1
|
Reed EB, Sitikov A, Shin KWD, Hamanaka RB, Cetin-Atalay R, Mutlu GM, Mongin AA, Dulin NO. Gα12 and Gα13 proteins are required for transforming growth factor-β-induced myofibroblast differentiation. Biochem J 2024; 481:1937-1948. [PMID: 39621448 DOI: 10.1042/bcj20240317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate distinct signaling from seven-transmembrane G protein coupled receptors, which are not known to be linked to Smad activation. We tested whether G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Neither inhibition of Gαi by pertussis toxin nor siRNA-mediated combined knockdown of Gαq and Gα11 had a significant effect on TGF-β-induced myofibroblast differentiation. In contrast, combined knockdown of Gα12 and Gα13 significantly inhibited TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, combined knockdown of Gα12 and Gα13 resulted in substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGF-β receptors (TGFBR1, TGFBR2) and of Smad3. Thus, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, U.S.A
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| |
Collapse
|
2
|
Reed EB, Sitikov A, Hamanaka RB, Cetin-Atalay R, Mutlu GM, Mongin AA, Dulin NO. Critical role of Gα12 and Gα13 proteins in TGF-β-induced myofibroblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596473. [PMID: 38854083 PMCID: PMC11160726 DOI: 10.1101/2024.05.29.596473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate a distinct signaling from seven-transmembrane G protein coupled receptors, not commonly linked to Smad activation. We asked if G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Inhibition of Gαi by pertussis toxin, or siRNA-mediated combined knockdown of Gαq and Gα11 had no significant effect on TGF-β-induced myofibroblast differentiation. A combined knockdown of Gα12 and Gα13 resulted in a drastic inhibition of TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, a combined knockdown of Gα12 and Gα13 resulted in a substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGFβ receptors (TGFBR1, TGFBR2) and of Smad3 under siGα12/13 conditions. In conclusion, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B. Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander A. Mongin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Nickolai O. Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Owen T, Carpino G, Chen L, Kundu D, Wills P, Ekser B, Onori P, Gaudio E, Alpini G, Francis H, Kennedy L. Endothelin Receptor-A Inhibition Decreases Ductular Reaction, Liver Fibrosis, and Angiogenesis in a Model of Cholangitis. Cell Mol Gastroenterol Hepatol 2023; 16:513-540. [PMID: 37336290 PMCID: PMC10462792 DOI: 10.1016/j.jcmgh.2023.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. METHODS Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. RESULTS Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. CONCLUSIONS ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.
Collapse
Affiliation(s)
- Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Payton Wills
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
4
|
Mo L, Zhao C, Huang B, Niu J, Hong S, Li J, Lin Y, Qin F. Health Effects of Dietary Oxidized Milk Administration in Offspring Mice during Pregnancy and Lactation with Metabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1679-1688. [PMID: 35104143 DOI: 10.1021/acs.jafc.1c07132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Milk is an important source of nutrients during pregnancy. Previous studies have consistently shown that oxidation in milk and dairy products can induce oxidative stress, inflammation, and fibrosis in the liver and kidney. However, the mechanism underlying these effects remains largely unexplored. This study aimed to investigate the effects of oxidized milk on fecal metabolism and liver and kidney function of offspring mice. Oxidative modification of milk was performed using H2O2-Cu or heating, causing varying degrees of oxidative damage. Kunming female mice were fed with a H2O2-Cu, heat, or normal control diet until their offspring were 3 weeks old. Feces were collected for the metabolomics study based on mass spectrometry. Forty-two potentially significant metabolic biomarkers were screened, and each group's relative intensity was compared. The results showed that oxidized milk mainly regulated isoleucine metabolism, proline metabolism, and tricarboxylic acid cycle. In addition, the histopathological analysis showed accumulation of protein and lipid oxidation products in the liver and kidney tissues after intake of oxidized milk, which induced oxidative stress, increased the levels of inflammatory factors, and significantly increased the expression of genes and proteins involved in inflammatory pathways. The above results suggest that intake of oxidized milk during gestation may increase the risk of liver and kidney injury in male offspring by interfering with amino acid and energy metabolism, highlighting the potential health risks of oxidized milk in humans.
Collapse
Affiliation(s)
- Ling Mo
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chaochao Zhao
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Bo Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jiawei Niu
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Siyan Hong
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jingjing Li
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yintao Lin
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Fengqiong Qin
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin, Guangxi 541004, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
5
|
Gandhi CR. Pro- and Anti-fibrogenic Functions of Gram-Negative Bacterial Lipopolysaccharide in the Liver. Front Med (Lausanne) 2020; 7:130. [PMID: 32373617 PMCID: PMC7186417 DOI: 10.3389/fmed.2020.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive research performed over several decades has identified cells participating in the initiation and progression of fibrosis, and the numerous underlying inter- and intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical challenge as the precise targets of treatment are still elusive. Activation of physiologically quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating, contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence or inhibition of activated HSCs, and/or their elimination via apoptosis has been the focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury, inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and several other cell types to produce inflammatory mediators as well as factors that can activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of immune regulation by HSCs. However, LPS was found to arrest proliferation of activated HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit responses in HSCs independent of CD14 and TLR4. Identifying and/or developing non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating liver fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar R Gandhi
- Divisions of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Cincinnati VA Medical Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Li ZL, Shi Y, Le G, Ding Y, Zhao Q. 24-Week Exposure to Oxidized Tyrosine Induces Hepatic Fibrosis Involving Activation of the MAPK/TGF-β1 Signaling Pathway in Sprague-Dawley Rats Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3123294. [PMID: 26788244 PMCID: PMC4691618 DOI: 10.1155/2016/3123294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
SCOPE Oxidized tyrosine (O-Tyr) has been widely detected in many consumer protein products. O-Tyr products such as dityrosine (Dityr) and 3-nitrotyrosine (3-NT) are universal biomarkers of protein oxidation and have been demonstrated to be associated with metabolic disorders in biological system. Evaluation of potential intracorporal effects of dietary O-Tyr is important since the mechanism of biological impacts induced by oral oxidized protein products (OPPs) is still limited although we have proved that some dietary OPPs would induce oxidative injury to liver and kidney. METHODS AND RESULTS The present study aimed to investigate the dose-dependent hepatic injury caused by oral O-Tyr in rats. 24-week feeding of O-Tyr enhanced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, increased total bilirubin (TBiL) content, and led to oxidative damage in rats liver. Besides, O-Tyr distinctly increased the phosphorylation of p38 and ERK2 MAPKs and enhanced fibrosis-related TGF-β1 and Smad2/3 levels. Higher extracellular matrix (ECM) indexes (ICTP, PIIINP) and histological examination (HE and Masson staining) also supported dose-dependent hepatic fibrosis caused by O-Tyr. CONCLUSION These findings reveal that O-Tyr may induce oxidative damage and hepatic fibrosis via MAPK/TGF-β1 signaling pathway, in which ROS together with malondialdehyde (MDA) and OPPs act as the pivotal mediators.
