1
|
Božić M, Pirnat S, Fink K, Potokar M, Kreft M, Zorec R, Stenovec M. Ketamine Reduces the Surface Density of the Astroglial Kir4.1 Channel and Inhibits Voltage-Activated Currents in a Manner Similar to the Action of Ba 2+ on K + Currents. Cells 2023; 12:1360. [PMID: 37408194 DOI: 10.3390/cells12101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.
Collapse
Affiliation(s)
- Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia
| | - Samo Pirnat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Katja Fink
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Deep localization of subcellular protein structures from fluorescence microscopy images. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Dromel PC, Singh D, Andres E, Likes M, Kurisawa M, Alexander-Katz A, Spector M, Young M. A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy. NPJ Regen Med 2021; 6:85. [PMID: 34930951 PMCID: PMC8688498 DOI: 10.1038/s41536-021-00195-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Biomaterial-based cell replacement approaches to regenerative medicine are emerging as promising treatments for a wide array of profound clinical problems. Here we report an interpenetrating polymer network (IPN) composed of gelatin-hydroxyphenyl propionic acid and hyaluronic acid tyramine that is able to enhance intravitreal retinal cell therapy. By tuning our bioinspired hydrogel to mimic the vitreous chemical composition and mechanical characteristics we were able to improve in vitro and in vivo viability of human retinal ganglion cells (hRGC) incorporated into the IPN. In vivo vitreal injections of cell-bearing IPN in rats showed extensive attachment to the inner limiting membrane of the retina, improving with hydrogels stiffness. Engrafted hRGC displayed signs of regenerating processes along the optic nerve. Of note was the decrease in the immune cell response to hRGC delivered in the gel. The findings compel further translation of the gelatin-hyaluronic acid IPN for intravitreal cell therapy.
Collapse
Affiliation(s)
- Pierre C Dromel
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Deepti Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eliot Andres
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Motoichi Kurisawa
- A*STAR Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Myron Spector
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
5
|
Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021; 69:1540-1562. [PMID: 33609060 PMCID: PMC8248329 DOI: 10.1002/glia.23978] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Tavčar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Urška Černe
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Halužan Vasle
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Maja Matis
- Medical Faculty, Institute of Cell Biology, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
6
|
Myelin detection in fluorescence microscopy images using machine learning. J Neurosci Methods 2020; 346:108946. [PMID: 32931810 DOI: 10.1016/j.jneumeth.2020.108946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The myelin sheath produced by glial cells insulates the axons, and supports the function of the nervous system. Myelin sheath degeneration causes neurodegenerative disorders, such as multiple sclerosis (MS). There are no therapies for MS that promote remyelination. Drug discovery frequently involves screening thousands of compounds. However, this is not feasible for remyelination drugs, since myelin quantification is a manual labor-intensive endeavor. Therefore, the development of assistive software for expedited myelin detection is instrumental for MS drug discovery by enabling high-content image-based drug screens. NEW METHOD In this study, we developed a machine learning based expedited myelin detection approach in fluorescence microscopy images. Multi-channel three-dimensional microscopy images of a mouse stem cell-based myelination assay were labeled by experts. A spectro-spatial feature extraction method was introduced to represent local dependencies of voxels both in spatial and spectral domains. Feature extraction yielded two data set of over forty-seven thousand annotated images in total. RESULTS Myelin detection performances of 23 different supervised machine learning techniques including a customized-convolutional neural network (CNN), were assessed using various train/test split ratios of the data sets. The highest accuracy values of 98.84±0.09% and 98.46±0.11% were achieved by Boosted Trees and customized-CNN, respectively. COMPARISON WITH EXISTING METHODS Our approach can detect myelin in a common experimental setup. Myelin extending in any orientation in 3 dimensions is segmented from 3 channel z-stack fluorescence images. CONCLUSIONS Our results suggest that the proposed expedited myelin detection approach is a feasible and robust method for remyelination drug screening.
Collapse
|
7
|
Lunde A, Glover JC. A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis. Sci Rep 2020; 10:19027. [PMID: 33149236 PMCID: PMC7643144 DOI: 10.1038/s41598-020-75835-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Differential fluorescence labeling and multi-fluorescence imaging followed by colocalization analysis is commonly used to investigate cellular heterogeneity in situ. This is particularly important when investigating the biology of tissues with diverse cell types. Object-based colocalization analysis (OBCA) tools can employ automatic approaches, which are sensitive to errors in cell segmentation, or manual approaches, which can be impractical and tedious. Here, we present a novel set of tools for OBCA using a semi-automatic approach, consisting of two ImageJ plugins, a Microsoft Excel macro, and a MATLAB script. One ImageJ plugin enables customizable processing of multichannel 3D images for enhanced visualization of features relevant to OBCA, and another enables semi-automatic colocalization quantification. The Excel macro and the MATLAB script enable data organization and 3D visualization of object data across image series. The tools are well suited for experiments involving complex and large image data sets, and can be used in combination or as individual components, allowing flexible, efficient and accurate OBCA. Here we demonstrate their utility in immunohistochemical analyses of the developing central nervous system, which is characterized by complexity in the number and distribution of cell types, and by high cell packing densities, which can both create challenging situations for OBCA.
