760802068571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Katayama Y, Maeda K, Iizuka T, Hayashi M, Hashizume Y, Sanada M, Kawai H, Kashiwagi A. Accumulation of oxidative stress around the stroke-like lesions of MELAS patients. Mitochondrion 2009; 9:306-13. [PMID: 19393775 DOI: 10.1016/j.mito.2009.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/04/2009] [Accepted: 04/15/2009] [Indexed: 02/05/2023]
Abstract
To investigate the relationship between oxidative stress and progressive spread of the stroke-like lesions in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with 3243A>G mutation, we retrospectively analyzed the spread frequency in patients with and without treatment with the radical scavenger edaravone. Oxidative damage and defensive enzymes were histologically evaluated. Spread was significantly less frequent in the patients treated with edaravone. Although 8-hydroxy-2'-deoxyguanosine, a marker for oxidative damage of DNA, was obviously accumulated in peri-lesional surviving neurons, manganese superoxide dismutase and 8-oxoguanine glycosylase 1 were not up-regulated in those neurons. Increased oxidative stress and insufficient defense could be involved in the pathogenesis of the spreading lesions in MELAS.
Collapse
Affiliation(s)
- Yuri Katayama
- Division of Neurology, Department of Internal Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ikawa M, Okazawa H, Arakawa K, Kudo T, Kimura H, Fujibayashi Y, Kuriyama M, Yoneda M. PET imaging of redox and energy states in stroke-like episodes of MELAS. Mitochondrion 2009; 9:144-8. [PMID: 19460295 DOI: 10.1016/j.mito.2009.01.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/08/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
Abstract
In stroke-like episodes of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), changes in oxidative stress and glucose metabolism and their sequence remain obscure. We developed a novel double imaging method using positron emission tomography (PET) with [(62)Cu]-diacetyl-bis(N4-methylthiosemicarbazone) ((62)Cu-ATSM) and [(18)F]-fluorodeoxyglucose ((18)FDG) to visualize the regional oxidative stress, glucose metabolism and blood flow in brain lesions of stroke-like episodes non-invasively and rapidly. These PET imagings were performed on a MELAS patient with stroke-like lesions, and clearly demonstrated that oxidative stress following hyperemia along with increased glucose metabolism plays crucial roles in the pathogenesis of MELAS stroke-like episodes.
Collapse
Affiliation(s)
- Masamichi Ikawa
- Second Department of Internal Medicine (Neurology), Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaiduki, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 2008; 28:7514-31. [PMID: 18852288 DOI: 10.1128/mcb.00946-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.
Collapse
|
23
|
DiFrancesco JC, Cooper JM, Lam A, Hart PE, Tremolizzo L, Ferrarese C, Schapira AH. MELAS mitochondrial DNA mutation A3243G reduces glutamate transport in cybrids cell lines. Exp Neurol 2008; 212:152-6. [PMID: 18455161 DOI: 10.1016/j.expneurol.2008.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/10/2008] [Accepted: 03/15/2008] [Indexed: 12/01/2022]
Abstract
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) is commonly associated with the A3243G mitochondrial DNA (mtDNA) mutation encoding the transfer RNA of leucine (UUR) (tRNA (Leu(UUR))). The pathogenetic mechanisms of this mutation are not completely understood. Neuronal functions are particularly vulnerable to alterations in oxidative phosphorylation, which may affect the function of the neurotransmitter glutamate, leading to excitotoxicity. In order to investigate the possible effects of A3243G upon glutamate homeostasis, we assessed glutamate uptake in osteosarcoma-derived cytoplasmic hybrids (cybrids) expressing high levels of this mutation. High-affinity Na(+)-dependent glutamate uptake was assessed as radioactive [(3)H]-glutamate influx mediated by specific excitatory amino acid transporters (EAATs). The maximal rate (V(max)) of Na(+)-dependent glutamate uptake was significantly reduced in all the mutant clones. Although the defect did not relate to either the mutant load or magnitude of oxidative phosphorylation defect, we found an inverse relationship between A3243G mutation load and mitochondrial ATP synthesis, without any evidence of increased cellular or mitochondrial free radical production in these A3243G clones. These data suggest that a defect of glutamate transport in MELAS neurons may be due to decreased energy production and might be involved in mediating the pathogenic effects of the A3243G mtDNA mutation.