Collapse
Affiliation(s)
- Zhuqing Leslie Li
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
- The State Key Laboratory of Food Science and Technology, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
- The State Key Laboratory of Food Science and Technology, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qi Zhao
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li ZL, Mo L, Le G, Shi Y. Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food Chem Toxicol 2013; 64:86-93. [PMID: 24200855 DOI: 10.1016/j.fct.2013.10.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022]
Abstract
SCOPE Oxidized protein products (OPPs) can be easily found in meat and milk during processing and storage. Evidence supports that accumulation of endogenous OPPs plays a negative role in physiological metabolism. However, the impacts of dietary OPPs and the mechanisms have not been elucidated yet. The present study evaluated whether oral oxidized casein would destruct the antioxidant defense system and cause potential oxidized injury in mice liver and kidney. METHODS AND RESULTS We performed oxidized casein (modified respectively by H2O2-Cu and HClO) feeding experiments using KM mice (20-22 g). A 10-weeks feeding of oxidized casein as basal protein caused oxidative stress by increasing protein carbonylation (PC), advanced oxidation protein products (AOPPs), dityrosine (Dityr), lipid peroxidation and ROS levels in mice liver, kidney and blood (P<0.05). In mice liver and kidney, the mRNA expression of Nrf2, γ-GCS, HO-1, GPX-3, and GPX-4 up-regulated, the protein level of Nrf2 in nucleus increased. However, activities of anti-oxidant enzymes (CAT, SOD, and GPX) decreased (P<0.05). Moreover, histopathological examination displayed the formation of fibrous septa in mice liver and kidney after oxidized casein feeding. CONCLUSION Oxidized casein impairs antioxidant defense system and induces hepatic and renal fibrosis.
Collapse
Affiliation(s)
- Zhuqing Leslie Li
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ling Mo
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China; The State Key Laboratory of Food Science and Technology, Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi 214122, China; The State Key Laboratory of Food Science and Technology, Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Sumpter TL, Dangi A, Matta BM, Huang C, Stolz DB, Vodovotz Y, Thomson AW, Gandhi CR. Hepatic stellate cells undermine the allostimulatory function of liver myeloid dendritic cells via STAT3-dependent induction of IDO. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:3848-58. [PMID: 22962681 PMCID: PMC3466356 DOI: 10.4049/jimmunol.1200819] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic stellate cells (HSCs) are critical for hepatic wound repair and tissue remodeling. They also produce cytokines and chemokines that may contribute to the maintenance of hepatic immune homeostasis and the inherent tolerogenicity of the liver. The functional relationship between HSCs and the professional migratory APCs in the liver, that is, dendritic cells (DCs), has not been evaluated. In this article, we report that murine liver DCs colocalize with HSCs in vivo under normal, steady-state conditions, and cluster with HSCs in vitro. In vitro, HSCs secrete high levels of DC chemoattractants, such as MΙP-1α and MCP-1, as well as cytokines that modulate DC activation, including TNF-α, IL-6, and IL-1β. Culture of HSCs with conventional liver myeloid (m) DCs resulted in increased IL-6 and IL-10 secretion compared with that of either cell population alone. Coculture also resulted in enhanced expression of costimulatory (CD80, CD86) and coinhibitory (B7-H1) molecules on mDCs. HSC-induced mDC maturation required cell-cell contact and could be blocked, in part, by neutralizing MΙP-1α or MCP-1. HSC-induced mDC maturation was dependent on activation of STAT3 in mDCs and, in part, on HSC-secreted IL-6. Despite upregulation of costimulatory molecules, mDCs conditioned by HSCs demonstrated impaired ability to induce allogeneic T cell proliferation, which was independent of B7-H1, but dependent upon HSC-induced STAT3 activation and subsequent upregulation of IDO. In conclusion, by promoting IDO expression, HSCs may act as potent regulators of liver mDCs and function to maintain hepatic homeostasis and tolerogenicity.
