1
|
Sindhu RK, Madaan P, Chandel P, Akter R, Adilakshmi G, Rahman MH. Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges, and Opportunities. Curr Gene Ther 2021; 22:245-261. [PMID: 34530709 DOI: 10.2174/1566523221666210916113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune diseases are the diseases that result due to the overactive immune response, and comprise systemic autoimmune diseases like rheumatoid arthritis (RA), sjӧgren's syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), myasthenia gravis (MG), and inflammatory bowel disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases. OBJECTIVE The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy. METHODS Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article. RESULTS The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby hinder the progression of autoimmune diseases. CONCLUSION Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - G Adilakshmi
- Department of PhysicxVikramaSimahpuri University, P.G. Centre, kavil-524201, Andhra Pradesh. India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| |
Collapse
|
2
|
Zhu X, Bian F, Zhao Y, Qin Y, Sun X, Zhou L. Combined therapy of adenovirus vector mediated IGF-1 gene with anti-CD20 mAbs exerts potential beneficial role on type 1 diabetes in nonobese diabetic mice. Life Sci 2021:119853. [PMID: 34331973 DOI: 10.1016/j.lfs.2021.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
AIMS To assess the protective effects of combined treatment with anti-CD20 monoclonal antibody (mAb) and adenovirus mediated mouse insulin-like growth factor 1 (Adv-mIGF-1) gene on type 1 diabetes (T1D) in nonobese diabetic (NOD) mice at early stage. METHODS To simultaneously restore the proportion of Th cells and block the interaction of B cells, NOD model mice were assigned to four groups which received PBS, Adv-mIGF-1 gene and anti-CD20 mAbs alone or combination, respectively. After 16 weeks of therapeutic intervention, blood samples and pancreatic tissues of mice were measured via the methods of ELISA, RT-PCR, western blotting, H&E staining, TUNEL and immunohistochemistry assays. KEY FINDINGS Chronic combination intervention with Adv-mIGF-1 gene and anti-CD20 mAbs reduced the T1D-related morbidity, promoted the secretion of insulin, controlled the blood glucose levels (BGLs) and alleviated insulitis of experimental mice. In addition, current combination intervention also protected the pancreatic β cells via suppressing the expression of Fas and TNF-α, inhibiting Caspase-3/8 related apoptotic pathway, and activating the Bcl-2-related antiapoptotic pathway. Furthermore, current combination therapy also increased the expression levels of PDX-1 and CK-19 genes, and finally accelerated the proliferation and differentiation of pancreatic β-cells. In addition, combination therapy could also ameliorate the pathological characteristics of diabetic nephropathy in NOD mice. CONCLUSION Combination treatment with Adv-mIGF-1 gene and anti-CD20 mAbs may exert a potential beneficial role on T1D in NOD mice.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Fei Bian
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Yanyan Qin
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Xiang Sun
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China
| | - Lanlan Zhou
- Department of Medical College, Shenzhen Polytechnic, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Zhang L, Miao H, Wang D, Qiu H, Zhu Y, Yao X, Guo Y, Wang Z. Pancreatic extracellular matrix and platelet-rich plasma constructing injectable hydrogel for pancreas tissue engineering. Artif Organs 2020; 44:e532-e551. [PMID: 32671848 DOI: 10.1111/aor.13775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
The development of pancreatic extracellular matrices enriched with insulin-secreting β-cells is a promising tissue engineering approach to treat type 1 diabetes. However, its long-term therapeutic efficacy is restricted by the defensive mechanism of host immune response and the lack of developed vascularization as appropriate after transplantation. Platelet-rich plasma (PRP), as an autologous platelet concentrate, contains a large number of active factors that are essential for the cell viability, vascularization, and immune regulation. In this study, we have incorporated pancreatic extracellular matrix (PEM) with PRP to develop a three-dimensional (3D) injectable PEM-PRP hydrogel to coculture and transplant rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVECs). Results from this study demonstrated that PEM-PRP hydrogel mimicked the biochemical compositions of native extracellular matrices, and possessed the enhanced elastic modulus and resistance to enzymatic degradation that enabled biomaterials to maintain its volume and slowly degrade. Additionally, PEM-PRP hydrogel could release growth factors in a sustained manner. In vitro, PEM-PRP hydrogel significantly promoted the viability, insulin-secreting function, and insulin gene expression of gel encapsulated INS-1 cells. Moreover, HUVECs encapsulated in PEM-PRP hydrogel were found to constitute many lumen-like structures and exhibited high expression of proangiogenic genes. In vivo transplantation of PEM-PRP hydrogel encapsulated with INS-1 cells and HUVECs improved the viability of INS-1 cells, promoted vascularization, inhibited the host inflammatory response, and reversed hyperglycemia of diabetic rats. Our study suggests that the PEM-PRP hydrogel offers excellent biocompatibility and proangiogenic property, and may serve as an effective biomaterial platform to maintain the long-term survival and function of insulin-secreting β cells.