Collapse
Affiliation(s)
- Anders Lunde
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Blindern, 1105, Oslo, Norway
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Blindern, 1105, Oslo, Norway.
| |
Collapse
|
8
|
Božić M, Verkhratsky A, Zorec R, Stenovec M. Exocytosis of large-diameter lysosomes mediates interferon γ-induced relocation of MHC class II molecules toward the surface of astrocytes. Cell Mol Life Sci 2020; 77:3245-3264. [PMID: 31667557 PMCID: PMC7391398 DOI: 10.1007/s00018-019-03350-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Astrocytes are the key homeostatic cells in the central nervous system; initiation of reactive astrogliosis contributes to neuroinflammation. Pro-inflammatory cytokine interferon γ (IFNγ) induces the expression of the major histocompatibility complex class II (MHCII) molecules, involved in antigen presentation in reactive astrocytes. The pathway for MHCII delivery to the astrocyte plasma membrane, where MHCII present antigens, is unknown. Rat astrocytes in culture and in organotypic slices were exposed to IFNγ to induce reactive astrogliosis. Astrocytes were probed with optophysiologic tools to investigate subcellular localization of immunolabeled MHCII, and with electrophysiology to characterize interactions of single vesicles with the plasmalemma. In culture and in organotypic slices, IFNγ augmented the astrocytic expression of MHCII, which prominently co-localized with lysosomal marker LAMP1-EGFP, modestly co-localized with Rab7, and did not co-localize with endosomal markers Rab4A, EEA1, and TPC1. MHCII lysosomal localization was corroborated by treatment with the lysosomolytic agent glycyl-L-phenylalanine-β-naphthylamide, which reduced the number of MHCII-positive vesicles. The surface presence of MHCII was revealed by immunolabeling of live non-permeabilized cells. In IFNγ-treated astrocytes, an increased fraction of large-diameter exocytotic vesicles (lysosome-like vesicles) with prolonged fusion pore dwell time and larger pore conductance was recorded, whereas the rate of endocytosis was decreased. Stimulation with ATP, which triggers cytosolic calcium signaling, increased the frequency of exocytotic events, whereas the frequency of full endocytosis was further reduced. In IFNγ-treated astrocytes, MHCII-linked antigen surface presentation is mediated by increased lysosomal exocytosis, whereas surface retention of antigens is prolonged by concomitant inhibition of endocytosis.
Collapse
Affiliation(s)
- Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain
| | - Robert Zorec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Matjaž Stenovec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, Vardjan N. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca 2+ signaling and dysregulated cell metabolism. Sci Rep 2020; 10:6003. [PMID: 32265469 PMCID: PMC7138839 DOI: 10.1038/s41598-020-62864-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons and non-neuronal cells, including astrocytes, which metabolically support neurons with nutrients. Neuronal metabolism largely depends on the activation of the noradrenergic system releasing noradrenaline. Activation of astroglial adrenergic receptors with noradrenaline triggers cAMP and Ca2+ signaling and augments aerobic glycolysis with production of lactate, an important neuronal energy fuel. Astrocytes with cytoplasmic TDP-43 inclusions can cause motor neuron death, however, whether astroglial metabolism and metabolic support of neurons is altered in astrocytes with TDP-43 inclusions, is unclear. We measured lipid droplet and glucose metabolisms in astrocytes expressing the inclusion-forming C-terminal fragment of TDP-43 or the wild-type TDP-43 using fluorescent dyes or genetically encoded nanosensors. Astrocytes with TDP-43 inclusions exhibited a 3-fold increase in the accumulation of lipid droplets versus astrocytes expressing wild-type TDP-43, indicating altered lipid droplet metabolism. In these cells the noradrenaline-triggered increases in intracellular cAMP and Ca2+ levels were reduced by 35% and 31%, respectively, likely due to the downregulation of β2-adrenergic receptors. Although noradrenaline triggered a similar increase in intracellular lactate levels in astrocytes with and without TDP-43 inclusions, the probability of activating aerobic glycolysis was facilitated by 1.6-fold in astrocytes with TDP-43 inclusions and lactate MCT1 transporters were downregulated. Thus, while in astrocytes with TDP-43 inclusions noradrenergic signaling is reduced, aerobic glycolysis and lipid droplet accumulation are facilitated, suggesting dysregulated astroglial metabolism and metabolic support of neurons in TDP-43-associated ALS and FTD.