Collapse
Affiliation(s)
- Tina L. Sumpter
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anil Dangi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Benjamin M. Matta
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chao Huang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yoram Vodovotz
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chandrashekhar R. Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
9
|
Khimji AK, Rockey DC. Endothelin and hepatic wound healing. Pharmacol Res 2011; 63:512-8. [PMID: 21421048 DOI: 10.1016/j.phrs.2011.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 02/08/2023]
Abstract
Liver wound healing is a coordinated response to injury caused by infections (hepatitis) or toxins (alcohol) or other processes where activation of hepatic stellate cells are a central component. During stellate cell activation, a major phenotypic transformation occurs which leads to increased production of increased extracellular matrix proteins and smooth muscle α-actin the results is organ dysfunction due to gross architectural disruption and impaired blood flow. Endothelin-1 (ET-1) is produced in increased amounts and the cellular source of ET-1 shifts from endothelial cells to stellate cells during liver injury thus setting a feedback loop which accentuates further activation, stellate cell proliferation, and production of extracellular matrix proteins. Therapy directed at intervening the ET-1 signaling pathway has significant therapeutic potential in patients with liver disease.
Collapse
Affiliation(s)
- Al-karim Khimji
- Department of Internal Medicine, Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
10
|
Gressner OA, Lahme B, Demirci I, Gressner AM, Weiskirchen R. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol 2007; 47:699-710. [PMID: 17629588 DOI: 10.1016/j.jhep.2007.05.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/26/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Connective tissue growth factor (CTGF/CCN2) has been implicated in the pathogenesis of hepatic fibrosis and suggested as a downstream mediator of the fibrogenic master cytokine TGF-beta. METHODS We investigated the effect of TGF-beta1 on CTGF/CCN2 expression in cultured rat hepatic stellate cells and hepatocytes by means of Western and Northern blotting, immunocytochemistry, reporter gene analysis, and metabolic labelling. RESULTS We found that the expression of CTGF/CCN2 in hepatic stellate cells is (i) only marginally (if at all) stimulated by TGF-beta and by a constitutively active type I TGF-beta receptor, (ii) independent from Smad2/3 phosphorylation, (iii) not reduced by TGF-beta1 antagonists or ALK5-receptor inhibitors and (iv) not upregulated during transdifferentiation to myofibroblasts in culture. However, expression and secretion of CTGF/CCN2 in cultured hepatocytes increased spontaneously during culture and was strongly stimulated by TGF-beta1. In bile-duct ligated and CCl(4)-treated rat livers, a strong CTGF/CCN2 expression in hepatocytes was noticed. Endothelin-1 stimulated CTGF/CCN2 expression in stellate cells but not in hepatocytes. Pathway specific signalling inhibitors point to the involvement of non-Smad signalling cascades but their contribution to CTGF/CCN2 regulation is different in both cell types. CONCLUSIONS The results do not reveal a relevant interrelation between TGF-beta function and CTGF/CCN2 expression in hepatic stellate cells, which is in contrast to hepatocytes.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
11
|
Gagliardini E, Benigni A. Therapeutic potential of TGF-beta inhibition in chronic renal failure. Expert Opin Biol Ther 2007; 7:293-304. [PMID: 17309322 DOI: 10.1517/14712598.7.3.293] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic kidney diseases are emerging as a worldwide public health problem. The progression of kidney diseases closely correlates with the accumulation of extracellular matrix leading to glomerulosclerosis and tubulointerstitial injury. Transforming growth factor (TGF)-beta has been identified as a key mediator of kidney matrix accumulation. Overexpression of TGF-beta isoforms and their receptors was observed in a variety of renal diseases in both animals and humans. Given its crucial role in fibrotic kidney disease, TGF-beta has been recently considered as a possible target in the management of chronic renal diseases. This review discusses the role of TGF-beta in renal fibrosis and provides an overview of the strategies that, when interfering with TGF-beta expression and signalling, could be employed as new renoprotective treatments.
Collapse
Affiliation(s)
- Elena Gagliardini
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy
| | | |
Collapse
|
12
|
Wu Y, Chen L, Yu H, Liu H, An W. Transfection of hepatic stimulator substance gene desensitizes hepatoma cells to H2O2-induced cell apoptosis via preservation of mitochondria. Arch Biochem Biophys 2007; 464:48-56. [PMID: 17485068 DOI: 10.1016/j.abb.2007.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/17/2007] [Accepted: 03/20/2007] [Indexed: 12/19/2022]
Abstract
Hepatic stimulator substance (HSS) protects liver cells from various toxins. However, the mechanism by which HSS protects hepatocytes remains unclear. In this study, we report that the HSS gene, after transfection into BEL-7402 hepatocma cells, is stably expressed in the mitochondria. Hydrogen peroxide (H(2)O(2))-induced cell apoptosis in the HSS-transfected cells is reduced, as shown by morphologic analysis. In the HSS-transfected cells, disruption of mitochondrial transmembrane potential (MTP) and cytochrome c leakage are reduced. The anti-apoptotic gene Bcl-2 is also highly expressed. In addition, ATP levels in the HSS-transfected cells are maintained. In conclusion, in hepatoma cells, HSS gene expression protects cells against H(2)O(2) injury, and this effect is likely to be associated with preservation of mitochondria.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, 10 You An Men Wai Xi Tou Tiao, Beijing 100069, China
| | | | | | | | | |
Collapse
|
13
|
Koda M, Bauer M, Krebs A, Hahn EG, Schuppan D, Murawaki Y. Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells. COMPARATIVE HEPATOLOGY 2006; 5:5. [PMID: 17062135 PMCID: PMC1635728 DOI: 10.1186/1476-5926-5-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 10/24/2006] [Indexed: 12/16/2022]
Abstract
Background In liver injury, the pool of hepatic stellate cell (HSC) increases and produces extracellular matrix proteins, decreasing during the resolution of fibrosis. The profibrogenic role of endothelin-1 (ET-1) in liver fibrosis remains disputed. We therefore studied the effect of ET-1 on proliferation, apoptosis and profibrogenic gene expression of HSCs. Results First passage HSC predominantly expressed endothelin A receptor (ETAR) mRNA and 4th passage HSC predominantly expressed the endothelin B receptor (ETBR) mRNA. ET-1 had no effect on DNA synthesis in 1st passage HSC, but reduced DNA synthesis in 4th passage HSC by more than 50%. Inhibition of proliferation by endothelin-1 was abrogated by ETBR specific antagonist BQ788, indicating a prominent role of ETBR in growth inhibition. ET-1 did not prevent apoptosis induced by serum deprivation or Fas ligand in 1st or 4th passage HSC. However, ET-1 increased procollagen α1(I), transforming growth factor β-1 and matrix metalloproteinase (MMP)-2 mRNA transcripts in a concentration-dependent manner in 1st, but not in 4th passage HSC. Profibrogenic gene expression was abrogated by ETAR antagonist BQ123. Both BQ123 and BQ788 attenuated the increase of MMP-2 expression by ET-1. Conclusion We show that ET-1 stimulates fibrogenic gene expression for 1st passage HSC and it inhibits HSC proliferation for 4th passage HSC. These data indicate the profibrogenic and antifibrogenic action of ET-1 for HSC are involved in the process of liver fibrosis.