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Department of General Surgery, Tengzhou Central People's Hospital, Tengzhou, P.R. China
| | - Haiyan Miao
- Department of General Surgery, The Sixth People's Hospital, Nantong, P.R. China
| | - Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Hongquan Qiu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Xihao Yao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China.,Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yibing Guo
- Research Center of Clinical Medical, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
4
|
Nackiewicz D, Dan M, Speck M, Chow SZ, Chen YC, Pospisilik JA, Verchere CB, Ehses JA. Islet Macrophages Shift to a Reparative State following Pancreatic Beta-Cell Death and Are a Major Source of Islet Insulin-like Growth Factor-1. iScience 2019; 23:100775. [PMID: 31962237 PMCID: PMC6971395 DOI: 10.1016/j.isci.2019.100775] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/24/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a dynamic role in tissue repair following injury. Here we found that following streptozotocin (STZ)-induced beta-cell death, mouse islet macrophages had increased Igf1 expression, decreased proinflammatory cytokine expression, and transcriptome changes consistent with macrophages undergoing efferocytosis and having an enhanced state of metabolism. Macrophages were the major, if not sole, contributors to islet insulin-like growth factor-1 (IGF-1) production. Adoptive transfer experiments showed that macrophages can maintain insulin secretion in vivo following beta-cell death with no effects on islet cell turnover. IGF-1 neutralization during STZ treatment decreased insulin secretion without affecting islet cell apoptosis or proliferation. Interestingly, high-fat diet (HFD) combined with STZ further skewed islet macrophages to a reparative state. Finally, islet macrophages from db/db mice also expressed decreased proinflammatory cytokines and increased Igf1 mRNA. These data have important implications for islet biology and pathology and show that islet macrophages preserve their reparative state following beta-cell death even during HFD feeding and severe hyperglycemia. Macrophages are a major source of IGF-1 protein within mouse pancreatic islets Post-beta-cell death islet macrophages shift to a reparative state Beta-cell death causes macrophage transcriptome changes consistent with efferocytosis This change can occur even in the presence of HFD feeding or severe hyperglycemia
Collapse
Affiliation(s)
- Dominika Nackiewicz
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada
| | - Meixia Dan
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada
| | - Madeleine Speck
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada
| | - Samuel Z Chow
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada
| | - Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada
| | - J Andrew Pospisilik
- Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - C Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada.
| | - Jan A Ehses
- Department of Surgery, Faculty of Medicine, University of British Columbia, BC Children's Hospital Research Institute, 950 W 28 Avenue, Vancouver V5Z 4H4, Canada; Department of Health Sciences and Technology, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland.
| |
Collapse
|
5
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|
6
|
Mallol C, Casana E, Jimenez V, Casellas A, Haurigot V, Jambrina C, Sacristan V, Morró M, Agudo J, Vilà L, Bosch F. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6:664-680. [PMID: 28702323 PMCID: PMC5485311 DOI: 10.1016/j.molmet.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Methods Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28–30 weeks. Results In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Conclusions Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans. Local pancreatic IGF1 expression prevents spontaneous autoimmune diabetes. Protection achieved after one-time local administration of IGF1-encoding AAV vectors. Efficacious in animals treated early or once autoimmunity is already established. Protection through maintenance of β-cell mass and endogenous insulin secretion. Treatment leads to reduced infiltration and expression of immunity genes in islets.
