1
|
Alayoubi AM, Ijaz A, Wali A, Hashmi JA, Alharbi A, Basit S. Zellweger syndrome; identification of mutations in PEX19 and PEX26 gene in Saudi families. Ann Med 2025; 57:2447400. [PMID: 39757991 PMCID: PMC11705544 DOI: 10.1080/07853890.2024.2447400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Peroxisome biogenesis disorders (PBD) affect multiple organ systems. It is characterized by neurological dysfunction, hypotonia, ocular anomalies, craniofacial abnormalities, and absence of peroxisomes in fibroblasts. PBDs are associated with mutations in any of fourteen different PEX genes, which are involved in peroxisome biogenesis. Zellweger spectrum disorder (ZSD) is a severe form of PBD. More than 90% of the ZSD cases have mutations in PEX1, PEX6, PEX10, PEX12, and PEX26. Mutations in the PEX19 gene are rarely associated with PBD/ZSD; however, a large proportion of PEX26 mutations are associated with ZSD. METHODS We recruited two Saudi families with multiple affected individuals with dysmorphic features, including hypertelorism, large open fontanelles, generalized hypotonia, and epicanthal folds with poor reflexes since birth. Whole exome sequencing (WES) and Sanger sequencing was performed to identify the genetic cause. The frequency and pathogenicity of the identified mutations were assessed using various online bioinformatics tools. RESULTS WES identified a novel nonsense variant (c.367C > T) in the PEX19 gene in family A patients. This nonsense mutation was predicted to cause premature termination (p.Gln123*). A previously reported synonymous variant (c.228C > T; p.Gly76Gly) in PEX26 was found in a patient from family B. Both variants were segregating in an autosomal recessive manner in the respective families. CONCLUSION The present study has added a novel nonsense mutation to the mutation spectrum of PEX19, which is the second null mutation identified to date. Moreover, in this study, the importance of a synonymous exonic variant of PEX26 close to the splice donor site was explored in relation to pre-mRNA splicing and resulting disease manifestations.
Collapse
Affiliation(s)
- Abdulfatah M. Alayoubi
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| | - Ambreen Ijaz
- Department of Zoology, Sardar Bahadur Khan Women’s University Quetta, Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Jamil A. Hashmi
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| | - Azizah Alharbi
- Department of Pediatrics, Medina Maternity and Children Hospital, King Salman bin Abdul Aziz Medical City, Medina, Saudi Arabia
| | - Sulman Basit
- Department of Basic Medical Sciences, College of Medicine & Center for Genetics and Inherited Diseases, Taibah University Medina, Medina, Saudi Arabia
| |
Collapse
|
2
|
Itabashi T, Hosoba K, Morita T, Kimura S, Yamaoka K, Hirosawa M, Kobayashi D, Kishi H, Kume K, Itoh H, Kawakami H, Hashimoto K, Yamamoto T, Miyamoto T. Cholesterol ensures ciliary polycystin-2 localization to prevent polycystic kidney disease. Life Sci Alliance 2025; 8:e202403063. [PMID: 39900437 PMCID: PMC11791027 DOI: 10.26508/lsa.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
The plasma membrane covering the primary cilium has a diverse accumulation of receptors and channels. To ensure the sensor function of the cilia, the ciliary membrane has higher cholesterol content than other cell membrane regions. A peroxisomal biogenesis disorder, Zellweger syndrome, characterized by polycystic kidney, is associated with a reduced level of ciliary cholesterol in cells. However, the etiological mechanism by which ciliary cholesterol lowering causes polycystic kidney disease remains unclear. Here, we demonstrated that lowering ciliary cholesterol by either pharmacological treatment or genetic depletion of peroxisomes impairs the localization of a ciliary ion channel polycystin-2. We also generated cultured renal medullary cells and mice carrying a missense variant in the cholesterol-binding site of polycystin-2 detected in the patient database of autosomal dominant polycystic kidney disease. This missense protein showed normal channel activity but decreased localization to the ciliary membrane. The homozygous mice exhibited embryonic lethality and the ciliopathy spectrum conditions of situs inversus and polycystic kidney. Our results suggest that cholesterol controls the ciliary localization of polycystin-2 to prevent polycystic kidney disease.
Collapse
Affiliation(s)
- Takeshi Itabashi
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- https://ror.org/03cxys317 Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kosuke Hosoba
- https://ror.org/03t78wx29 Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- https://ror.org/03t78wx29 Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoka Morita
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- https://ror.org/03cxys317 Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Sotai Kimura
- https://ror.org/03cxys317 Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Anatomic Pathology, Hirosaki University Hospital, Aomori, Japan
| | - Kenji Yamaoka
- https://ror.org/03t78wx29 Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Moe Hirosawa
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- https://ror.org/03cxys317 Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Daigo Kobayashi
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroko Kishi
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Kodai Kume
- https://ror.org/03t78wx29 Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Itoh
- https://ror.org/03cxys317 Department of Molecular Pathology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hideshi Kawakami
- https://ror.org/03t78wx29 Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- https://ror.org/03t78wx29 Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- https://ror.org/03t78wx29 Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- https://ror.org/03t78wx29 Program of Mathematical and Life Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Miyamoto
- https://ror.org/03cxys317 Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- https://ror.org/03cxys317 Division of Advanced Genome Editing Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Gomez VA, Kanca O, Jangam SV, Srivastav S, Andrews JC, Wangler MF. Distinguishing PEX gene variant severity for mild, severe, and atypical peroxisome biogenesis disorders in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623590. [PMID: 39605732 PMCID: PMC11601393 DOI: 10.1101/2024.11.14.623590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peroxisomal biogenesis disorders (PBD) are autosomal recessive disorders caused by loss-of-function mutations of one of the PEX genes responsible for peroxisomal formation. Impaired peroxisome assembly causes severe multisystemic failure with patient phenotypes ranging from epilepsy, liver disease, feeding issues, biochemical abnormalities, and neurodegeneration. Variants in the same PEX gene can produce wide differences in severity, ranging from individuals with death in the first year of life to adults with milder complications. To study this strong genotype-phenotype correlation, we selected specific human PEX gene mutations and utilized Drosophila as a model organism. We generated flies replacing the coding sequence of our Pex gene of interest with a KozakGAL4 (KZ) promoter trap sequence. These cassettes simultaneously knock-out of the Pex gene and knock-in a GAL4 driver, ideal for making "humanized" flies in which the human PEX gene can replace the fly loss. We assessed Pex2 KZ and Pex16 KZ lines in lifespan, bang sensitivity, and climbing assays and confirmed that these are strong loss-of-function alleles. In parallel, we generated human reference and variant UAS-cDNA lines of PEX2 and PEX16 variants in Drosophila. We observed nearly complete phenotypic rescue of Drosophila Pex2 and Pex16 loss when human PEX2 Ref or PEX16 Ref , respectively, were expressed. We also provide evidence for an allele severity spectrum in PEX2 and PEX16 in which some missense alleles, such as PEX2 C247R , are equally severe as early truncations, such as PEX2 R119*. We also observed that alleles associated with mild PBD, such as PEX2 E55K , show variability depending on the assay but do not fully rescue. Finally, alleles associated with atypical ataxia phenotypes, such as PEX16 F332Del , can perform as well as PEX16 Ref , depending on the assay. Altogether, these Drosophila lines effectively model the range of severity of peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Vanessa A. Gomez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| | - Sharayu V. Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030
| |
Collapse
|
4
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
5
|
Choo CYL, Wu PC, Yago JI, Chung KR. The Pex3-mediated peroxisome biogenesis plays a critical role in metabolic biosynthesis, stress response, and pathogenicity in Alternaria alternata. Microbiol Res 2023; 266:127236. [DOI: 10.1016/j.micres.2022.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
6
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
7
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
8
|
Hypothyroidism Intensifies Both Canonic and the De Novo Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner. Cells 2021; 10:cells10092248. [PMID: 34571897 PMCID: PMC8472630 DOI: 10.3390/cells10092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Despite peroxisomes being important partners of mitochondria by carrying out fatty acid oxidation in brown adipocytes, no clear evidence concerning peroxisome origin and way(s) of biogenesis exists. Herein we used methimazole-induced hypothyroidism for 7, 15, and 21 days to study peroxisomal remodeling and origin in rat brown adipocytes. We found that peroxisomes originated via both canonic, and de novo pathways. Each pathway operates in euthyroid control and over the course of hypothyroidism, in a time-dependent manner. Hypothyroidism increased the peroxisomal number by 1.8-, 3.6- and 5.8-fold on days 7, 15, and 21. Peroxisomal presence, their distribution, and their degree of maturation were heterogeneous in brown adipocytes in a Harlequin-like manner, reflecting differences in their origin. The canonic pathway, through numerous dumbbell-like and “pearls on strings” structures, supported by high levels of Pex11β and Drp1, prevailed on day 7. The de novo pathway of peroxisomal biogenesis started on day 15 and became dominant by day 21. The transition of peroxisomal biogenesis from canonic to the de novo pathway was driven by increased levels of Pex19, PMP70, Pex5S, and Pex26 and characterized by numerous tubular structures. Furthermore, specific peroxisomal origin from mitochondria, regardless of thyroid status, indicates their mutual regulation in rat brown adipocytes.