Collapse
Affiliation(s)
- Jelena Velebit
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tina Smolič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.,Biomedical Research Institute BRIS, 1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Characterization of Air Voids Distribution in the Open-Graded Asphalt Mixture Based on 2D Image Analysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The air voids distribution has a significant effect on the pavement performance related distresses such as rutting, cracking, moisture damage and permeability. However, most studies only quantified the air voids by average content, ignoring the heterogeneity inside the materials. This study focuses on the heterogeneity of air voids distribution inside the open-grade asphalt mixture based on 2D image analysis. Equivalent aperture is proposed to measure the area of each air void. Results showed that along both vertical and horizontal sections inside the open-grade asphalt mixture, the number of voids with 0~2 mm equivalent aperture would have a great impact on the total number of voids, while large amounts of small voids would not significantly affect the total voids number. Additionally, voids with 0~4 mm equivalent aperture account for the largest proportion, and when the equivalent aperture is beyond 4 mm, the number of voids would decrease as the equivalent aperture increases, regardless of the void areas. Furthermore, in both vertical and horizontal sections, as the equivalent aperture increases, the speed to accumulate voids area would firstly increase and then decrease. As the equivalent aperture increases, the contribution to the total voids area would increase accordingly, and it would approach the peak when the equivalent aperture reaches about 8 mm.
Collapse
|
11
|
Astrocyte Specific Remodeling of Plasmalemmal Cholesterol Composition by Ketamine Indicates a New Mechanism of Antidepressant Action. Sci Rep 2019; 9:10957. [PMID: 31358895 PMCID: PMC6662760 DOI: 10.1038/s41598-019-47459-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Ketamine is an antidepressant with rapid therapeutic onset and long-lasting effect, although the underlying mechanism(s) remain unknown. Using FRET-based nanosensors we found that ketamine increases [cAMP]i in astrocytes. Membrane capacitance recordings, however, reveal fundamentally distinct mechanisms of effects of ketamine and [cAMP]i on vesicular secretion: a rise in [cAMP]i facilitated, whereas ketamine inhibited exocytosis. By directly monitoring cholesterol-rich membrane domains with a fluorescently tagged cholesterol-specific membrane binding domain (D4) of toxin perfringolysin O, we demonstrated that ketamine induced cholesterol redistribution in the plasmalemma in astrocytes, but neither in fibroblasts nor in PC 12 cells. This novel mechanism posits that ketamine affects density and distribution of cholesterol in the astrocytic plasmalemma, consequently modulating a host of processes that may contribute to ketamine's rapid antidepressant action.
Collapse
|
12
|
Stauffer W, Sheng H, Lim HN. EzColocalization: An ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep 2018; 8:15764. [PMID: 30361629 PMCID: PMC6202351 DOI: 10.1038/s41598-018-33592-8] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Insight into the function and regulation of biological molecules can often be obtained by determining which cell structures and other molecules they localize with (i.e. colocalization). Here we describe an open source plugin for ImageJ called EzColocalization to visualize and measure colocalization in microscopy images. EzColocalization is designed to be easy to use and customize for researchers with minimal experience in quantitative microscopy and computer programming. Features of EzColocalization include: (i) tools to select individual cells and organisms from images; (ii) filters to select specific types of cells and organisms based on physical parameters and signal intensity; (iii) heat maps and scatterplots to visualize the localization patterns of reporters; (iv) multiple metrics to measure colocalization for two or three reporters; (v) metric matrices to systematically measure colocalization at multiple combinations of signal intensity thresholds; and (vi) data tables that provide detailed information on each cell in a sample. These features make EzColocalization well-suited for experiments with low reporter signal, complex patterns of localization, and heterogeneous populations of cells and organisms.
Collapse
Affiliation(s)
- Weston Stauffer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Huanjie Sheng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Han N Lim
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Atomwise Inc., San Francisco, CA, USA.
| |
Collapse
|
13
|
Slow Release of HIV-1 Protein Nef from Vesicle-like Structures Is Inhibited by Cytosolic Calcium Elevation in Single Human Microglia. Mol Neurobiol 2018; 56:102-118. [DOI: 10.1007/s12035-018-1072-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
|
14
|
Helfenberger KE, Villalba NM, Buchholz B, Boveris A, Poderoso JJ, Gelpi RJ, Poderoso C. Subcellular distribution of ERK phosphorylation in tyrosine and threonine depends on redox status in murine lung cells. PLoS One 2018; 13:e0193022. [PMID: 29489891 PMCID: PMC5831038 DOI: 10.1371/journal.pone.0193022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/02/2018] [Indexed: 11/26/2022] Open
Abstract
Activation of ERK1/2 implies the phosphorylation of tyrosine (pTyr) and threonine (pThr) by MEK1/2; both reactions were thought to be cytoplasmic, promoting ERK to reach the nucleus where it activates several transcription factors. In addition, H2O2 concentrations are known to modulate ERK intracellular translocation, which impacts on cellular proliferation. In this context, the objective of this work was to study the sequence of ERK phosphorylation under two redox conditions and to analyze a putative mitochondrial contribution to this process, in LP07 murine lung cells. A time-course of H2O2 administration was used and ERK phosphorylation was analyzed in cytosol, mitochondria and nuclei. At 1μM H2O2, a proliferative redox stimulus, immunoblot revealed a fast and transient increase in cytosol pTyr and a sustained increase in mitochondrial pTyr content. The detection for pThr/pTyrERK (2pERK) showed in cytosol a marked increase at 5 minutes with a fast dephosphorylation after that time, for both H2O2 concentrations. However, at 50 μM H2O2, an anti-proliferative condition, 2pERK was gradually retained in mitochondria. Interestingly, these results were confirmed by in vivo experiments using mice treated with a highly oxidizing agent [H2O2]. By the use of two ERK2 mutant constructions, where Tyr and Thr were replaced by alanine, we confirmed that 2pERK relied almost completely on pThr183. Confocal microscopy confirmed ERK subcellular distribution dependence on the incidence of cytosolic pTyr and mitochondrial pThr at 1μM H2O2. This work shows for the first time, both in vitro and in vivo, an ERK cycle involving a cross-talk between cytosol and mitochondria phosphorylation events, which may play a significant role in cell cycle progression, proliferation or differentiation under two different redox conditions.