Collapse
Affiliation(s)
- Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| |
Collapse
|
7
|
Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med 2015; 6:1423-35. [PMID: 25339185 PMCID: PMC4237469 DOI: 10.15252/emmm.201303376] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease.
Collapse
Affiliation(s)
- Daniel Bilbao
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Luisa Luciani
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Bjarki Johannesson
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Agnieszka Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Nadia Rosenthal
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy National Heart and Lung Institute, Imperial College, London, UK Australian Regenerative Medicine Institute/EMBL Australia, Monash University, Clayton, Vic., Australia
| |
Collapse
|
8
|
Anguela XM, Tafuro S, Roca C, Callejas D, Agudo J, Obach M, Ribera A, Ruzo A, Mann CJ, Casellas A, Bosch F. Nonviral-mediated hepatic expression of IGF-I increases Treg levels and suppresses autoimmune diabetes in mice. Diabetes 2013; 62:551-60. [PMID: 23099863 PMCID: PMC3554392 DOI: 10.2337/db11-1776] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 08/10/2012] [Indexed: 01/01/2023]
Abstract
In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell-dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease.
Collapse
Affiliation(s)
- Xavier M. Anguela
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Sabrina Tafuro
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - David Callejas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Mercè Obach
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Albert Ruzo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Christopher J. Mann
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
9
|
Kodama K, Shimada A, Funae O, Morimoto J, Irie J, Shigihara T, Oikawa Y, Tokui M, Watanabe K, Saruta T. Insulin-like Growth Factor-1 (IGF-1)-derived Peptide Protects against Diabetes in NOD Mice. Autoimmunity 2009; 37:481-7. [PMID: 15621575 DOI: 10.1080/08916930400001909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Spontaneous diabetes in non-obese diabetic (NOD) mice results from beta-cell destruction by autoreactive T lymphocytes. Here, we report the significance of insulin-like growth factor-1 (IGF-1) peptide as a tool for the prevention of type 1 diabetes. Female NOD mice were immunized with a subcutaneous injection of IGF-1, glutamic acid decarboxylase (GAD), insulin or IGF-1-derived peptides (residues 8-23, 24-41 or 50-70) in incomplete Freund's adjuvant (IFA) or with IFA only as the control group at 4 weeks of age, and observed up to 36-37 weeks of age. Diabetes onset was significantly suppressed and delayed in the IGF-1 group as compared to the GAD, insulin and control groups (p<0.05), and it was significantly suppressed and delayed in the (50-70)IGF-1 group as compared to the (8-23)IGF-1 and control groups (p<0.02). Although the degree of insulitis in all treated mice was not significantly different, a significant number of IL-4-producing cells in response to IGF-1 peptides were detected in (50-70)IGF-1-treated mice in intracellular cytokine assay. In conclusion, IGF-1 peptide 50-70 immunizations of NOD mice suppressed and delayed diabetes onset, probably through amplification of the Th2-type response. It was suggested that IGF-1 peptide 50-70 immunization can be used as a tool for prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Keiichi Kodama