Collapse
Affiliation(s)
- Masahiko Koda
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Michael Bauer
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Anja Krebs
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Eckhart G Hahn
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Detlef Schuppan
- First Department of Medicine, University of Erlangen-Nuernberg, Erlangen, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yoshikazu Murawaki
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
14
|
Mainwaring G, Lim FL, Antrobus K, Swain C, Clapp M, Kimber I, Orphanides G, Moggs JG. Identification of early molecular pathways affected by paraquat in rat lung. Toxicology 2006; 225:157-72. [PMID: 16854511 DOI: 10.1016/j.tox.2006.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
We have used global gene expression profiling, combined with pathway analysis tools, to identify in rats the molecular events associated with paraquat toxicity in the lung. Early (2, 8 and 18h) gene expression changes induced following intraperitoneal (i.p.) exposure to paraquat were measured in the caudal lobe of lungs using Affymetrix rat genome GeneChips (31,042 probe sets). A single high dose of paraquat dichloride (20mg/kg) was used that has been shown previously to cause in rats extensive lung fibrosis after 10 days. Hierarchical clustering of 543 paraquat-responsive genes (false discovery rate<0.05) revealed that under these conditions of exposure paraquat induces a staged transcriptional response in the rat lung that precedes the appearance of lung damage. We report here that many of the transcriptional responses to paraquat were rapid (being maximal at 2h post-dose), and that the predominant molecular functions and biological processes associated with these genes include membrane transport, oxidative stress, lung development, epithelial cell differentiation and transforming growth factor beta (TGF-beta) signalling. These data provide novel insights into the molecular pathways that lead to toxicity after exposure of the rat lung to paraquat.
Collapse
Affiliation(s)
- Guy Mainwaring
- Syngenta CTL, Alderley Park, Cheshire SK10 4TJ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lavoie P, Robitaille G, Agharazii M, Ledbetter S, Lebel M, Larivière R. Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats. J Hypertens 2005; 23:1895-903. [PMID: 16148614 DOI: 10.1097/01.hjh.0000182521.44440.c5] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigate the role of transforming growth factor-beta (TGF-beta) in hypertension and renal failure progression in uremic rats, and whether it modulates the endothelin (ET) system. DESIGN Following renal mass reduction, uremic rats (Nx) received the pan-specific TGF-beta neutralizing antibody 1D11 (0.5 mg/kg, three times/week), the isotype control antibody 13C4 or the AT1 antagonist losartan (10 mg/kg per day) for 6 weeks. RESULTS Before treatment, the blood pressure was higher in Nx rats and increased further over time in Nx+13C4 rats. At the end of the study, Nx+13C4 rats exhibited increased serum creatinine, proteinuria and renal expression and excretion of TGF-beta1 and ET-1. ET-1 concentrations were greater in vascular and renal tissues, whereas the ETB receptor expression was reduced. Renal injuries were comprised of blood vessel hypertrophy, glomerular sclerosis, tubular atrophy and interstitial fibrosis, which was associated with increased alpha-smooth muscle actin expression. Treatment of uremic rats with the 1D11 antibody attenuated the increase in blood pressure and the decline in renal function. Losartan normalized the blood pressure and significantly attenuated the increase in serum creatinine and proteinuria. However, both treatments prevented renal TGF-beta1 and ET-1 overexpression, and prevented all renal histological injuries. The 1D11 antibody only improved ETB receptor expression. CONCLUSIONS Neutralization of TGF-beta attenuates hypertension and renal failure progression in uremic animals, in part, by preventing renal injury processes. These effects may be related to the modulation of the ET system, preventing renal ET-1 overproduction and the reduction of ETB receptor expression. Our data also suggest that TGF-beta1 is involved, at least in part, in the pathological effects related to angiotensin II in chronic renal failure.