Collapse
Affiliation(s)
- Katia E. Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Nerina M. Villalba
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas “José de San Martín”, Laboratorio del Metabolismo del Oxígeno, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Alberto Boveris
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Juan José Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas “José de San Martín”, Laboratorio del Metabolismo del Oxígeno, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ricardo J. Gelpi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Lasič E, Galland F, Vardjan N, Šribar J, Križaj I, Leite MC, Zorec R, Stenovec M. Time-dependent uptake and trafficking of vesicles capturing extracellular S100B in cultured rat astrocytes. J Neurochem 2016; 139:309-323. [PMID: 27488079 DOI: 10.1111/jnc.13754] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/16/2023]
Abstract
Astrocytes, the most heterogeneous glial cells in the central nervous system, contribute to brain homeostasis, by regulating a myriad of functions, including the clearance of extracellular debris. When cells are damaged, cytoplasmic proteins may exit into the extracellular space. One such protein is S100B, which may exert toxic effects on neighboring cells unless it is removed from the extracellular space, but the mechanisms of this clearance are poorly understood. By using time-lapse confocal microscopy and fluorescently labeled S100B (S100B-Alexa488 ) and fluorescent dextran (Dextran546 ), a fluid phase uptake marker, we examined the uptake of fluorescently labeled S100B-Alexa488 from extracellular space and monitored trafficking of vesicles that internalized S100B-Alexa488 . Initially, S100B-Alexa488 and Dextran546 internalized with distinct rates into different endocytotic vesicles; S100B-Alexa488 internalized into smaller vesicles than Dextran546 . At a later stage, S100B-Alexa488 -positive vesicles substantially co-localized with Dextran546 -positive endolysosomes and with acidic LysoTracker-positive vesicles. Cell treatment with anti-receptor for advanced glycation end products (RAGE) antibody, which binds to RAGE, a 'scavenger receptor', partially inhibited uptake of S100B-Alexa488 , but not of Dextran546 . The dynamin inhibitor dynole 34-2 inhibited internalization of both fluorescent probes. Directional mobility of S100B-Alexa488 -positive vesicles increased over time and was inhibited by ATP stimulation, an agent that increases cytosolic free calcium concentration ([Ca2+ ]i ). We conclude that astrocytes exhibit RAGE- and dynamin-dependent vesicular mechanism to efficiently remove S100B from the extracellular space. If a similar process occurs in vivo, astroglia may mitigate the toxic effects of extracellular S100B by this process under pathophysiologic conditions. This study reveals the vesicular clearance mechanism of extracellular S100B in astrocytes. Initially, fluorescent S100B internalizes into smaller endocytotic vesicles than dextran molecules. At a later stage, both probes co-localize within endolysosomes. S100B internalization is both dynamin- and RAGE-dependent, whereas dextran internalization is dependent on dynamin. Vesicle internalization likely mitigates the toxic effects of extracellular S100B and other waste products.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fabiana Galland
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Celica Biomedical, Ljubljana, Slovenia.