Collapse
|
9
|
Wu PC, Chen YK, Yago JI, Chung KR. Peroxisomes Implicated in the Biosynthesis of Siderophores and Biotin, Cell Wall Integrity, Autophagy, and Response to Hydrogen Peroxide in the Citrus Pathogenic Fungus Alternaria alternata. Front Microbiol 2021; 12:645792. [PMID: 34262533 PMCID: PMC8273606 DOI: 10.3389/fmicb.2021.645792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Little is known about the roles of peroxisomes in the necrotrophic fungal plant pathogens. In the present study, a Pex6 gene encoding an ATPase-associated protein was characterized by analysis of functional mutations in the tangerine pathotype of Alternaria alternata, which produces a host-selective toxin. Peroxisomes were observed in fungal cells by expressing a mCherry fluorescent protein tagging with conserved tripeptides serine-lysing-leucine and transmission electron microscopy. The results indicated that Pex6 plays no roles in peroxisomal biogenesis but impacts protein import into peroxisomes. The number of peroxisomes was affected by nutritional conditions and H2O2, and their degradation was mediated by an autophagy-related machinery termed pexophagy. Pex6 was shown to be required for the formation of Woronin bodies, the biosynthesis of biotin, siderophores, and toxin, the uptake and accumulation of H2O2, growth, and virulence, as well as the Slt2 MAP kinase-mediated maintenance of cell wall integrity. Adding biotin, oleate, and iron in combination fully restored the growth of the pex6-deficient mutant (Δpex6), but failed to restore Δpex6 virulence to citrus. Adding purified toxin could only partially restore Δpex6 virulence even in the presence of biotin, oleate, and iron. Sensitivity assays revealed that Pex6 plays no roles in resistance to H2O2 and superoxide, but plays a negative role in resistance to 2-chloro-5-hydroxypyridine (a hydroxyl radical-generating compound), eosin Y and rose Bengal (singlet oxygen-generating compounds), and 2,3,5-triiodobenzoic acid (an auxin transport inhibitor). The diverse functions of Pex6 underscore the importance of peroxisomes in physiology, pathogenesis, and development in A. alternata.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Jonar I. Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Zhengqi Q, Zezhi G, Lei J, He Q, Jinyao P, Ying A. Prognostic role of PHYH for overall survival (OS) in clear cell renal cell carcinoma (ccRCC). Eur J Med Res 2021; 26:9. [PMID: 33468235 PMCID: PMC7816304 DOI: 10.1186/s40001-021-00482-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
This study attempts to evaluate the prognostic role of PHYH for overall survival (OS) in clear cell renal cell carcinoma (ccRCC) by means of publicly available data from The Cancer Genome Atlas (TCGA). Clinical pathologic features and PHYH expression were downloaded from the TCGA database and relationships between them were analyzed by univariate and multivariate Cox regression analyses. Gene Set Enrichment Analysis (GSEA) and gene–gene interactions were also performed between tissues with different PHYH expression levels. PHYH expression levels were significantly lower in patient with ccRCC compared with normal tissues (p = 1.156e−19). Kaplan–Meier survival analysis showed that high expression of PHYH had a better prognosis than low expression (p = 9e−05). Moreover, PHYH expression was also significantly associated with high grade (G2-4, p = 0.025), high stage (StageIII & IV, p = 5.604e−05), and high level of stage_T (T3-4, p = 4.373e−05). Univariate and multivariate Cox regression analyses indicated that PHYH could be acted as an independent prognostic factor (p < 0.05). Nomogram including clinical pathologic features and PHYH expression were also provided. GSEA revealed that butanoate metabolism, histidine metabolism, propanoate metabolism, pyruvate metabolism, tryptophan metabolism, PPAR signalling pathway, and renin–angiotensin system were differentially enriched in PHYH high-expression phenotype. ICGC database was utilized to verify the expression level and survival benefit of PHYH (both p < 0.05). We suspect that elevated PHYH expression may be served as a potential prognostic molecular marker of better survival in ccRCC. Besides, alpha-oxidation was closely regulated by PHYH, and PPAR signalling, pyruvate metabolism, butanoate metabolism, and RAS might be the key pathways regulated by PHYH in CCRC.