Collapse
Affiliation(s)
- Philippe Lavoie
- Research Centre and Division of Nephrology & Hypertension, CHUQ, L'Hôtel-Dieu de Québec Hospital and Department of Medicine, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Thirunavukkarasu C, Watkins S, Harvey SAK, Gandhi CR. Superoxide-induced apoptosis of activated rat hepatic stellate cells. J Hepatol 2004; 41:567-75. [PMID: 15464236 DOI: 10.1016/j.jhep.2004.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 05/19/2004] [Accepted: 06/02/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS During liver injury, reactive oxygen species (ROS) are produced by the resident macrophages (Kupffer cells) and infiltrating blood cells such as neutrophils. ROS cause transformation of desmin-positive quiescent hepatic stellate cells (HSCs) into the proliferating activated phenotype that expresses alpha-smooth muscle actin (alpha-SMA). The highly fibrogenic and contractile activated HSCs (aHSCs) produce various cytokines and growth factors, and play important role in the pathophysiology of chronic liver disease. However, apoptotic aHSCs are also observed during active fibrogenesis in the injured liver. Therefore, we investigated the mechanisms of apoptosis of aHSCs in relation to ROS. METHODS HSCs, isolated from normal rat liver, were activated in culture and effects of superoxide were determined between subcultures 3 and 5. RESULTS Treatment with superoxide caused apoptosis of aHSCs as determined by flow cytometry, TUNEL assay and DNA laddering analysis. The mechanisms of superoxide-induced apoptosis involved release of cytochrome c, increased Bax expression, increased caspase-3 activity, and hydrolysis of polyADP-ribose polymerase. Superoxide also increased the expression of antiapoptotic Bcl-xL and nuclear translocation of NFkappaB. Caspase-3 inhibitor (DEVD-fmk) and antioxidants (N-acetylcysteine, vitamin E and superoxide dismutase) inhibited superoxide-induced apoptosis. CONCLUSIONS Superoxide-induced apoptosis of aHSCs may be a novel mechanism of limiting chronic fibrotic liver injury.
Collapse
Affiliation(s)
- Chinnasamy Thirunavukkarasu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1542 BST, 200 Lothrop street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
17
|
Xu JW, Gong J, Feng XL, Chang XM, Luo JY, Dong L, Jia A, Xu GP. Effects of estradiol on type I, III collagens and TGF β 1 in hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2003; 11:1185-1188. [DOI: 10.11569/wcjd.v11.i8.1185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of estradiol on the production of collagen I, III and transforming growth factor β1 (TGF β1) in experimental fibrosis in rats induced by carbon tetrachloride (CCL4), and to investigate the suppressive effects of estrogen on liver fibrosis.
METHODS Rats were randomly allocated into a normal control group, a model control group, a therapy control group and an estradiol group. Liver fibrosis was induced by CCL4 administration. The estradiol group, apart from the administration of CCL4, was treated subcutaneously with estradiol (benzoic estradiol) 1 mg/kg twice weekly. At the end of week 8, all the rats were sacrificed. Liver inflammation and collagen deposition were observed with HE and Masson's collagen stains, analyzed with scoring and staging systems. Type I, III collagens and TGF β1 were observed with immunohistochemical method.
RESULTS CCL4 group had the typical liver fibrosis compared with normal control group. The fibrous septa were formed in CCL4 group rats, and collagens were accumulated and deposited in the sinusoids and liver lobules. The expression of type I , III collagens (0.58±0.26 vs 6.34±2.24, 1.07±0.49 vs 5.28±1.28, P<0.001) and TGF β1 was significantly increased. Estradiol significantly attenuated collagen accumulation (P<0.05) in the fibrotic livers, and decreased type I , III collagens (2.47±0.76 vs 6.34±2.24, 3.02±1.20 vs 5.28±1.28, P<0.05) and TGF β1 expression in the liver.
CONCLUSION Estradiol treatment reduces the synthesis of hepatic type I , III collagens and TGF β1 in the fibrotic liver induced by CCL4 administration, and attenuates hepatic fibrosis.
Collapse
Affiliation(s)
- Jun-Wang Xu
- Department of Gastroenterology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jun Gong
- Department of Gastroenterology, Second Hospital of Xi'an Jiaotong University, Xi'an 710031, Shaanxi Province, China
| | - Xin-Li Feng
- Department of Gastroenterology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Xin-Ming Chang
- Department of Gastroenterology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jin-Yan Luo
- Department of Gastroenterology, Second Hospital of Xi'an Jiaotong University, Xi'an 710031, Shaanxi Province, China
| | - Lei Dong
- Department of Gastroenterology, Second Hospital of Xi'an Jiaotong University, Xi'an 710031, Shaanxi Province, China
| | - Ai Jia
- Department of Gastroenterology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Gui-Ping Xu
- Department of Gastroenterology, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
18
|
Abstract
AIM: To evaluate the effects of heparin on liver fibrosis in patients with chronic hepatitis B.
METHODS: Fifty-two cases under study were divided into two groups, group A and group B. The two groups were given regular treatment and heparin/low molecular weight heparin (LMWH) treatment respectively. Hepatic functions, serum hyaluronic acid (HA) and type IV collagen levels were measured before and after the treatment, and six cases were taken liver biopsy twice.
RESULTS: After treatment, hepatic functions became significantly better in both groups. Serum HA and type IV collagen levels in group B compared with group A, decreased significantly after treatment. Collagen proliferation also decreased in group B after treatment.
CONCLUSION: Heparin/LMWH can inhibit collagen proliferation in liver tissues with hepatitis B.
Collapse
Affiliation(s)
- Jun Shi
- Center for Liver Diseases, Shandong Provincial Hospital, 342 Jing Wu Wei Qi Road, Jinan 250021, Shandong Province, China.