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Robertson K, Lu Y, De Jesus K, Li B, Su Q, Lund PK, Liu JL. A general and islet cell-enriched overexpression of IGF-I results in normal islet cell growth, hypoglycemia, and significant resistance to experimental diabetes. Am J Physiol Endocrinol Metab 2008; 294:E928-38. [PMID: 18270301 DOI: 10.1152/ajpendo.00606.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor I (IGF-I) is normally produced from hepatocytes and various other cells and tissues, including the pancreas, and is known to stimulate islet cell replication in vitro, prevent Fas-mediated beta-cell destruction and delay the onset of diabetes in nonobese diabetic mice. Recently, however, the notion that IGF-I stimulates islet cell growth has been challenged by the results of IGF-I and receptor gene targeting. To test the effects of a general, more profound increase in circulating IGF-I on islet cell growth and glucose homeostasis, we have characterized MT-IGF mice, which overexpress the IGF-I gene under the metallothionein I promoter. In early reports, a 1.5-fold-elevated serum IGF-I level caused accelerated somatic growth and pancreatic enlargement. We demonstrated that the transgene expression, although widespread, was highly concentrated in the beta-cells of the pancreatic islets. Yet, islet cell percent and pancreatic morphology were unaffected. IGF-I overexpression resulted in significant hypoglycemia, hypoinsulinemia, and improved glucose tolerance but normal insulin secretion and sensitivity. Pyruvate tolerance test indicated significantly suppressed hepatic gluconeogenesis, which might explain the severe hypoglycemia after fasting. Finally, due to a partial prevention of beta-cell death against onset of diabetes and/or the insulin-like effects of IGF-I overexpression, MT-IGF mice (which overexpress the IGF-I gene under the metallothionein I promoter) were significantly resistant to streptozotocin-induced diabetes, with diminished hyperglycemia and prevention of weight loss and death. Although IGF-I might not promote islet cell growth, its overexpression is clearly antidiabetic by improving islet cell survival and/or providing insulin-like effects.
Collapse
Affiliation(s)
- Katie Robertson
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu JL. Does IGF-I stimulate pancreatic islet cell growth? Cell Biochem Biophys 2007; 48:115-25. [PMID: 17709881 DOI: 10.1007/s12013-007-0016-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/22/2022]
Abstract
Both IGF-I and its receptor (IGF-IR) are specifically expressed in various cell types of the endocrine pancreas. IGF-I has long been considered a growth factor for islet cells as it induces DNA synthesis in a glucose-dependent manner, prevents Fas-mediated autoimmune beta-cell destruction and delays onset of diabetes in non-obese diabetic (NOD) mice. Islet-specific IGF-I overexpression promotes islet cell regeneration in diabetic mice. However, in the last few years, results from most gene-targeted mice have challenged this view. For instance, combined inactivation of insulin receptor and IGF-IR or IGF-I and IGF-II genes in early embryos results in no defect on islet cell development; islet beta-cell-specific inactivation of IGF-IR gene causes no change in beta-cell mass; liver- and pancreatic-specific IGF-I gene deficiency (LID and PID mice) suggests that IGF-I exerts an inhibitory effect on islet cell growth albeit indirectly through controlling growth hormone release or expression of Reg family genes. These results need to be evaluated with potential gene redundancy, model limitations, indirect effects and ligand-receptor cross-activations within the insulin/IGF family. Although IGF-I causes islet beta-cell proliferation and neogenesis directly, what occur in normal physiology, pathophysiology or during development of an organism might be different. Locally produced and systemic IGF-I does not seem to play a positive role in islet cell growth. Rather, it is probably a negative regulator through controlling growth hormone and insulin release, hyperglycemia, or Reg gene expression. These results complicate the perspective of an IGF-I therapy for beta-cell loss.