Collapse
Affiliation(s)
- Qiu Zhengqi
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Guo Zezhi
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jiang Lei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qiu He
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Pan Jinyao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ao Ying
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
11
|
Chu KY, Mellet N, Thai LM, Meikle PJ, Biden TJ. Short-term inhibition of autophagy benefits pancreatic β-cells by augmenting ether lipids and peroxisomal function, and by countering depletion of n-3 polyunsaturated fatty acids after fat-feeding. Mol Metab 2020; 40:101023. [PMID: 32504884 PMCID: PMC7322075 DOI: 10.1016/j.molmet.2020.101023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Investigations of autophagy in β-cells have usually focused on its homeostatic function. More dynamic roles in inhibiting glucose-stimulated insulin secretion (GSIS), potentially involving remodelling of cellular lipids, have been suggested from in vitro studies but not evaluated in vivo. METHODS We employed temporally-regulated deletion of the essential autophagy gene, Atg7, in β-cells. Mice were fed chow or high-fat diets (HFD), in conjunction with deletion of Atg7 for the last 3 weeks (short-term model) or 9 weeks (long-term model). Standard in vivo metabolic phenotyping was undertaken, and 450 lipid species in islets quantified ex vivo using mass spectroscopy (MS). MIN6 cells were also employed for lipidomics and secretory interventions. RESULTS β-cell function was impaired by inhibiting autophagy in the longer-term, but conversely improved by 3-week deletion of Atg7, specifically under HFD conditions. This was accompanied by augmented GSIS ex vivo. Surprisingly, the HFD had minimal effect on sphingolipid and neutral lipid species, but modulated >100 phospholipids and ether lipids, and markedly shifted the profile of polyunsaturated fatty acid (PUFA) sidechains from n3 to n6 forms. These changes were partially countered by Atg7 deletion, consistent with an accompanying upregulation of the PUFA elongase enzyme, Elovl5. Loss of Atg7 separately augmented plasmalogens and alkyl lipids, in association with increased expression of Lonp2, a peroxisomal chaperone/protease that facilitates maturation of ether lipid synthetic enzymes. Depletion of PUFAs and ether lipids was also observed in MIN6 cells chronically exposed to oleate (more so than palmitate). GSIS was inhibited by knocking down Dhrs7b, which encodes an enzyme of peroxisomal ether lipid synthesis. Conversely, impaired GSIS due to oleate pre-treatment was selectively reverted by Dhrs7b overexpression. CONCLUSIONS A detrimental increase in n6:n3 PUFA ratios in ether lipids and phospholipids is revealed as a major response of β-cells to high-fat feeding. This is partially reversed by short-term inhibition of autophagy, which results in compensatory changes in peroxisomal lipid metabolism. The short-term phenotype is linked to improved GSIS, in contrast to the impairment seen with the longer-term inhibition of autophagy. The balance between these positive and negative inputs could help determine whether β-cells adapt or fail in response to obesity.
Collapse
Affiliation(s)
- Kwan Yi Chu
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Natalie Mellet
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia
| | - Le May Thai
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Vic, 3004, Australia.
| | - Trevor J Biden
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Stamatakou E, Wróbel L, Hill SM, Puri C, Son SM, Fujimaki M, Zhu Y, Siddiqi F, Fernandez-Estevez M, Manni MM, Park SJ, Villeneuve J, Rubinsztein DC. Mendelian neurodegenerative disease genes involved in autophagy. Cell Discov 2020; 6:24. [PMID: 32377374 PMCID: PMC7198619 DOI: 10.1038/s41421-020-0158-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Lidia Wróbel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sandra Malmgren Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Sung Min Son
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Motoki Fujimaki
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Ye Zhu
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Farah Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marian Fernandez-Estevez
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Marco M. Manni
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - So Jung Park
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - Julien Villeneuve
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| | - David Chaim Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, CB2 0XY UK
- UK Dementia Research Institute, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
13
|
Piao L, Dorotea D, Jiang S, Koh EH, Oh GT, Ha H. Impaired Peroxisomal Fitness in Obese Mice, a Vicious Cycle Exacerbating Adipocyte Dysfunction via Oxidative Stress. Antioxid Redox Signal 2019; 31:1339-1351. [PMID: 31530170 PMCID: PMC6859694 DOI: 10.1089/ars.2018.7614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims: Peroxisome is a critical organelle for fatty acid oxidation (FAO) and metabolism of reactive oxygen species (ROS). Increased oxidative stress in adipose tissue contributes to the development of insulin resistance and metabolic syndrome in obesity. This study aimed to investigate the role of peroxisomal fitness in maintaining adipocyte function, which has been under-rated in the obesity research area. Results: Reduced peroxisomal gene expressions in white adipose tissue (WAT) of obese mice suggested a close correlation between peroxisomes and obesity. Peroxisomal biogenesis factor 5 siRNA increased cellular ROS and inflammatory mediators in 3T3-L1 adipocytes. On the contrary, hydrogen peroxide or tumor necrosis factor-α treatment significantly decreased biogenesis- and function-related peroxisomal proteins, suggesting a positive feedback loop of ROS/inflammation and peroxisomal dysfunction. Correspondingly, catalase (a major peroxisomal antioxidant)-knockout mice fed with high-fat diet (HFD) exhibited suppressed peroxisomal proteins along with increased oxidative stress and accelerated obesity. In response to fenofibrate (a peroxisomal proliferator) treatment, WAT of HFD-fed wild-type mice showed not only increases in peroxisomal biogenesis and FAO but also attenuated features of adipocyte dysfunction and obesity. However, these results were not observed in peroxisome proliferator-activated receptor-alpha null obese mice. Innovation: Impaired peroxisomal fitness enhanced oxidative stress and inflammation in adipocytes, which exacerbates obesity. Conclusion: Adipose tissue peroxisomal homeostasis plays an important role in attenuating the features of obesity, and it can be a potential therapeutic target of obesity.
Collapse
Affiliation(s)
- Lingjuan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.,Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Debra Dorotea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Hee Koh
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Wang L, Zhang L, Liu C, Sun S, Liu A, Liang Y, Yu J. The roles of FgPEX2 and FgPEX12 in virulence and lipid metabolism in Fusarium graminearum. Fungal Genet Biol 2019; 135:103288. [PMID: 31704369 DOI: 10.1016/j.fgb.2019.103288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Fusarium head blight (FHB) is a wheat disease with a worldwide prevalence, caused by Fusarium graminearum. Peroxisomes are ubiquitous in eukaryotic cells and are involved in various biochemical phenomena. FgPEX2 and FgPEX12 encode RING-finger peroxins PEX2 and PEX12 in F. graminearum. This study aimed to functionally characterize FgPEX2 and FgPEX12 in F. graminearum. We constructed deletion mutants of FgPEX2 and FgPEX12 via homologous recombination. The ΔPEX2 and ΔPEX12 mutants displayed defects in sexual and asexual development, virulence, cell wall integrity (CWI), and lipid metabolism. Deletion of FgPEX2 and FgPEX12 significantly decreased deoxynivalenol production. Furthermore, fluorescence microscopic analysis of the subcellular localization of GFP-PMP70 and GFP-HEX1 revealed that FgPEX2 and FgPEX12 maintain Woronin bodies. These results show that FgPEX2 and FgPEX12 are required for growth, conidiation, virulence, cell wall integrity, and lipid metabolism in F. graminearum and do not influence their peroxisomes.
Collapse
Affiliation(s)
- Lina Wang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjie Liu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Shaohua Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Aixin Liu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jinfeng Yu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
15
|
Paul S, Lancaster GI, Meikle PJ. WITHDRAWN: Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019:100993. [PMID: 31442528 DOI: 10.1016/j.plipres.2019.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, VIC 3800, Australia
| |
Collapse
|
16
|
Joshi AS, Cohen S. Lipid Droplet and Peroxisome Biogenesis: Do They Go Hand-in-Hand? Front Cell Dev Biol 2019; 7:92. [PMID: 31214588 PMCID: PMC6554619 DOI: 10.3389/fcell.2019.00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
All eukaryotic cells contain membrane bound structures called organelles. Each organelle has specific composition and function. Some of the organelles are generated de novo in a cell. The endoplasmic reticulum (ER) is a major contributor of proteins and membranes for most of the organelles. In this mini review, we discuss de novo biogenesis of two such organelles, peroxisomes and lipid droplets (LDs), that are formed in the ER membrane. LDs and peroxisomes are highly conserved ubiquitously present membrane-bound organelles. Both these organelles play vital roles in lipid metabolism and human health. Here, we discuss the current understanding of de novo biogenesis of LDs and peroxisomes, recent advances on how biogenesis of both the organelles might be linked, physical interaction between LDs and peroxisomes and other organelles, and their physiological importance.