| | | | | | | |
Collapse
|
19
|
Chi X, Anselmi K, Watkins S, Gandhi CR. Prevention of cultured rat stellate cell transformation and endothelin-B receptor upregulation by retinoic acid. Br J Pharmacol 2003; 139:765-74. [PMID: 12813000 PMCID: PMC1573899 DOI: 10.1038/sj.bjp.0705303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1 Physiologically, perisinusoidal hepatic stellate cells (HSC) are quiescent and store retinoids. During liver injury and in cell culture, HSC transform into proliferating myofibroblast-like cells that express alpha-smooth muscle actin (alpha-sma) and produce excessive amounts of extracellular matrix. During transformation (also known as activation), HSC are depleted of the retinoid stores, and their expression of the endothelin-1 (ET-1) system is increased. ET-1 causes contraction of transformed HSC and is implicated in their proliferation and fibrogenic activity. In order to understand the association between retinoids, ET-1 and the activation of HSC, we investigated the effect of 13-cis-retinoic acid on the transformation of cultured HSC and the expression of ET-1 system. 2 HSC derived from normal rat liver were maintained for 10-12 days in a medium supplemented with 5% serum and containing 2.5 micro M retinoic acid without or with 50 nM ET-1 (ETA+ETB agonist) or sarafotoxin S6c (ETB agonist). In another set of experiments, cells treated for 10-12 days with vehicle (ethanol) or retinoic acid were challenged with ET-1 or sarafotoxin S6c, and various determinations were made at 24 h. 3 Retinoic acid inhibited transformation and proliferation of HSC as assessed by morphological characteristics, expression of alpha-sma, bromodeoxyuridine incorporation and cell count. Retinoic acid also prevented upregulation of ETB receptors without affecting ET-1 or ETA expression. Total protein synthesis ([(3)H]leucine incorporation), collagen alpha types I mRNA expression and collagen synthesis ([(3)H]proline incorporation) were lower in retinoic acid-treated cells. Although ET-1-treated cells were morphologically similar to the control cells, their expression of alpha-smooth muscle actin was significantly inhibited. The presence of retinoic acid in the medium during treatment with ET-1 caused further reduction in the expression of alpha-smooth muscle actin. ET-1 and sarafotoxin S6c stimulated total protein synthesis in vehicle- and retinoic acid-treated cells, but collagen synthesis only in the latter. 4 These results showing prevention of HSC activation and negative regulation of ETB receptor expression in them by retinoic acid may have important pathophysiologic implications.
Collapse
Affiliation(s)
- Xuedong Chi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, PA 15213, U.S.A
| | - Kristin Anselmi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, PA 15213, U.S.A
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Chandrashekhar R Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, PA 15213, U.S.A
- Department of Pathology, Veterans Administration Medical Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Author for correspondence:
| |
Collapse
|
20
|
Xu JW, Gong J, Chang XM, Luo JY, Dong L, Hao ZM, Jia A, Xu GP. Estrogen reduces CCL4- induced liver fibrosis in rats. World J Gastroenterol 2002; 8:883-7. [PMID: 12378635 PMCID: PMC4656580 DOI: 10.3748/wjg.v8.i5.883] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Chronic liver diseases, such as fibrosis or cirrhosis, are more common in men than in women. This gender difference may be related to the effects of sex hormones on the liver. The aim of the present work was to investigate the effects of estrogen on CCL4-induced fibrosis of the liver in rats.
METHODS: Liver fibrosis was induced in male, female and ovariectomized rats by CCL4 administration. All the groups were treated with estradiol (1 mg/kg) twice weekly. And tamoxifen was given to male fibrosis model. At the end of 8 wk, all the rats were killed to study serum indicators and the livers.
RESULTS: Estradiol treatment reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), hyaluronic acid (HA) and type IV collagen (CIV) in sera, suppressed hepatic collagen content, decreased the areas of hepatic stellate cells (HSC) positive for α-smooth muscle actin (α-SMA), and lowered the synthesis of hepatic type I collagen significantly in both sexes and ovariectomy fibrotic rats induced by CCL4 administration. Whereas, tamoxifen had the opposite effect. The fibrotic response of the female liver to CCL4 treatment was significantly weaker than that of male liver.
CONCLUSION: Estradiol reduces CCL4-induced hepatic fibrosis in rats. The antifibrogenic role of estrogen in the liver may be one reason for the sex associated differences in the progression from hepatic fibrosis to cirrhosis.
Collapse
Affiliation(s)
- Jun-Wang Xu
- Department of Gastroenterology, Second Hospital of Xi'an Jiaotong University, Xi'an 710031, Shaanxi Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Baveja R, Yokoyama Y, Korneszczuk K, Zhang JX, Clemens MG. Endothelin 1 impairs oxygen delivery in livers from LPS-primed animals. Shock 2002; 17:383-8. [PMID: 12022758 DOI: 10.1097/00024382-200205000-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelin 1 (ET-1) is a potent vasoactive peptide that acts at sinusoidal and extrasinusoidal sites in the liver. Sensitivity to ET-1 increases in LPS-primed animals and is associated with impaired liver microcirculation in these animals. We hypothesized that LPS priming leads to an exacerbation in the impaired oxygen delivery in response to intraportal infusion of ET-1. Rats were studied 24 h after LPS injection (1 mg/kg, i.p.). Surface PO2 was determined using a recently developed technology of O2 mapping. The baseline portal pressure was higher in LPS-primed animals (P < 0.05), and increased to'similar magnitude as sham animals after a 10-min infusion of ET-1. The resultant portal pressure remained elevated in LPS compared to sham animals. There was no significant difference in baseline mean arterial pressure, and no significant systemic response to ET-1 in either group. In contrast to the macrohemodynamic, the decrease in tissue surface PO2 in response to ET-1 infusion was potentiated by LPS treatment (increased from baseline levels 33.8+/-9 to 46.8+/-8.3 in sham; 42.3+/-9.1 to 69+/-6.5 gray scale units in LPS; P < 0.01, sham vs. LPS) at end of infusion of ET-1 for 10 min. This indicates tissue hypoxia in response to ET-1, which is exacerbated in livers from LPS-primed animals compared to sham. Frequency distribution analysis showed a shift in mode from lower intensity (higher PO2) to areas with higher fluorescent intensity ranges (lower PO2), indicating areas with shut down in perfusion in LPS-treated animals. In the whole liver, ET-1 suppressed oxygen consumption, and this response was potentiated by LPS pretreatment. We propose that ET-1 impairs oxygen delivery in the liver during endotoxemia, resulting in areas of focal hypoxia. This response is possibly due to potentiated action of ET-1 at both sinusoidal and extrasinusoidal sites in the liver during endotoxemia.