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Celica Biomedical, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs. Biomaterials 2016; 76:399-407. [DOI: 10.1016/j.biomaterials.2015.10.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
|
18
|
Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D. SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells. Traffic 2014; 15:1406-29. [DOI: 10.1111/tra.12228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Frederik W. Lund
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
- Department of Biochemistry; Weill Medical College of Cornell University; York Ave. 1300 10065 NY USA
| | - Maria Louise V. Jensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Gitte K. Nielsen
- Department of Biomedicine; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
19
|
Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun 2014; 5:3780. [PMID: 24807050 DOI: 10.1038/ncomms4780] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/01/2014] [Indexed: 11/08/2022] Open
Abstract
Exocytic transmitter release is regulated by the SNARE complex, which contains a vesicular protein, synaptobrevin2 (Sb2). However, Sb2 vesicular arrangement is unclear. Here we use super-resolution fluorescence microscopy to study the prevalence and distribution of endogenous and exogenous Sb2 in single vesicles of astrocytes, the most abundant glial cells in the brain. We tag Sb2 protein at C- and N termini with a pair of fluorophores, which allows us to determine the Sb2 length and geometry. To estimate total number of Sb2 proteins per vesicle and the quantity necessary for the formation of fusion pores, we treat cells with ATP to stimulate Ca2+-dependent exocytosis, increase intracellular alkalinity to enhance the fluorescence presentation of yellow-shifted pHluorin (YpH), appended to the vesicle lumen domain of Sb2, and perform photobleaching of YpH fluorophores. Fluorescence intensity analysis reveals that the total number of endogenous Sb2 units or molecules per vesicle is ≤25.
Collapse
|
20
|
Vardjan N, Kreft M, Zorec R. Regulated Exocytosis in Astrocytes is as Slow as the Metabolic Availability of Gliotransmitters: Focus on Glutamate and ATP. GLUTAMATE AND ATP AT THE INTERFACE OF METABOLISM AND SIGNALING IN THE BRAIN 2014; 11:81-101. [DOI: 10.1007/978-3-319-08894-5_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Potokar M, Stenovec M, Jorgačevski J, Holen T, Kreft M, Ottersen OP, Zorec R. Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 2013; 61:917-28. [DOI: 10.1002/glia.22485] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/28/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Torgeir Holen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | | - Ole Petter Ottersen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | |
Collapse
|
22
|
Urothelial endocytic vesicle recycling and lysosomal degradative pathway regulated by lipid membrane composition. Histochem Cell Biol 2012; 139:249-65. [DOI: 10.1007/s00418-012-1034-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
23
|
Abstract
The release of hormones and neurotransmitters, mediated by regulated exocytosis, can be modified by regulation of the fusion pore. The fusion pore is considered stable and narrow initially, eventually leading to the complete merger of the vesicle and the plasma membranes. By using the high-resolution patch-clamp capacitance technique, we studied single vesicles and asked whether the Sec1/Munc18 proteins, interacting with the membrane fusion-mediating SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, affect fusion pore properties. Munc18-1 mutants were transfected into lactotrophs to affect the interaction of Munc18-1 with syntaxin1 (Synt1) (R39C), Rab3A (E466K), and Mints (P242S). Compared with wild-type, Munc18-1 E466K increased the frequency of the fusion event. The latter two mutants increased the fusion pore dwell-time. All the mutants stabilized narrow fusion pores and increased the amplitude of fusion events, likely via preferential fusion of larger vesicles, since overexpression of Munc18-1 R39C did not affect the average size of vesicles, as determined by stimulated emission depletion (STED) microscopy. Single-molecule atomic force microscopy experiments revealed that wild-type Munc18-1, but not Munc18-1 R39C, abrogates the interaction between synaptobrevin2 (Syb2) and Synt1 binary trans-complexes. However, neither form of Munc18-1 affected the interaction of Syb2 with the preformed binary cis-Synt1A-SNAP25B complexes. This indicates that Munc18-1 performs a proofing function by inhibiting tethering of Syb2-containing vesicles solely to Synt1 at the plasmalemma and favoring vesicular tethering to the preformed binary cis-complex of Synt1A-SNAP25B. The association of Munc18-1 with the ternary SNARE complex leads to tuning of fusion pores via multiple and converging mechanisms involving Munc18-1 interactions with Synt1A, Rab3A, and Mints.
Collapse
|
24
|
Lee YW, Lee WH, Kim PH. Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium. Cytokine 2010; 49:73-9. [PMID: 19822443 PMCID: PMC2808430 DOI: 10.1016/j.cyto.2009.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/28/2009] [Accepted: 08/25/2009] [Indexed: 11/18/2022]
Abstract
The present study is designed to investigate the effects of interleukin-4 (IL-4) on expression of interleukin-6 (IL-6), as well as to examine the role of distinct sources of reactive oxygen species (ROS) in this process. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-4 significantly up-regulated the mRNA and protein expression of IL-6 in human aortic endothelial cells (HAEC) and C57BL/6 mice. Dihydroethidium (DHE) and dichlorofluorescein (DCF) fluorescence staining demonstrated that IL-4 significantly increased ROS generation in HAEC. A significant and dose-dependent inhibition of IL-4-induced IL-6 expression was observed in HAEC pre-treated with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) and epigallocatechin gallate (EGCG), indicating that IL-4-induced IL-6 expression is mediated via an ROS-dependent mechanism. Additionally, pharmacological inhibitor of NADPH oxidase (NOX) significantly attenuated IL-4-induced ROS generation and IL-6 expression in HAEC. Furthermore, the disruption of NOX gene dramatically and significantly reduced IL-4-induced IL-6 expression in NOX knockout mice (B6.129S6-Cybb(tm1Din)/J). In contrast, overexpression of IL-6 in IL-4-activated HAEC was not affected by inhibiting other ROS generating pathways, such as xanthine oxidase, arachidonic acid metabolism, and the mitochondrial electron transport chain. These results demonstrate that IL-4 up-regulates IL-6 expression in vascular endothelium through NOX-mediated ROS generation.