Collapse
Affiliation(s)
- Amit S. Joshi
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah Cohen
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
18
|
Tanaka AJ, Okumoto K, Tamura S, Abe Y, Hirsch Y, Deng L, Ekstein J, Chung WK, Fujiki Y. A newly identified mutation in the PEX26 gene is associated with a milder form of Zellweger spectrum disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003483. [PMID: 30446579 PMCID: PMC6371744 DOI: 10.1101/mcs.a003483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Using clinical exome sequencing (ES), we identified an autosomal recessive missense variant, c.153C>A (p.F51L), in the peroxisome biogenesis factor 26 gene (PEX26) in a 19-yr-old female of Ashkenazi Jewish descent who was referred for moderate to severe hearing loss. The proband and three affected siblings are all homozygous for the c.153C>A variant. Skin fibroblasts from this patient show normal morphology in immunostaining of matrix proteins, although the level of catalase was elevated. Import rate of matrix proteins was significantly decreased in the patient-derived fibroblasts. Binding of Pex26-F51L to the AAA ATPase peroxins, Pex1 and Pex6, is severely impaired and affects peroxisome assembly. Moreover, Pex26 in the patient's fibroblasts is reduced to ∼30% of the control, suggesting that Pex26-F51L is unstable in cells. In the patient's fibroblasts, peroxisome-targeting signal 1 (PTS1) proteins, PTS2 protein 3-ketoacyl-CoA thiolase, and catalase are present in a punctate staining pattern at 37°C and in a diffuse pattern at 42°C, suggesting that these matrix proteins are not imported to peroxisomes in a temperature-sensitive manner. Analysis of peroxisomal metabolism in the patient's fibroblasts showed that the level of docosahexaenoic acid (DHA) (C22:6n-3) in ether phospholipids is decreased, whereas other lipid metabolism, including peroxisomal fatty acid β-oxidation, is normal. Collectively, the functional data support the mild phenotype of nonsyndromic hearing loss in patients harboring the F51L variant in PEX26.
Collapse
Affiliation(s)
- Akemi J Tanaka
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiko Tamura
- Graduate School of Systems Life Sciences, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Arts and Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoel Hirsch
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Joseph Ekstein
- Dor Yeshorim, The Committee for Prevention of Jewish Genetic Diseases, Brooklyn, New York 11211, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10019, USA
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Cichocki BA, Krumpe K, Vitali DG, Rapaport D. Pex19 is involved in importing dually targeted tail-anchored proteins to both mitochondria and peroxisomes. Traffic 2018; 19:770-785. [DOI: 10.1111/tra.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Bogdan A. Cichocki
- Interfaculty Institute of Biochemistry; University of Tübingen; Tübingen Germany
| | - Katrin Krumpe
- Interfaculty Institute of Biochemistry; University of Tübingen; Tübingen Germany
| | - Daniela G. Vitali
- Interfaculty Institute of Biochemistry; University of Tübingen; Tübingen Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry; University of Tübingen; Tübingen Germany
| |
Collapse
|
20
|
Moog D, Przyborski JM, Maier UG. Genomic and Proteomic Evidence for the Presence of a Peroxisome in the Apicomplexan Parasite Toxoplasma gondii and Other Coccidia. Genome Biol Evol 2018; 9:3108-3121. [PMID: 29126146 PMCID: PMC5737649 DOI: 10.1093/gbe/evx231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 02/06/2023] Open
Abstract
Apicomplexans are successful parasites responsible for severe human diseases including malaria, toxoplasmosis, and cryptosporidiosis. For many years, it has been discussed whether these parasites are in possession of peroxisomes, highly variable eukaryotic organelles usually involved in fatty acid degradation and cellular detoxification. Conflicting experimental data has been published. With the age of genomics, ever more high quality apicomplexan genomes have become available, that now allow a new assessment of the dispute. Here, we provide bioinformatic evidence for the presence of peroxisomes in Toxoplasma gondii and other coccidians. For these organisms, we have identified a complete set of peroxins, probably responsible for peroxisome biogenesis, division, and protein import. Moreover, via a global screening for peroxisomal targeting signals, we were able to show that a complete set of fatty acid β-oxidation enzymes is equipped with either PTS1 or PTS2 sequences, most likely mediating transport of these factors to putative peroxisomes in all investigated Coccidia. Our results further imply a life cycle stage-specific presence of peroxisomes in T. gondii and suggest several independent losses of peroxisomes during the evolution of apicomplexan parasites.
Collapse
Affiliation(s)
- Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Jude M Przyborski
- Laboratory for Parasitology, Philipps University Marburg, Germany.,Centre for Infectious Diseases, Parasitology, Heidelberg University Medical School, INF324, Heidelberg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Germany.,LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University, Marburg, Germany
| |
Collapse
|
21
|
Cho DH, Kim YS, Jo DS, Choe SK, Jo EK. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Mol Cells 2018; 41:55-64. [PMID: 29370694 PMCID: PMC5792714 DOI: 10.14348/molcells.2018.2245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.
Collapse
Affiliation(s)
- Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Yi Sak Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104,
Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan 54538,
Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| |
Collapse
|
22
|
Abstract
Peroxisome proliferation involves signal recognition and computation by molecular networks that direct molecular events of gene expression, metabolism, membrane biogenesis, organelle proliferation, protein import, and organelle inheritance. Peroxisome biogenesis in yeast has served as a model system for exploring the regulatory networks controlling this process. Yeast is an outstanding model system to develop tools and approaches to study molecular networks and cellular responses and because the mechanisms of peroxisome biogenesis and key aspects of the transcriptional regulatory networks are remarkably conserved from yeast to humans. In this chapter, we focus on the complex regulatory networks that respond to environmental cues leading to peroxisome assembly and the molecular events of organelle assembly. Ultimately, understanding the mechanisms of the entire peroxisome biogenesis program holds promise for predictive modeling approaches and for guiding rational intervention strategies that could treat human conditions associated with peroxisome function.