Collapse
Affiliation(s)
- Jun-Li Liu
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
12
|
Størling J, Binzer J, Andersson AK, Züllig RA, Tonnesen M, Lehmann R, Spinas GA, Sandler S, Billestrup N, Mandrup-Poulsen T. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt. Diabetologia 2005; 48:2039-50. [PMID: 16132952 DOI: 10.1007/s00125-005-1912-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Pro-inflammatory cytokines cause beta cell secretory dysfunction and apoptosis--a process implicated in the pathogenesis of type 1 diabetes. Cytokines induce the expression of inducible nitric oxide (NO) synthase (iNOS) leading to NO production. NO contributes to cytokine-induced apoptosis, but the underlying mechanisms are unclear. The aim of this study was to investigate whether NO modulates signalling via mitogen-activated protein kinases (MAPKs) and Akt. MATERIALS AND METHODS MAPK activities in INS-1 cells and isolated islets were determined by immunoblotting and in vitro kinase assay. Apoptosis was determined by ELISA measurement of histone-DNA complexes present in cytoplasm. RESULTS Apoptosis in INS-1 cells induced by IL-1beta plus IFNgamma was dependent on NO production as demonstrated by the use of the NOS blocker NG-methyl-L-arginine. Accordingly, an NO donor (S-nitroso-N-acetyl-D, L-penicillamine, SNAP) dose-dependently caused apoptosis in INS-1 cells. SNAP activated c-Jun N-terminal kinase (JNK) and p38 MAPK, but suppressed the activity of extracellular signal-regulated kinase MAPK. In rat islets, NOS inhibition decreased JNK and p38 activities induced by a 6-h exposure to IL-1beta. Likewise, IL-1beta-induced JNK and p38 activities were lower in iNOS(-/-) mouse islets than in wild-type islets. In human islets, SNAP potentiated IL-1beta-induced JNK activation. The constitutive level of active, Ser473-phosphorylated Akt in INS-1 cells was suppressed by SNAP. IGF-I activated Akt and protected against SNAP-induced apoptosis. The anti-apoptotic effect of IGF-I was not associated with reduced JNK activation. CONCLUSIONS/INTERPRETATION We suggest that NO contributes to cytokine-induced apoptosis via potentiation of JNK activity and suppression of Akt.
Collapse
Affiliation(s)
- J Størling
- Laboratory for Beta Cell Biology, Steno Diabetes Center, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu Y, Herrera PL, Guo Y, Sun D, Tang Z, LeRoith D, Liu JL. Pancreatic-specific inactivation of IGF-I gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes 2004; 53:3131-41. [PMID: 15561943 DOI: 10.2337/diabetes.53.12.3131] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The dogma that IGF-I stimulates pancreatic islet growth has been challenged by combinational targeting of IGF or IGF-IR (IGF receptor) genes as well as beta-cell-specific IGF-IR gene deficiency, which caused no defect in islet cell growth. To assess the physiological role of locally produced IGF-I, we have developed pancreatic-specific IGF-I gene deficiency (PID) by crossing Pdx1-Cre and IGF-I/loxP mice. PID mice are normal except for decreased blood glucose level and a 2.3-fold enlarged islet cell mass. When challenged with low doses of streptozotocin, control mice developed hyperglycemia after 6 days that was maintained at high levels for at least 2 months. In contrast, PID mice only exhibited marginal hyperglycemia after 12 days, maintained throughout the experiment. Fifteen days after streptozotocin, PID mice demonstrated significantly higher levels of insulin production. Furthermore, streptozotocin-induced beta-cell apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL] assay) was significantly prevented in PID mice. Finally, PID mice exhibited a delayed onset of type 2 diabetes induced by a high-fat diet, accompanied by super enlarged pancreatic islets, increased insulin mRNA levels, and preserved sensitivity to insulin. Our results suggest that locally produced IGF-I within the pancreas inhibits islet cell growth; its deficiency provides a protective environment to the beta-cells and potential in combating diabetes.