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neuroscience and Biomedical Technologies, University of Milano-Bicocca, Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Finsterer J, Walker WF, Hernandez-Rosa E. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 2007; 9:463-70. [PMID: 17587249 DOI: 10.1016/j.mito.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | | | |
Collapse
|
25
|
Donovan LE, Severin NE. Maternally inherited diabetes and deafness in a North American kindred: tips for making the diagnosis and review of unique management issues. J Clin Endocrinol Metab 2006; 91:4737-42. [PMID: 17018649 DOI: 10.1210/jc.2006-1498] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Mutations in mitochondrial DNA are rare etiologies of adult-onset diabetes mellitus (DM) that merit identification to 1) prevent iatrogenic lactic acidosis, 2) prompt appropriate screening of affected patients and their families, 3) provide genetic counseling, and 4) provide an opportunity to investigate strategies for preventing diabetes. OBJECTIVE The objective of this study is to raise awareness of this rare form of adult-onset nonobese DM so that these patients are identified and provided with appropriate care. PATIENTS We describe a kindred in which four of seven siblings have adult-onset DM and sensorineural hearing loss with a confirmed genetic mutation at position 3243 in the tRNA. Two other siblings in this kindred demonstrate different phenotypes of mitochondrial disease. INTERVENTION The proband was treated with coenzyme Q10 for 1 yr. OUTCOME MEASURES Outcome measures included stress thallium exercise testing and audiometry testing. RESULTS After 1 yr of treatment of with coenzyme Q10, repeat stress thallium testing demonstrated improvement in the exercise tolerance of the proband from 7-12 min. Audiometry testing did not demonstrate a change in the rate of hearing decline. CONCLUSION Maternally inherited diabetes and deafness is a rare cause of DM that is important to diagnose because of the unique management issues and associated comorbidities. This work highlights clues to the identification of this rare monogenic form of adult- onset diabetes.
Collapse
MESH Headings
- Adult
- Coenzymes
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Exercise Test
- Female
- Genes, X-Linked
- Hearing Loss, Sensorineural/complications
- Hearing Loss, Sensorineural/genetics
- Humans
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/drug therapy
- Mitochondrial Diseases/genetics
- Models, Biological
- North America
- Pedigree
- RNA, Transfer, Leu/genetics
- Ubiquinone/analogs & derivatives
- Ubiquinone/therapeutic use
Collapse
Affiliation(s)
- Lois E Donovan
- University of Calgary Department of Medicine, Division of Endocrinology and Metabolism, Calgary, Alberta, Canada T2R 0X7.
| | | |
Collapse
|
26
|
Lorenc A, Bryk J, Golik P, Kupryjańczyk J, Ostrowski J, Pronicki M, Semczuk A, Szołkowska M, Bartnik E. Homoplasmic MELAS A3243G mtDNA mutation in a colon cancer sample. Mitochondrion 2005; 3:119-24. [PMID: 16120350 DOI: 10.1016/s1567-7249(03)00106-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/24/2003] [Accepted: 07/29/2003] [Indexed: 10/27/2022]
Abstract
We have analyzed mtDNA variation in various cancer samples, comparing them with normal tissue controls, and identified mutations and polymorphisms, both known and novel, in mitochondrial tRNA, rRNA and protein genes. Most remarkably, in a colon cancer sample we have found the A3243G mutation in the homoplasmic state. This mutation is known to cause severe mitochondrial dysfunction and, until now, has not been found in cancer cells, nor in the homoplasmic state in living subjects. The mutation was absent from normal tissue, suggesting that mtDNA mutation and resulting respiratory deficiency played a role in carcinogenesis.