Collapse
|
23
|
Rahim RS, St John JA, Crane DI, Meedeniya ACB. Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci 2017; 88:16-32. [PMID: 29187321 DOI: 10.1016/j.mcn.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/04/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Zellweger syndrome (ZS), a neonatal lethal disorder arising from defective peroxisome biogenesis, features profound neuroanatomical abnormalities and brain dysfunction. Here we used mice with brain-restricted inactivation of the peroxisome biogenesis gene PEX13 to model the pathophysiological features of ZS, and determine the impact of peroxisome dysfunction on neurogenesis and cell maturation in ZS. In the embryonic and postnatal PEX13 mutant brain, we demonstrate key regions with altered brain anatomy, including enlarged lateral ventricles and aberrant cortical, hippocampal and hypothalamic organization. To characterize the underlying mechanisms, we show a significant reduction in proliferation, migration, differentiation, and maturation of neural progenitors in embryonic E12.5 through to P3 animals. An increasing reactive gliosis in the PEX13 mutant brain started at E14.5 in association with the pathology. Together with impaired neurogenesis and associated gliosis, our data demonstrate increased cell death contributing to the hallmark brain anatomy of ZS. We provide unique data where impaired neurogenesis and migration are shown as critical events underlying the neuropathology and altered brain function of mice with peroxisome deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Australia; Menzies Health Institute Queensland, Griffith University, Qld, Australia
| | - Denis I Crane
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia.
| | - Adrian C B Meedeniya
- Menzies Health Institute Queensland, Griffith University, Qld, Australia; Interdisciplinary Centre for Innovations in Biotechnology & Neurosciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
24
|
Schrader M, Pellegrini L. The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix. Cell Death Differ 2017; 24:1148-1152. [PMID: 28409773 PMCID: PMC5520164 DOI: 10.1038/cdd.2017.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 01/03/2023] Open
Abstract
A recent report from the Laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells. Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile to plasmalogen synthesis, reduction of peroxides, and the oxidation of very-long-chain fatty acids. Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes. However, unlike mitochondria, peroxisomes do not fuse; further, and perhaps most importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum. De novo peroxisome biogenesis has been extensively studied in yeast, with a major focus on the role of the ER in this process; however, in the mammalian system this field is much less explored. By exploiting patient cells lacking mature peroxisomes, the McBride laboratory now assigns a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature pre-peroxisomes occurs through the fusion of Pex3-/Pex14-containing mitochondria-derived vesicles with Pex16-containing ER-derived vesicles.
Collapse
Affiliation(s)
| | - Luca Pellegrini
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Universitè Laval, Quebec, QC, Canada
| |
Collapse
|
25
|
Wangler MF, Chao YH, Bayat V, Giagtzoglou N, Shinde AB, Putluri N, Coarfa C, Donti T, Graham BH, Faust JE, McNew JA, Moser A, Sardiello M, Baes M, Bellen HJ. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. PLoS Genet 2017; 13:e1006825. [PMID: 28640802 PMCID: PMC5480855 DOI: 10.1371/journal.pgen.1006825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD.
Collapse
Affiliation(s)
- Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Texas Children’s Hospital, Houston TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
| | - Yu-Hsin Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, BCM, Houston, TX, United States of America
| | - Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Abhijit Babaji Shinde
- KU Leuven, Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, BCM, Houston, TX, United States of America
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, BCM, Houston, TX, United States of America
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
| | - Joseph E. Faust
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - James A. McNew
- Department of BioSciences, Rice University, Houston TX, United States of America
| | - Ann Moser
- Kennedy Krieger Institute, Baltimore MD, United States of America
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
| | - Myriam Baes
- KU Leuven, Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, United States of America
- Texas Children’s Hospital, Houston TX, United States of America
- Program in Developmental Biology, BCM, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, TX, United States of America
- Howard Hughes Medical Institute, Houston, TX, United States of America
- Department of Neuroscience, BCM, Houston, TX, United States of America
| |
Collapse
|
26
|
Abstract
In mammalian cells several hundred peroxisomes are maintained by a balance between the biogenesis and turnover by peroxisome homeostasis. Pexophagy, a form of autophagy specific for peroxisomes, is the main pathway for peroxisome degradation, but molecular mechanisms of mammalian pexophagy are largely unknown. This is due to the lack of well-established pexophagy-inducing conditions in mammalian cells. Recently, several conditions that induce pexophagy were described for mammalian cells, involving ubiquitin and adaptor proteins of autophagy. In this chapter, we describe the protocol for Pex3-induced pexophagy, the more readable and highly inducible pexophagy condition in mammalian cells.
Collapse
|
27
|
Deb R, Nagotu S. Versatility of peroxisomes: An evolving concept. Tissue Cell 2017; 49:209-226. [DOI: 10.1016/j.tice.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
|
28
|
|
29
|
Peroxisomal Membrane and Matrix Protein Import Using a Semi-Intact Mammalian Cell System. Methods Mol Biol 2017; 1595:213-219. [PMID: 28409465 DOI: 10.1007/978-1-4939-6937-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxisomes are essential intracellular organelles that catalyze a number of essential metabolic pathways including β-oxidation of very long chain fatty acids, synthesis of plasmalogen, bile acids, and generation and degradation of hydrogen peroxide. These peroxisomal functions are accomplished by strictly and spatiotemporally regulated compartmentalization of the enzymes catalyzing these reactions. Defects in peroxisomal protein import result in inherited peroxisome biogenesis disorders in humans. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes and transported to peroxisomes in a manner dependent on their specific targeting signals and their receptors. Peroxisomal protein import can be analyzed using a semi-intact assay system, in which targeting efficiency is readily monitored by immunofluorescence microscopy. Furthermore, cytosolic factors required for peroxisomal protein import can be manipulated, suggesting that the semi-intact system is a useful and convenient system to uncover the molecular mechanisms of peroxisomal protein import.
Collapse
|
30
|
Rahim RS, Chen M, Nourse CC, Meedeniya ACB, Crane DI. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 2016; 334:201-213. [PMID: 27514574 DOI: 10.1016/j.neuroscience.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Abstract
Zellweger syndrome (ZS) is a peroxisome biogenesis disorder that involves significant neuropathology, the molecular basis of which is still poorly understood. Using a mouse model of ZS with brain-restricted deficiency of the peroxisome biogenesis protein PEX13, we demonstrated an expanded and morphologically modified brain mitochondrial population. Cultured fibroblasts from PEX13-deficient mouse embryo displayed similar changes, as well as increased levels of mitochondrial superoxide and membrane depolarization; this phenotype was rescued by antioxidant treatment. Significant oxidative damage to neurons in brain was indicated by products of lipid and DNA oxidation. Similar overall changes were observed for glial cells. In toto, these findings suggest that mitochondrial oxidative stress and aberrant mitochondrial dynamics are associated with the neuropathology arising from PEX13 deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Mo Chen
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - C Cathrin Nourse
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia
| | - Adrian C B Meedeniya
- Griffith Health Institute, School of Medical Science, Griffith University, Qld, Australia
| | - Denis I Crane
- Eskitis Institute for Drug Discovery, and School of Natural Sciences, Griffith University, Qld, Australia.
| |
Collapse
|
31
|
Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:984-91. [DOI: 10.1016/j.bbamcr.2015.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
|
32
|
Lüsebrink N, Porto L, Waterham HR, Ferdinandusse S, Rosewich H, Kurlemann G, Kieslich M. Absence of biochemical evidence at an early age delays diagnosis in a patient with a clinically severe peroxisomal biogenesis disorder. Eur J Paediatr Neurol 2016; 20:331-335. [PMID: 26700162 DOI: 10.1016/j.ejpn.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
Analysis of the plasma levels of very long chain fatty acids (VLCFA) is a primary screening method for peroxisomal disorders and usually identifies severe peroxisomal biogenesis defects reliably. We report a patient presenting with typical facial stigmata, a treatment resistant seizure disorder and polymicrogyria, whose plasma VLCFA levels were within normal limits until the age of 18 months. Only thereafter an elevation was found. Subsequent enzymatic and molecular genetic analysis revealed compound heterozygous mutations in the PEX6 gene. In conclusion, normal VLCFA levels do not necessarily exclude global peroxisomal biogenesis defects and the analysis should be repeated subsequently. Persisting clinical suspicion justifies further enzymatic and molecular evaluation.