Collapse
Affiliation(s)
- Yarong Lu
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Homo-Delarche F. Neuroendocrine Immuno-ontogeny of the Pathogenesis of Autoimmune Diabetes in the Nonobese Diabetic (NOD) Mouse. ILAR J 2004; 45:237-58. [PMID: 15229372 DOI: 10.1093/ilar.45.3.237] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which insulin-producing beta cells of the pancreatic islets of Langerhans are destroyed. The nonobese diabetic (NOD) mouse is one of the rare spontaneous models that enable the study of prediabetic pancreatic events. The etiology of the autoimmune attack in human and animal T1D is still unknown, but genetic and environmental factors are involved in both cases. Although several autoantigens have been identified and defective immune-system regulation is implicated, this information does not satisfactorily explain the generally accepted beta-cell specificity of the disease or how so many and diverse environmental factors intervene in its pathogenesis. Based on data obtained from evaluating glucose homeostasis in a variety of situations, particularly stress and cytokine administration, in young prediabetic NOD mice, the author hypothesizes that the islet of Langerhans is a major actor, and its altered regulation through environmentally induced insulin resistance might reveal latent T1D. It is also postulated that T1D pathogenesis might be linked to abnormal pancreas development, probably due to disturbances of glutamic acid decarboxylase (GAD)+ innervation phagocytosis by defective macrophages during the early postnatal period. Also discussed is the role of defective presentation of pancreatic hormones and GAD in the thymus, and its potential repercussion on T-cell tolerance. Observations have demonstrated that the diabetogenic process in the NOD mouse is extremely complex, involving neuroendocrine immune interaction from fetal life onward.
Collapse
Affiliation(s)
- Françoise Homo-Delarche
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Paris 7/D.Diderot, Paris, France
| |
Collapse
|
15
|
Abstract
The insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are the main regulators of somatic growth and cellular proliferation. IGFs are involved in growth pre-natally and post-natally. Dysregulation of the IGF axis can lead to growth disorders such as growth hormone deficiency and acromegaly. Pre-natally, this dysregulation can lead to IUGR or macrosomia. IGFs also have an important mitogenic action and play a role in tumorigenesis and cancer. These actions are regulated by co-interactions with IGFBPs, especially IGFBP-3. In addition to somatic growth and mitogenic activity, IGFs have hypoglycaemic and insulin sensitizing actions, and their dysregulation is involved in diabetes and its complications. In this chapter, we examine the role of IGFs and IGFBPs in growth, tumorigenesis and diabetes, and discuss treatment modalities for each disease involving the GH-IGF-IGFBP axis, including discussion of current in vitro and in vivo investigations in this field.
Collapse
Affiliation(s)
- Roshanak Monzavi
- Mattel Children's Hospital, David Geffen School Of Medicine at UCLA, 10833 Le Conte Avenue, MDCC 22-315, Los Angeles, CA 90095-1752, USA
| | | |
Collapse
|
16
|
George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F. Beta cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 2002; 109:1153-63. [PMID: 11994404 PMCID: PMC150958 DOI: 10.1172/jci12969] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with type 1 diabetes are identified after the onset of the disease, when beta cell destruction is almost complete. beta cell regeneration from islet cell precursors might reverse this disease, but factors that can induce beta cell neogenesis and replication and prevent a new round of autoimmune destruction remain to be identified. Here we show that expression of IGF-I in beta cells of transgenic mice (in both C57BL/6-SJL and CD-1 genetic backgrounds) counteracts cytotoxicity and insulitis after treatment with multiple low doses of streptozotocin (STZ). STZ-treated nontransgenic mice developed high hyperglycemia and hypoinsulinemia, lost body weight, and died. In contrast, STZ-treated C57BL/6-SJL transgenic mice showed mild hyperglycemia for about 1 month, after which they normalized glycemia and survived. After STZ treatment, all CD-1 mice developed high hyperglycemia, hypoinsulinemia, polydipsia, and polyphagia. However, STZ-treated CD-1 transgenic mice gradually normalized all metabolic parameters and survived. beta cell mass increased in parallel as a result of neogenesis and beta cell replication. Thus, our results indicate that local expression of IGF-I in beta cells regenerates pancreatic islets and counteracts type 1 diabetes, suggesting that IGF-I gene transfer to the pancreas might be a suitable therapy for this disease.