Collapse
Affiliation(s)
- Anna Lorenc
- Postgraduate School of Molecular Medicine, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Véricel E, Januel C, Carreras M, Moulin P, Lagarde M. Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidant status. Diabetes 2004; 53:1046-51. [PMID: 15047620 DOI: 10.2337/diabetes.53.4.1046] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular complications are the leading causes of morbidity and mortality in diabetic patients. The contribution of platelets to thromboembolic complications is well documented, but their involvement in the initiation of the atherosclerotic process is of rising interest. Thus, the aim of the present study was to evaluate basal arachidonic acid metabolism in relation to the redox status of platelets in both type 1 and type 2 diabetic patients, in the absence of vascular complications, as compared with respective control subjects. For the first time, we show that basal thromboxane B(2), the stable catabolite of thromboxane A(2), significantly increased in resting platelets from both type 1 and type 2 diabetic patients (58 and 88%, respectively), whereas platelet malondialdehyde level was only higher in platelets from type 2 diabetic subjects (67%). On the other hand, both vitamin E levels and cytosolic glutathione peroxidase activities were significantly lower in platelets from diabetic patients as compared with respective control subjects. We conclude that platelet hyperactivation was detectable in well-controlled diabetic patients without complications. This abnormality was associated with increased oxidative stress and impaired antioxidant defense in particular in type 2 diabetic patients. These alterations contribute to the increased risk for occurrence of vascular diseases in such patients.
Collapse
Affiliation(s)
- Evelyne Véricel
- Unité mixte de Recherche 585 Institut National de la Santé et de la Recherche Médicale/Institut National des Sciences Appliquées de Lyon, Institute for Multidisciplinary Biochemistry of Lipids, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
28
|
Gonzalo R, Vives-Bauza C, Andreu AL, García-Arumí E. Preventing in vitro lipoperoxidation in the malondialdehyde-thiobarbituric assay. ACTA ACUST UNITED AC 2004; 42:903-6. [PMID: 15387440 DOI: 10.1515/cclm.2004.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractThe malondialdehyde-thiobarbituric acid assay is widely used to study lipid peroxidation. Among the various methods used to perform the assay, the most widely accepted is the quantification of malondialdehyde using the thiobarbituric acid reaction, followed by reversed-phase chromatography. However, unacceptable results may be obtained as malondialdehyde can be produced in vitro. To study the conditions that inhibit in vitro lipid peroxidation, malondialdehyde levels were measured in cultured cells using different concentrations of butylated hydroxytoluene, EDTA or a combination of both. Butylated hydroxytoluene alone inhibits in vitro lipid peroxidation effectively. EDTA reduces artificially produced malondialdehyde, but not totally. Finally, the combination of EDTA and butylated hydroxytoluene does not improve the results obtained using butylated hydroxytoluene alone. The conclusion is that in the malondialdehyde-thiobarbituric acid assay it is necessary to add an inhibitor of the in vitro lipid peroxidation and assay the necessary concentration depending on the specimen used.
Collapse
Affiliation(s)
- Ricardo Gonzalo
- Centre d'Investigacions en Bioquímica i Biologia Molecular, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Yau-Huei Wei
- Department of Biochemistry, Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
30
|
Bayona-Bafaluy MP, Fernández-Silva P, Enríquez JA. The thankless task of playing genetics with mammalian mitochondrial DNA: a 30-year review. Mitochondrion 2002; 2:3-25. [PMID: 16120305 DOI: 10.1016/s1567-7249(02)00044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 05/22/2002] [Accepted: 06/05/2002] [Indexed: 10/27/2022]
Abstract
The advances obtained through the genetic tools available in yeast for studying the oxidative phosphorylation (OXPHOS) biogenesis and in particular the role of the mtDNA encoded genes, strongly contrast with the very limited benefits that similar approaches have generated for the study of mammalian mtDNA. Here we review the use of the genetic manipulation in mammalian mtDNA, its difficulty and the main types of mutants accumulated in the past 30 years and the information derived from them. We also point out the need for a substantial improvement in this field in order to obtain new tools for functional genetic studies and for the generation of animal models of mtDNA-linked diseases.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | | | | |
Collapse
|