Collapse
Affiliation(s)
- Natalia Lüsebrink
- Department of Pediatric Neurology, Goethe University Hospital, Frankfurt, Germany.
| | - Luciana Porto
- Institute for Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hendrik Rosewich
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | - Gerd Kurlemann
- Department of Pediatric Neurology, University Hospital Muenster, Germany
| | - Matthias Kieslich
- Department of Pediatric Neurology, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
33
|
Pomatto LCD, Raynes R, Davies KJA. The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 2016; 92:739-753. [PMID: 26852705 DOI: 10.1111/brv.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long- and branched-chain fatty acids for subsequent β-oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross-linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging-related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging-related diseases indicating that peroxisome maintenance is a critical component of 'healthy aging'. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age-dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Rachel Raynes
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| |
Collapse
|
34
|
Cui P, Liu H, Islam F, Li L, Farooq MA, Ruan S, Zhou W. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa. FRONTIERS IN PLANT SCIENCE 2016; 7:1357. [PMID: 27695459 PMCID: PMC5024708 DOI: 10.3389/fpls.2016.01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/25/2016] [Indexed: 05/19/2023]
Abstract
Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
Collapse
Affiliation(s)
- Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Hongbo Liu
- College of Agriculture and Food Science, Zhejiang A & F UniversityLin’an, China
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Lan Li
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Muhammad A. Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology and Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang UniversityHangzhou, China
- *Correspondence: Weijun Zhou, Songlin Ruan,
| |
Collapse
|
35
|
FUJIKI Y. Peroxisome biogenesis and human peroxisome-deficiency disorders. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:463-477. [PMID: 27941306 PMCID: PMC5328784 DOI: 10.2183/pjab.92.463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Peroxisome is a single-membrane-bounded ubiquitous organelle containing a hundred different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders (PBDs) including Zellweger syndrome, more than a dozen different complementation groups of Chinese hamster ovary (CHO) cell mutants impaired in peroxisome biogenesis are isolated as a model experimental system. By taking advantage of rapid functional complementation assay of the CHO cell mutants, successful cloning of PEX genes encoding peroxins required for peroxisome assembly invaluably contributed to the accomplishment of cloning of pathogenic genes responsible for PBDs. Peroxins are divided into three groups: 1) peroxins including Pex3p, Pex16p and Pex19p, are responsible for peroxisome membrane biogenesis via Pex19p- and Pex3p-dependent class I and Pex19p- and Pex16p-dependent class II pathways; 2) peroxins that function in matrix protein import; 3) those such as Pex11pβ are involved in peroxisome division where DLP1, Mff, and Fis1 coordinately function.
Collapse
Affiliation(s)
- Yukio FUJIKI
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Correspondence should be addressed: Y. Fujiki, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
36
|
Gao Y, Li MY, Zhao J, Zhang YC, Xie QJ, Chen DH. Genome-wide analysis of RING finger proteins in the smallest free-living photosynthetic eukaryote Ostreococus tauri. Mar Genomics 2015; 26:51-61. [PMID: 26751716 DOI: 10.1016/j.margen.2015.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
RING finger proteins and ubiquitination marks are widely involved in diverse aspects of growth and development, biological processes, and stress or environmental responses. As the smallest free-living photosynthetic eukaryote known so far, the green alga Ostreococus tauri has become an excellent model for investigating the origin of different gene families in the green lineage. Here, 65 RING domains in 65 predicted proteins were identified from O. tauri and on the basis of one or more substitutions at the metal ligand positions and spacing between them they were divided into eight canonical or modified types (RING-CH, -H2, -v, -C2, -C3HCHC2, -C2HC5, -C3GC3S, and -C2SHC4), in which the latter four were newly identified and might represent the intermediate states between RING domain and other similar domains, respectively. RING finger proteins were classified into eight classes based on the presence of additional domains, including RING-Only, -Plus, -C3H1, -PHD, -WD40, -PEX, -TM, and -DEXDc classes. These RING family genes usually lack introns and are distributed over 17 chromosomes. In addition, 29 RING-finger proteins in O. tauri share different degrees of homology with those in the model flowering plant Arabidopsis, indicating they might be necessary for the basic survival of free-living eukaryotes. Therefore, our results provide new insight into the general classification and evolutionary conservation of RING domain-containing proteins in O. tauri.
Collapse
Affiliation(s)
- Yan Gao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Ming-Yi Li
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Yan-Cui Zhang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Qiu-Jiao Xie
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
37
|
Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells. Mol Cell Neurosci 2015; 71:56-65. [PMID: 26689905 DOI: 10.1016/j.mcn.2015.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023] Open
Abstract
Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.
Collapse
|
38
|
Yang JS, Lee JY, Moon MH. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation. Anal Chem 2015; 87:6342-8. [DOI: 10.1021/acs.analchem.5b01207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Joon Seon Yang
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| | - Ju Yong Lee
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 120-749 South Korea
| |
Collapse
|
39
|
Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S. Peroxisome biogenesis in mammalian cells. Front Physiol 2014; 5:307. [PMID: 25177298 PMCID: PMC4133648 DOI: 10.3389/fphys.2014.00307] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022] Open
Abstract
To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated and established as a model research system. Successful gene-cloning studies by a forward genetic approach utilized a rapid functional complementation assay of CHO cell mutants led to isolation of human peroxin (PEX) genes. Search for pathogenic genes responsible for PBDs of all 14 CGs is now completed together with the homology search by screening the human expressed sequence tag database using yeast PEX genes. Peroxins are divided into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately function. In membrane assembly, Pex19p forms complexes in the cytosol with newly synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In matrix protein import, newly synthesized proteins harboring peroxisome targeting signal type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p and Pex13p and then translocates to a 500-kDa RING translocation complex. At the terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where Cys-ubiquitination of Pex5p is essential for the Pex5p exit.
Collapse
Affiliation(s)
- Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| | - Shigehiko Tamura
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School Fukuoka, Japan
| |
Collapse
|
40
|
Association between the intrinsically disordered protein PEX19 and PEX3. PLoS One 2014; 9:e103101. [PMID: 25062251 PMCID: PMC4111287 DOI: 10.1371/journal.pone.0103101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
In peroxisomes, peroxins (PEXs) 3 and 19 are the principal protein components of the machinery required for early peroxisomal biogenesis. For further insight into the interaction of PEX3 and PEX19, we used hydrogen exchange mass spectrometry to monitor conformational changes during complex formation between PEX3 and PEX19 in vitro. Our data showed that PEX19 remained highly flexible during interaction with PEX3. However, we could detect three changes, one each in the N-and C-terminus along with a small stretch in the middle of PEX19 (F64-L74) which became shielded from hydrogen exchange when interacting with PEX3. PEX3 became more protected from hydrogen exchange in the binding groove for PEX19 with only small changes elsewhere. Most likely the N-terminus of PEX19 initiates the binding to PEX3, and then subtle conformational changes in PEX3 affect the surface of the PEX3 molecule. PEX19 in turn, is stabilized by folding of a short helix and its C-terminal folding core permitting PEX19 to bind to PEX3 with higher affinity than just the N-terminal interaction allows. Thus within the cell, PEX3 is stabilized by PEX19 preventing PEX3 aggregation.