Collapse
Affiliation(s)
- Yong Woo Lee
- Laboratory of Vascular Biology, Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
25
|
GAVRILOVIC M, WÄHLBY C. Quantification of colocalization and cross-talk based on spectral angles. J Microsc 2009; 234:311-24. [DOI: 10.1111/j.1365-2818.2009.03170.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Fused Late Endocytic Compartments and Immunostimulatory Capacity of Dendritic–Tumor Cell Hybridomas. J Membr Biol 2009; 229:11-8. [DOI: 10.1007/s00232-009-9171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
27
|
Kreft ME, Romih R, Kreft M, Jezernik K. Endocytotic activity of bladder superficial urothelial cells is inversely related to their differentiation stage. Differentiation 2008; 77:48-59. [PMID: 19281764 DOI: 10.1016/j.diff.2008.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/27/2008] [Accepted: 07/12/2008] [Indexed: 12/20/2022]
Abstract
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in relation to the membrane-bound and fluid-phase endocytosis in bladder superficial urothelial cells. By using primary urothelial cultures in the environment without mechanical stimuli, we studied the constitutive endocytosis. Four new findings emerge from our study. First, in highly differentiated superficial urothelial cells with strong uroplakin expression, the endocytosis of fluid-phase endocytotic markers was 43% lower and the endocytosis of membrane-bound markers was 86% lower compared to partially differentiated cells with weak uroplakin expression. Second, superficial urothelial cells have 5-15-times lower endocytotic activity than MDCK cells. Third, in superficial urothelial cells the membrane-bound markers are delivered to lysosomes, while fluid-phase markers are seen only in early endocytotic compartments, suggesting their kiss-and-run recycling. Finally, we provide the first evidence that in highly differentiated cells the uroplakin-positive membrane regions are excluded from internalization, suggesting that uroplakins hinder endocytosis from the apical plasma membrane in superficial urothelial cells and thus maintain optimal permeability barrier function.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipiceva 2, SI-1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
28
|
Galli S, Antico Arciuch VG, Poderoso C, Converso DP, Zhou Q, de Kier Joffé EB, Cadenas E, Boczkowski J, Carreras MC, Poderoso JJ. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria. PLoS One 2008; 3:e2379. [PMID: 18545666 PMCID: PMC2398776 DOI: 10.1371/journal.pone.0002379] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/26/2008] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are major cellular sources of hydrogen peroxide (H2O2), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H2O2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H2O2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H2O2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 µM H2O2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 µM H2O2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H2O2 level. Like this, high H2O2 or directed mutation of redox-sensitive ERK2 Cys214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H2O2 yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.
Collapse
Affiliation(s)
- Soledad Galli
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Cecilia Poderoso
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniela Paola Converso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Qiongqiong Zhou
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | | | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | | | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
- Department of Medicine, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
29
|
Potokar M, Stenovec M, Kreft M, Kreft ME, Zorec R. Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 2008; 56:135-44. [PMID: 17990309 DOI: 10.1002/glia.20597] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes are increasingly viewed as playing many roles in the integration of brain function. These cells store among other gliotransmitters also neuroactive peptides in membrane bound vesicles, the trafficking and release of which, may be changed in altered conditions, therefore affecting the physiological status of neurons. In general, peptidergic membrane-bound secretory vesicles fuse with the plasma membrane in the process of exocytosis. Some of them are retrieved from the plasma membrane to be recycled back into the cytosol. The mobility of retrieving vesicles in astrocytes was not studied yet, however, understanding the mechanisms of such trafficking would highlight the communication paths between astrocytes and neurons. We labeled vesicles with antibodies against the vesicle atrial natriuretic peptide (ANP), which is stored inside secretory vesicles. ANP-vesicles in astrocytes have been proposed to enter Ca2+-dependent secretion and here we show that they are associated with synaptotagmin IV (SytIV), a regulator of exocytosis in astrocytes. Moreover, the results show that recycling ANP-vesicles are to a significant extent acidic. Their velocity (0.06+/-0.001 microm/s) is one order of magnitude lower than the velocity of vesicles trafficking to the plasma membrane (Potokar et al. (2005) Biochem Biophys Res Commun 329:678-683; Potokar et al. (2007) Traffic 8:12-20). Interestingly, ionomycin or ATP application further attenuated ANP-vesicle mobility to 0.02+/-0.002 and to 0.03+/-0.001 microm/s, respectively. In summary, the mobility of recycling peptidergic vesicles appears to be slower than the vesicle traffic to the plasma membrane and it requires an intact cytoskeleton. Physiological implications of attenuated traffic of ANP-vesicles are considered in the discussion.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
30
|
Monitoring lysosomal fusion in electrofused hybridoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:483-90. [PMID: 17996722 DOI: 10.1016/j.bbamem.2007.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/17/2007] [Accepted: 10/11/2007] [Indexed: 11/21/2022]
Abstract
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.