Collapse
Affiliation(s)
- Mónica George
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, and Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
17
|
George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F. β cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 2002. [DOI: 10.1172/jci0212969] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Giannoukakis N, Mi Z, Rudert WA, Gambotto A, Trucco M, Robbins P. Prevention of beta cell dysfunction and apoptosis activation in human islets by adenoviral gene transfer of the insulin-like growth factor I. Gene Ther 2000; 7:2015-22. [PMID: 11175313 DOI: 10.1038/sj.gt.3301333] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-1beta is a potent pro-inflammatory cytokine that has been shown to inhibit islet beta cell function as well as to activate Fas-mediated apoptosis in a nitric oxide-dependent manner. Furthermore, this cytokine is effective in recruiting lymphocytes that mediate beta cell destruction in IDDM onset. The insulin-like growth factor I (IGF-I) has been shown to block IL-1beta actions in vitro. We hypothesized that gene transfer of the insulin-like growth factor I to intact human islets could prevent IL-1beta-induced beta cell dysfunction and sensitization to Fas-triggered apoptosis activation. Intact human islets were infected with adenoviral vectors encoding IGF-I as well as beta-galactosidase and enhanced green fluorescent protein as controls. Adenoviral gene transfer of human IGF-I prevented IL-1beta-mediated nitric oxide production from human islets in vitro as well as the suppression of beta cell function as determined by glucose-stimulated insulin production. Moreover, IGF-I gene transfer prevented IL-1beta-induced, Fas-mediated apoptosis. These results suggest that locally produced IGF-I from cultured islets may be beneficial in maintaining beta cell function and promoting islet survival before and following islet transplantation as a potential therapy for type I diabetes.
Collapse
Affiliation(s)
- N Giannoukakis
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Thrailkill KM. Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2000; 2:69-80. [PMID: 11467325 DOI: 10.1089/152091599316775] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes mellitus (DM) is a disease of insulin deficiency, resulting from the autoimmune-mediated destruction of pancreatic beta cells. However, as a likely consequence of intraportal insulin deficiency, patients with type 1 DM also exhibit abnormalities of the growth hormone (GH)/IGF/IGF-binding protein (IGFBP) axis, including GH hypersecretion, reduced circulating levels of insulin-like growth factor-I (IGF-I) and IGFBP-3, and elevated levels of IGFBP-1. These abnormalities not only exacerbate hyperglycemia in patients with type 1 DM, but may contribute to the pathogenesis of diabetes-specific complications, including diabetic neuropathy, nephropathy, and retinopathy. Therefore, therapeutic modalities aimed at restoring the GH-IGF-IGFBP axis are being considered. Herein, we review the efficacy of one such therapy, specifically IGF-I replacement therapy. To date, short-term beneficial metabolic effects of recombinant human IGF (rhIGF)-I therapy have been demonstrated in numerous diabetic conditions, including type 1 DM, type 2 DM, and type A insulin resistance. However, the long- term safety and metabolic efficacy of rhIGF-I therapy remains to be established. Moreover, the potential impact of rhIGF-I on the natural history of diabetic complications has yet to be explored.
Collapse
Affiliation(s)
- K M Thrailkill
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, USA.
| |
Collapse
|
20
|
Hirai H, Kaino Y, Ito T, Kida K. Analysis of cytokine mRNA expression in pancreatic islets of nonobese diabetic mice. J Pediatr Endocrinol Metab 2000; 13:91-8. [PMID: 10689643 DOI: 10.1515/jpem.2000.13.1.91] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonobese diabetic mice develop type 1 diabetes in an age-related and gender-dependent manner. Th1 (IFN-gamma and TNF-beta) and Th2 (IL-4 and IL-10) cytokine mRNA expression was analyzed in pancreatic islets isolated from female NOD mice with a high incidence of diabetes and male NOD mice with a low incidence of diabetes. The levels were measured at 5 time points from the onset of insulitis until the development of overt diabetes, using a semiquantitative reverse transcriptase PCR (RT-PCR) assay. IFN-gamma mRNA levels were significantly higher in the islets obtained from females than those of males, from 10 weeks of age. TNF-beta mRNA was expressed in both females and males between 5 and 15 weeks of age. However, TNF-beta mRNA levels were decreased in males at 20 weeks of age. In contrast, IL-4 mRNA levels were lower in females than in males. These results suggest that islet beta-cell destruction and diabetes in female NOD mice correlates with IFN-gamma and TNF-beta production in the islets, and that male NOD mice may be protected from autoimmune beta-cell destruction by down-regulation of these cytokines. Furthermore, our findings also suggest that insulitis and beta-cell destruction are independently regulated: TNF-beta is more important in forming and maintaining the insulitis, while IFN-gamma has a more important role in beta-cell destruction.