Collapse
Affiliation(s)
- Rajiv Baveja
- Department of Biology, University of North Carolina, Charlotte 28223, USA
| | | | | | | | | |
Collapse
|
22
|
Uemura T, Gandhi CR. Inhibition of DNA synthesis in cultured hepatocytes by endotoxin-conditioned medium of activated stellate cells is transforming growth factor-beta and nitric oxide-independent. Br J Pharmacol 2001; 133:1125-33. [PMID: 11487524 PMCID: PMC1572860 DOI: 10.1038/sj.bjp.0704151] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2001] [Revised: 05/03/2001] [Accepted: 05/03/2001] [Indexed: 11/08/2022] Open
Abstract
Activated hepatic stellate cells play a major role in the pathophysiology of chronic liver disease. They can influence the metabolism of hepatocytes by producing a variety of cytokines and growth factors. Upon stimulation with endotoxin, stellate cells also synthesize nitric oxide (NO), a potent mediator of growth of several cell types including hepatocytes. We investigated the effect of serum-free medium conditioned by activated stellate cells in the absence and presence of endotoxin on NO and DNA synthesis in hepatocytes. Stellate cells and hepatocytes were isolated by enzymatic digestion of the liver. Stellate cells were cultured for 10 days after which the majority exhibited alpha-smooth muscle actin (a marker for activated cells); hepatocytes were used after overnight culture. While the medium conditioned by stellate cells in the absence of endotoxin stimulated DNA synthesis in hepatocytes, medium conditioned in its presence inhibited this process in an endotoxin concentration-dependent manner (10 - 1000 ng ml(-1)). Endotoxin-conditioned stellate cell medium also stimulated NO synthesis in hepatocytes; the effect was consistent with increased protein and mRNA expression of inducible NO synthase (iNOS). However, inhibition of DNA synthesis in hepatocytes caused by endotoxin-conditioned stellate cell medium was unaffected by the NOS inhibitor, L-N(G)-monomethylarginine (L-NMMA), guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and neutralizing antibodies for TGF-beta, IL-1beta, IL-6 and TNF-alpha. These results indicate that factors other than these cytokines produced by activated stellate cells upon stimulation with endotoxin or by hepatocytes challenged with endotoxin-conditioned stellate cell medium inhibit DNA synthesis in hepatocytes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Cells, Cultured
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/pharmacology
- DNA/biosynthesis
- DNA/drug effects
- Dose-Response Relationship, Drug
- Endotoxins/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Interleukin-1/immunology
- Interleukin-6/immunology
- Lipopolysaccharides/pharmacology
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Male
- Neutralization Tests
- Nitric Oxide/metabolism
- Nitric Oxide/physiology
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Oxadiazoles/pharmacology
- Quinoxalines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Transforming Growth Factor alpha/immunology
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/physiology
- omega-N-Methylarginine/pharmacology
Collapse
Affiliation(s)
- Tadahiro Uemura
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA, U.S.A
| | - Chandrashekhar R Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA, U.S.A
- Department of Pathology, Thomas. E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA, U.S.A
- VA Medical Center, Thomas. E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA, U.S.A
| |
Collapse
|
23
|
Gandhi CR, Kuddus RH, Nemoto EM, Murase N. Endotoxin treatment causes an upregulation of the endothelin system in the liver: amelioration of increased portal resistance by endothelin receptor antagonism. J Gastroenterol Hepatol 2001; 16:61-9. [PMID: 11206318 DOI: 10.1046/j.1440-1746.2001.02419.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Mechanisms underlying hepatic microcirculatory failure during endotoxemia are incompletely understood. Because endothelin-1 (ET-1) has been implicated in endotoxin-induced liver injury, we investigated the hepatic ET-1 system in endotoxin-treated rats. METHODS Rats were treated with endotoxin (Escherichia coli lipopolysaccharide; 3 mg/kg, i.p.), and various determinations were made 24 h later. RESULTS Endotoxin treatment caused 11.2 +/- 1.6% weight loss, a decrease in mean arterial pressure (MAP; 96 +/- 5 mmHg vs 108 +/- 3 mmHg; P < 0.05) and an increase in portal pressure (11.6 +/- 1.3 mmHg vs 7.4 +/- 1 mmHg; P < 0.02). No significant changes in the serum levels of liver enzymes or hepatocellular necrosis were observed. Endotoxin caused increases in hepatic ET-1 (from 345 +/- 31 to 565 +/- 38 pg/g; P < 0.01), ET-1 receptor density (from 179 +/- 16 to 340 +/- 26 fmol/mg; P < 0.02), and mRNA expression of preproendothelin-1, and ET(A) and ET(B) receptors. While the serum nitric oxide (nitrite +/- nitrate) concentration was increased in endotoxin-treated rats, that of ET-1 remained unchanged. A mixed ET(A)/ET(B) receptor antagonist, TAK-044 (10 mg/kg, i.v.), reduced the weight loss from 11.2 +/- 1.6% to 5.9 +/- 2.9% (P < 0.05) and the portal pressure from 11.6 +/- 1.3 mmHg to 8.6 +/- 0.7 mmHg (P < 0.05) in endotoxin-treated rats. The mixed ET(A)/ET(B) receptor antagonist also caused an increase in serum ET-1 concentration, but did not affect serum nitric oxide and MAP in endotoxin-treated rats. CONCLUSIONS These results suggest that the upregulated hepatic ET-1 system is an important mechanism of increased portal resistance and related complications of endotoxemia.