Collapse
|
41
|
Yamashita SI, Abe K, Tatemichi Y, Fujiki Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 2014; 10:1549-64. [PMID: 25007327 DOI: 10.4161/auto.29329] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes are degraded by a selective type of autophagy known as pexophagy. Several different types of pexophagy have been reported in mammalian cells. However, the mechanisms underlying how peroxisomes are recognized by autophagy-related machinery remain elusive. PEX3 is a peroxisomal membrane protein (PMP) that functions in the import of PMPs into the peroxisomal membrane and has been shown to interact with pexophagic receptor proteins during pexophagy in yeast. Thus, PEX3 is important not only for peroxisome biogenesis, but also for peroxisome degradation. However, whether PEX3 is involved in the degradation of peroxisomes in mammalian cells is unclear. Here, we report that high levels of PEX3 expression induce pexophagy. In PEX3-loaded cells, peroxisomes are ubiquitinated, clustered, and degraded in lysosomes. Peroxisome targeting of PEX3 is essential for the initial step of this degradation pathway. The degradation of peroxisomes is inhibited by treatment with autophagy inhibitors or siRNA against NBR1, which encodes an autophagic receptor protein. These results indicate that ubiquitin- and NBR1-mediated pexophagy is induced by increased expression of PEX3 in mammalian cells. In addition, another autophagic receptor protein, SQSTM1/p62, is required only for the clustering of peroxisomes. Expression of a PEX3 mutant with substitution of all lysine and cysteine residues by arginine and alanine, respectively, also induces peroxisome ubiquitination and degradation, hence suggesting that ubiquitination of PEX3 is dispensable for pexophagy and an endogenous, unidentified peroxisomal protein is ubiquitinated on the peroxisomal membrane.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Kakeru Abe
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yuki Tatemichi
- Graduate School of Systems Life Sciences; Kyushu University Graduate School; Fukuoka, Japan
| | - Yukio Fujiki
- Department of Biology; Faculty of Sciences; Kyushu University Graduate School; Fukuoka, Japan
| |
Collapse
|
42
|
Central serotonergic neuron deficiency in a mouse model of Zellweger syndrome. Neuroscience 2014; 274:229-41. [PMID: 24881576 DOI: 10.1016/j.neuroscience.2014.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022]
Abstract
Zellweger syndrome (ZS) is a severe peroxisomal disorder caused by mutations in peroxisome biogenesis, or PEX, genes. A central hallmark of ZS is abnormal neuronal migration and neurodegeneration, which manifests as widespread neurological dysfunction. The molecular basis of ZS neuropathology is not well understood. Here we present findings using a mouse model of ZS neuropathology with conditional brain inactivation of the PEX13 gene. We demonstrate that PEX13 brain mutants display changes that reflect an abnormal serotonergic system - decreased levels of tryptophan hydroxylase-2, the rate-limiting enzyme of serotonin (5-hydroxytryptamine, 5-HT) synthesis, dysmorphic 5-HT-positive neurons, abnormal distribution of 5-HT neurons, and dystrophic serotonergic axons. The raphe nuclei region of PEX13 brain mutants also display increased levels of apoptotic cells and reactive, inflammatory gliosis. Given the role of the serotonergic system in brain development and motor control, dysfunction of this system would account in part for the observed neurological changes of PEX13 brain mutants.
Collapse
|
43
|
Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 2014; 69:1-8. [DOI: 10.1016/j.neuint.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
44
|
Liegel RP, Ronchetti A, Sidjanin DJ. Alkylglycerone phosphate synthase (AGPS) deficient mice: models for rhizomelic chondrodysplasia punctate type 3 (RCDP3) malformation syndrome. Mol Genet Metab Rep 2014; 1:299-311. [PMID: 25197626 PMCID: PMC4151185 DOI: 10.1016/j.ymgmr.2014.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a genetically heterogeneous autosomal recessive syndrome characterized by congenital cataracts, shortening of the proximal limbs, neurological abnormalities, seizures, growth delays, and severe intellectual disability. Most RCDP children die in the first decade of life due to respiratory complications. Mutations in alkylglycerone phosphate synthase (AGPS) cause RCDP type 3 (RCDP3). We've previously established that cataracts and male infertility in blind sterile 2 (bs2) mice are caused by a spontaneous hypomorphic mutation in Agps. As a part of this study, we set out to further explore the bs2 phenotypes and how they correlate to the clinical presentations of RCDP3 patients. Our results show that ∼50% bs2 mice die embryonically and surviving bs2 mice exhibit growth delays that they overcome by adulthood. The X-ray analysis of adult bs2 mice revealed significant humeral, but not femoral shortening. Clinical and histological eye evaluations revealed that bs2 lenses undergo normal development with first opacities developing at P21 that by P28 rapidly progress to mature cataracts. Evaluation of testes determined that infertility in bs2 mice is due to the aberrant formation of multicellular cellular clusters that undergo apoptosis. Given that the bs2 locus is a hypomorphic Agps mutation, we set out to generate Agps knockout mice utilizing Knockout Mouse Project (KOMP) resource. Our results showed that ∼85% of Agps knock-out mice die embryonically whereas surviving adult Agps knock-out mice phenotypically exhibit cataracts and testicular abnormalities similar to those observed in bs2 mice. Given that the majority of Agps knock-out mice die embryonically presented a challenge for further analyses of Agps deficiency in mouse models. Although not done as a part of this study, Agps-KOMP mice or ES cells can be further modified with FLP recombinase to generate mice suitable for subsequent matings with a transgenic Cre strain of choice, thereby providing an opportunity to study conditional Agps deficiency in a specific tissue or desired developmental time points without Agps deficiency-mediated embryonic lethality.
Collapse
Affiliation(s)
- Ryan P Liegel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - Adam Ronchetti
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | - D J Sidjanin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI ; Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
45
|
Danziger SA, Ratushny AV, Smith JJ, Saleem RA, Wan Y, Arens CE, Armstrong AM, Sitko K, Chen WM, Chiang JH, Reiss DJ, Baliga NS, Aitchison JD. Molecular mechanisms of system responses to novel stimuli are predictable from public data. Nucleic Acids Res 2013; 42:1442-60. [PMID: 24185701 PMCID: PMC3919619 DOI: 10.1093/nar/gkt938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Systems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments. Specifically, using ∼ 1500 publically available genome-wide transcriptome data sets from Saccharomyces cerevisiae, we have reconstructed an environment and gene regulatory influence network that accurately predicts regulatory mechanisms and gene expression changes on exposure of cells to completely novel environments. Focusing on transcriptional networks that induce peroxisomes biogenesis, the model-guided experiments allow us to expand a core regulatory network to include novel transcriptional influences and linkage across signaling and transcription. Thus, the approach and model provides a multi-scalar picture of gene dynamics and are powerful resources for exploiting extant data to rationally guide experimentation. The techniques outlined here are generally applicable to any biological system, which is especially important when experimental systems are challenging and samples are difficult and expensive to obtain-a common problem in laboratory animal and human studies.