Collapse
Affiliation(s)
- H Hirai
- Department of Pediatrics, Ehime University School of Medicine, Japan
| | | | | | | |
Collapse
|
21
|
Kida K, Kaino Y, Ito T, Hirai H, Nakamura K. Immunogenetics of insulin-dependent diabetes mellitus. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1999; 88:3-7. [PMID: 10195846 DOI: 10.1111/j.1651-2227.1999.tb14332.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- K Kida
- Department of Pediatrics, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | |
Collapse
|
22
|
Matsuura N, Suzuki S, Yokota Y, Kazahari K, Kazahari M, Toyota T, Hirai M, Okuno A, Harada S, Fukushima N, Koike A, Ito Y, Hotsubo T. The prevalence of mitochondrial gene mutations in childhood diabetes in Japan. J Pediatr Endocrinol Metab 1999; 12:27-30. [PMID: 10392345 DOI: 10.1515/jpem.1999.12.1.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To investigate the prevalence of mitochondrial DNA mutations among Japanese children with IDDM as well as in those with NIDDM, a total of 155 patients with IDDM and 30 patients with NIDDM who were younger than 15 years of age at onset were studied for the following mtDNA mutations: 1) the A-->G mutation at position 3243 of mitochondrial leucine transfer RNA (3243 mutation); 2) the G-->A mutation at position 3316 of mitochondrial leucine transfer RNA (3316 mutation), and 3) The T-->C mutation at position 3394 of the mitochondrial NADH dehydrogenase subunit (3394 mutation). None of the 155 IDDM patients had the 3243 mutation. Although two of the 155 IDDM patients had homoplasmy of 3316 and five had 3394 mutations, these frequencies were not significant compared with healthy controls. None of the 30 NIDDM patients had the 3243, 3316 or 3394 mutation. The presence of these mutations even in control subjects suggests that the effect of the 3316 or 3394 mutation on mitochondrial function is relatively mild. It seems that 3316 and 3394 mutations contribute to the manifestation of diabetes together with other genetic and/or environmental factors.
Collapse
Affiliation(s)
- N Matsuura
- Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaino Y, Hirai H, Ito T, Kida K. Prevention of diabetes in non-obese diabetic (NOD) mice by short-term and high-dose IGF-I treatment. J Pediatr Endocrinol Metab 1998; 11:267-72. [PMID: 9642642 DOI: 10.1515/jpem.1998.11.2.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This report describes the results of IGF-I treatment in a NOD mouse colony with a high incidence of overt diabetes. The animals were treated with IGF-I 17.9 nmol/day at 28-41 days of age and 35.9 nmol/day at 42-69 days of age and observed up to 280 days of age. Three of 12 (25%) IGF-I-treated animals developed diabetes compared with 8 of 11 (73%) controls (P < 0.05). The severity of insulitis at the conclusion of the follow-up was less pronounced in non-diabetic treated animals than in non-diabetic controls. These data support previous findings that IGF-I treatment protects the pancreatic beta-cells from destruction by diabetic autoimmunity in NOD mice.
Collapse
Affiliation(s)
- Y Kaino
- Department of Pediatrics, Ehime University School of Medicine, Japan
| | | | | | | |
Collapse
|