Collapse
Affiliation(s)
- C R Gandhi
- Thomas E Starzl Transplantation Institute University of Pittsburgh and Veterans Administration Medical Center Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
24
|
Kuddus RH, Nalesnik MA, Subbotin VM, Rao AS, Gandhi CR. Enhanced synthesis and reduced metabolism of endothelin-1 (ET-1) by hepatocytes--an important mechanism of increased endogenous levels of ET-1 in liver cirrhosis. J Hepatol 2000; 33:725-32. [PMID: 11097479 DOI: 10.1016/s0168-8278(00)80302-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatic concentration of endothelin-1 (ET-1) is increased in human and experimental liver cirrhosis. Because of its potent actions in the liver, ET-1 has been suggested to play an important role in the pathophysiology of cirrhosis. Since hepatocytes are the major cell type to metabolize ET-1, we investigated whether their reduced capacity to degrade ET-1 is a mechanism of its elevated levels in cirrhosis. METHODS The expression of ET-1 receptors, ET-1 and endothelin converting enzyme (ECE), and metabolism of ET-1 and ECE activity were compared in hepatocytes isolated from control and carbon tetrachloride-induced cirrhotic rats. RESULTS ET-1 receptor density and receptor-mediated internalization of ET-1 were significantly increased in cirrhotic hepatocytes relative to the control cells. However, compared to control hepatocytes, metabolism of ET-1 by the cirrhotic cells was reduced significantly. Interestingly, hepatocytes were found to contain preproET-1 mRNA, ECE-1 mRNA and ET-1. PreproET-1 mRNA and ET-1 levels were increased in cirrhotic hepatocytes but their ECE mRNA and ECE activity were not altered. CONCLUSIONS These results provide the first evidence that hepatocytes have the ability to synthesize ET-1 and demonstrate that decreased metabolism and enhanced synthesis, of ET-1 in hepatocytes are an important mechanism of its elevated levels in cirrhosis.
Collapse
Affiliation(s)
- R H Kuddus
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh and Veterans Administration Medical Center, PA 15213, USA
| | | | | | | | | |
Collapse
|
25
|
Gandhi CR, Kuddus RH, Uemura T, Rao AS. Endothelin stimulates transforming growth factor-beta1 and collagen synthesis in stellate cells from control but not cirrhotic rat liver. Eur J Pharmacol 2000; 406:311-8. [PMID: 11040336 DOI: 10.1016/s0014-2999(00)00683-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interactions between hepatic stellate cells and endothelin-1 are implicated in liver fibrosis. We determined endothelin-1, its receptors and its effects on the synthesis of a fibrogenic agent transforming growth factor (TGF)-beta1 and collagen in stellate cells from control and CCl(4)-induced cirrhotic rats. The basal synthesis of endothelin-1, TGF-beta1 and collagen was much higher in cirrhotic stellate cells than in control cells. Endothelin-1 stimulated TGF-beta1 and collagen synthesis via endothelin ET(A) and endothelin ET(B) receptors, respectively, in control stellate cells, but did not elicit these effects in the cirrhotic cells despite increased density of the respective receptor subtypes in them. These results indicate that the actions of endothelin-1 on stellate cells may be an important physiological mechanism in maintenance of hepatic architecture. However, inability of endothelin-1 to stimulate TGF-beta1 and collagen synthesis in cirrhotic stellate cells suggests that it does not influence fibrogenic activity by direct action on them probably because the processes are already maximally activated.
Collapse
Affiliation(s)
- C R Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
26
|
Gandhi CR, Uemura T, Kuddus R. Endotoxin causes up-regulation of endothelin receptors in cultured hepatic stellate cells via nitric oxide-dependent and -independent mechanisms. Br J Pharmacol 2000; 131:319-27. [PMID: 10991926 PMCID: PMC1572329 DOI: 10.1038/sj.bjp.0703577] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 07/03/2000] [Accepted: 07/03/2000] [Indexed: 01/14/2023] Open
Abstract
Hepatic stellate cells (HSC) and their transformed phenotype found in the chronically injured liver play important roles in hepatic physiology and pathology. HSC produce and react to a potent contractile peptide endothelin-1 (ET-1) and also synthesize a vasorelaxant nitric oxide (NO) upon stimulation with endotoxin. However, whether endotoxin affects ET-1 system of HSC and if this is a mechanism of endotoxin-induced hepatic injury is not known. We characterized synthesis of ET-1 and NO and ET-1 receptors in cultured quiescent and transformed HSC subjected to endotoxin treatment. Endotoxin (1 - 1000 ng ml(-1)) stimulated synthesis of ET-1 and NO and up-regulated ET-1 receptors in both cell types. Inhibition of NO synthesis by N(G)-monomethyl-L-homoarginine strongly inhibited endotoxin-induced increase in ET-1 receptors in transformed HSC but produced small additional increase in quiescent HSC. Inhibition of soluble guanylyl cyclase by 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one blocked the effect of endotoxin on ET-1 receptors in both cell types. Moreover, ET-1 receptors were increased in both cell types during earlier time points (1 - 4 h) of endotoxin treatment in the absence of the stimulation of NO synthesis. These results demonstrate that endotoxin up-regulates ET-1 receptors in HSC by NO-dependent and -independent mechanisms. Such effects of endotoxin can be of importance in acute endotoxemia and during chronic injury of the liver.
Collapse
Affiliation(s)
- C R Gandhi
- Department of Surgery, University of Pittsburgh, E-1540 BST, 200 Lothrop Street, Pittsburgh, Pennsylvania, PA 15213, USA.
| | | | | |
Collapse
|