Collapse
Affiliation(s)
- Samuel A Danziger
- Seattle Biomedical Research Institute, Seattle, WA 98109-5219 USA, Institute for Systems Biology, Seattle, WA 98109-5240 USA, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing 210096, China and Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima SY, Misumi O, Kawano S, Kuroiwa T. Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A 2013; 110:9583-8. [PMID: 23696667 PMCID: PMC3677435 DOI: 10.1073/pnas.1303483110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxisomes (microbodies) are ubiquitous single-membrane-bounded organelles and fulfill essential roles in the cellular metabolism. They are found in virtually all eukaryotic cells and basically multiply by division. However, the mechanochemical machinery involved in peroxisome division remains elusive. Here, we first identified the peroxisome-dividing (POD) machinery. We isolated the POD machinery from Cyanidioschyzon merolae, a unicellular red alga containing a single peroxisome. Peroxisomal division in C. merolae can be highly synchronized by light/dark cycles and the microtubule-disrupting agent oryzalin. By proteomic analysis based on the complete genome sequence of C. merolae, we identified a dynamin-related protein 3 (DRP3) ortholog, CmDnm1 (Dnm1), that predominantly accumulated with catalase in the dividing-peroxisome fraction. Immunofluorescence microscopy demonstrated that Dnm1 formed a ring at the division site of the peroxisome. The outlines of the isolated dynamin rings were dimly observed by phase-contrast microscopy and clearly stained for Dnm1. Electron microscopy revealed that the POD machinery was formed at the cytoplasmic side of the equator. Immunoelectron microscopy showed that the POD machinery consisted of an outer dynamin-based ring and an inner filamentous ring. Down-regulation of Dnm1 impaired peroxisomal division. Surprisingly, the same Dnm1 serially controlled peroxisomal division after mitochondrial division. Because genetic deficiencies of Dnm1 orthologs in multiperoxisomal organisms inhibited both mitochondrial and peroxisomal proliferation, it is thought that peroxisomal division by contraction of a dynamin-based machinery is universal among eukaryotes. These findings are useful for understanding the fundamental systems in eukaryotic cells.
Collapse
Affiliation(s)
- Yuuta Imoto
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Tokyo 277-8562, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Haruko Kuroiwa
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yamato Yoshida
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312
| | - Mio Ohnuma
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takayuki Fujiwara
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Yoshida
- Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Keiji Nishida
- Department of Systems Biology, Harvard Medical School and Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, MA
| | - Fumi Yagisawa
- Division of Biological Sciences, University of California, San Diego, CA 92093-0377
| | - Shunsuke Hirooka
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and
| | - Shin-ya Miyagishima
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Symbiosis and Cell Evolution Laboratory, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and
| | - Osami Misumi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
| | - Shigeyuki Kawano
- Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Tokyo 277-8562, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuneyoshi Kuroiwa
- Initiative Research Unit, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
47
|
Ro M, Park J, Nam M, Bang HJ, Yang J, Choi KS, Kim SK, Chung JH, Kwack K. Association between peroxisomal biogenesis factor 7 and autism spectrum disorders in a Korean population. J Child Neurol 2012; 27:1270-5. [PMID: 22378669 DOI: 10.1177/0883073811435507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication, impaired reciprocal social interaction, and repetitive patterns of behaviors or interests. Although the cause of autism spectrum disorder remains elusive, the present study identified peroxisomal biogenesis factor 7 (PEX7) as a gene associated with autism spectrum disorder, and this association was examined in a Korean population. PEX7 encodes a cytosolic receptor for peroxisome targeting signal 2 of peroxisomal matrix enzymes that are targeted to and translocated into the peroxisome. PEX7 defects are associated with rhizomelic chondrodysplasia punctata type 1 and Refsum disease. Mutations in PEX7 are related to a variety of mild to severe clinical symptoms, including mental retardation. The analysis of 9 intronic single nucleotide polymorphisms in 214 patients with autism spectrum disorder and 258 controls revealed the association of 2 single nucleotide polymorphisms and 1 haplotype with autism spectrum disorder (P < .05).
Collapse
Affiliation(s)
- MyungJa Ro
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Itoyama A, Honsho M, Abe Y, Moser A, Yoshida Y, Fujiki Y. Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. J Cell Sci 2012; 125:589-602. [PMID: 22389399 DOI: 10.1242/jcs.087452] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome division is regulated by several factors, termed fission factors, as well as the conditions of the cellular environment. Over the past decade, the idea of metabolic control of peroxisomal morphogenesis has been postulated, but remains largely undefined to date. In the current study, docosahexaenoic acid (DHA, C22:6n-3) was identified as an inducer of peroxisome division. In fibroblasts isolated from patients that carry defects in peroxisomal fatty acid β-oxidation, peroxisomes are much less abundant than normal cells. Treatment of these patient fibroblasts with DHA induced the proliferation of peroxisomes to the level seen in normal fibroblasts. DHA-induced peroxisomal proliferation was abrogated by treatment with a small inhibitory RNA (siRNA) targeting dynamin-like protein 1 and with dynasore, an inhibitor of dynamin-like protein 1, which suggested that DHA stimulates peroxisome division. DHA augmented the hyper-oligomerization of Pex11pβ and the formation of Pex11pβ-enriched regions on elongated peroxisomes. Time-lapse imaging analysis of peroxisomal morphogenesis revealed a sequence of steps involved in peroxisome division, including elongation in one direction followed by peroxisomal fission. DHA enhanced peroxisomal division in a microtubule-independent manner. These results suggest that DHA is a crucial signal for peroxisomal elongation, a prerequisite for subsequent fission and peroxisome division.
Collapse
Affiliation(s)
- Akinori Itoyama
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Xiao Y, Karnati S, Qian G, Nenicu A, Fan W, Tchatalbachev S, Höland A, Hossain H, Guillou F, Lüers GH, Baumgart-Vogt E. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS One 2012; 7:e41097. [PMID: 22829911 PMCID: PMC3400606 DOI: 10.1371/journal.pone.0041097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out-mediated effects.
Collapse
Affiliation(s)
- Yu Xiao
- Institute for Anatomy and Cell Biology II, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cui Y, Liu H, Ze Y, Zengli Z, Hu Y, Cheng Z, Cheng J, Hu R, Gao G, Wang L, Tang M, Hong F. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol Sci 2012; 128:171-85. [PMID: 22539623 DOI: 10.1093/toxsci/kfs153] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although liver toxicity induced by titanium dioxide nanoparticles (TiO(2) NPs) has been demonstrated, very little is known about the molecular mechanisms of multiple genes working together underlying this type of liver injury in mice. In this study, we used the whole-genome microarray analysis technique to determine the gene expression profile in the livers of mice exposed to 10 mg/kg body weight TiO(2) NPs for 90 days. The findings showed that long-term exposure to TiO(2) NPs resulted in obvious titanium accumulation in the liver and TiO(2) NP aggregation in hepatocyte nuclei, an inflammatory response, hepatocyte apoptosis, and liver dysfunction. Furthermore, microarray data showed striking changes in the expression of 785 genes related to the immune/inflammatory response, apoptosis, oxidative stress, the metabolic process, response to stress, cell cycle, ion transport, signal transduction, cell proliferation, cytoskeleton, and cell differentiation in TiO(2) NP-exposed livers. In particular, a significant reduction in complement factor D (Cfd) expression following long-term exposure to TiO(2) NPs resulted in autoimmune and inflammatory disease states in mice. Therefore, Cfd may be a potential biomarker of liver toxicity caused by TiO(2) NPs exposure.
Collapse
Affiliation(s)
- Yaling Cui
- Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|