Collapse
|
31
|
Vardjan N, Stenovec M, Jorgačevski J, Kreft M, Zorec R. Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 2007; 27:4737-46. [PMID: 17460086 PMCID: PMC6672992 DOI: 10.1523/jneurosci.0351-07.2007] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kiss-and-run exocytosis, consisting of reversible fusion between the vesicle membrane and the plasma membrane, is considered to lead to full fusion after stimulation of vesicles containing classical transmitters. However, whether this is also the case in the fusion of peptidergic vesicles is unknown. Previously, we have observed that spontaneous neuropeptide discharge from a single vesicle is slower than stimulated release, because of the kinetic constraints of fusion pore opening. To explore whether slow spontaneous release also reflects a relatively narrow fusion pore, we analyzed the permeation of FM 4-64 dye and HEPES molecules through spontaneously forming fusion pores in lactotroph vesicles expressing synaptopHluorin, a pH-dependent fluorescent fusion marker. Confocal imaging showed that half of the spontaneous exocytotic events exhibited fusion pore openings associated with a change in synaptopHluorin fluorescence but were impermeable to FM 4-64 and HEPES. Together with membrane capacitance measurements, these findings indicate an open fusion pore diameter <0.5 nm, much smaller than the neuropeptides. In stimulated cells, >70% of exocytotic events exhibited a larger, FM 4-64-permeable pore (>1 nm). Interestingly, capacitance measurements showed that the majority of exocytotic events in spontaneous and stimulated conditions were transient. Stimulation increased the frequency of transient events and the fusion pore dwell time but decreased the fraction of events with lowest measurable fusion pore. Kiss-and-run is the predominant mode of exocytosis in resting and in stimulated peptidergic vesicles. Stimulation prolongs the effective opening of the fusion pore and expands its primary subnanometer diameter to enable hormone secretion without full fusion.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Celica Biomedical Center, 1000 Ljubljana, Slovenia, and
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Carmona R, Macías D, Guadix JA, Portillo V, Pérez-Pomares JM, Muñoz-Chápuli R. A simple technique of image analysis for specific nuclear immunolocalization of proteins. J Microsc 2007; 225:96-9. [PMID: 17286699 DOI: 10.1111/j.1365-2818.2007.01719.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Colocalization of fluorescent signals in confocal microscopy is usually evaluated by inspecting merged images from different colour channels or by using commercially available software packages. We describe in this paper a simple method for assessment of nuclear localization of proteins in tissue sections through confocal immunolocalization, propidium iodide counterstaining and image analysis. Through a macro command developed for the public domain, Java-based software imagej, red, green, blue (RGB) images are automatically split in the red and green channels and a new image composed of the nonblack pixels coincident in both channels is created and inverted for better visualization. This method renders images devoid of both, extranuclear staining and background, thus emphasizing the nuclear signal. The resulting images can easily be used for comparison or quantification of the results. Given the simplicity of the technique and the worldwide diffusion of the software utilized, we think that this method could be useful in order to define standards of colocalization in confocal microscopy.
Collapse
Affiliation(s)
- R Carmona
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Physiol Heart Circ Physiol 2006; 292:H1042-50. [PMID: 17040976 DOI: 10.1152/ajpheart.00800.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of peroxynitrite (OONO(-))-induced nitrosylation of filamentous (F)-actin on myogenic tone in isolated and pressurized posterior cerebral arteries (PCAs). Immunohistochemical staining was used to determine 3-nitrotyrosine (NT) and F-actin content in vascular smooth muscle after exposure to 10(-7) M or 10(-4) M OONO(-) for 5 or 60 min in isolated third-order PCAs (n = 37) from male Wistar rats pressurized to 75 mmHg in an arteriograph chamber, quantified with confocal microscopy. Additionally, the role of K(+) channels in OONO(-)-induced dilation was investigated with 3 microM glibenclamide or 10 mM tetraethylammonium chloride before OONO(-) exposure. OONO(-) (10(-4) M) induced a 40% dilation of tone (P < 0.05) while diminishing F-actin content by half (P < 0.05) and causing a 60-fold increase in NT (P < 0.05) in the vascular smooth muscle of PCAs. Additionally, F-actin was inversely correlated with both diameter and NT content (P < 0.05) and was significantly colocalized in the vascular smooth muscle with NT (overlap coefficient = 0.8). The dilation to ONOO(-) was independent of K(+) channel activity and thiol oxidation as glibenclamide, tetraethylammonium chloride, and dithiothreitol had no effect on OONO(-)-induced dilation or F-actin or NT content in PCAs. Because NT was colocalized with F-actin, we hypothesize that OONO(-) induces nitrosylation of F-actin in vascular smooth muscle leading to depolymerization and the subsequent loss of myogenic tone, which may promote vascular damage during oxidative stress such as in ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Matthew J Maneen
- Department of Neurology, University of Vermont, 89 Beaumont Ave., Given C454, Burlington, VT 05405, USA
| | | |
Collapse
|
34
|
Rupnik M, Kreft M, Nothias F, Grilc S, Bobanovic LK, Johannes L, Kiauta T, Vernier P, Darchen F, Zorec R. Distinct role of Rab3A and Rab3B in secretory activity of rat melanotrophs. Am J Physiol Cell Physiol 2006; 292:C98-105. [PMID: 16822953 DOI: 10.1152/ajpcell.00005.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the Rab3 (A-D) subfamily of small GTPases are believed to play a key role in regulated exocytosis. These proteins share approximately 80% identity at amino acid level. The question of whether isoforms of Rab3 are functionally redundant was the subject of this study. We used RT-PCR analysis, in situ hybridization histochemistry, and confocal microscope-based analysis of immunocytochemistry to show that rat melanotrophs contain about equal amounts of Rab3A and Rab3B transcripts as well as proteins. Therefore, these cells are a suitable model to study the subcellular distribution and the role of these paralogous isoforms in regulated exocytosis. Secretory activity of single cells was monitored with patch-clamp capacitance measurements, and the cytosol was dialyzed with a high-calcium-containing patch pipette solution. Preinjection of antisense oligodeoxyribonucleotides specific to Rab3A, but not to Rab3B, induced a specific blockage of calcium-dependent secretory responses, indicating an exclusive requirement for Rab3A in melanotroph cell-regulated secretion. Although the injection of purified Rab3B protein was ineffective, the injection of recombinant Rab3A proteins into rat melanotrophs revealed that regulated secretion was stimulated by a GTP-bound Rab3A with an intact COOH terminus and inhibited by Rab3AT36N, impaired in GTP binding. These results indicate that Rab3A, but not Rab3B, enhances secretory output from rat melanotrophs and that their function is not redundant.
Collapse
Affiliation(s)
- M Rupnik
- Lab. of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, School of Medicine, PO Box 2211, 1001 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zinner R, Albiez H, Walter J, Peters AHFM, Cremer T, Cremer M. Histone lysine methylation patterns in human cell types are arranged in distinct three-dimensional nuclear zones. Histochem Cell Biol 2005; 125:3-19. [PMID: 16215742 DOI: 10.1007/s00418-005-0049-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2005] [Indexed: 01/09/2023]
Abstract
The impact of histone lysine methylation as an essential epigenetic mechanism for gene regulation has been demonstrated by numerous studies where it was functionally and structurally linked to euchromatin and heterochromatin. Most of these data have been obtained by biochemical and two-dimensional (2D)-microscopic techniques providing little information about the global nuclear arrangement of histone modifications. We investigated the 3D architecture and spatial interrelationships of different histone lysine methylation sites (tri-H3K4, mono-H4K20, mono-H3K9, tri-H3K27, tri-H4K20 and tri-H3K9) in various human cell types. Immunofluorescence and confocal microscopy were used together with a quantitative evaluation of 3D images, to reveal spatial relations of specific methylation sites with either centromeres, nascent RNA or with each other. A close association with centromeres was found only for histone methylation sites previously linked to constitutively repressed chromatin. Differences observed in these sites in relation to the cell cycle emphasize the potential relevance of the dynamic properties of heterochromatin for nuclear functions. Nascent RNA was found associated, though to a different degree, with all histone methylation sites, supporting the increasing evidence that transcription occurs across a wide range of the human genome. Finally we demonstrated by simultaneous visualization of different histone lysine methylation sites that methylation patterns are organized in distinct nuclear zones with little apparent intermingling.
Collapse
Affiliation(s)
- Roman Zinner
- Anthropology and Human Genetics, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, D-82152, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Potokar M, Kreft M, Chowdhury HH, Vardjan N, Zorec R. Subcellular localization of Apaf-1 in apoptotic rat pituitary cells. Am J Physiol Cell Physiol 2005; 290:C672-7. [PMID: 16207793 DOI: 10.1152/ajpcell.00331.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key step in the intrinsic apoptotic pathway is the assembly of the apoptosome complex. The apoptosome components are well known; however, the physiology of the assembly of the apoptosome complex at the cellular level is still poorly defined. The aim of this work was to study the subcellular distribution of the apoptosome scaffold protein apoptotic protease-activating factor 1 (Apaf-1) before and after triggering apoptosis in single somatotrophs. Somatotrophs are the subject of extensive pituitary tissue remodeling in different physiological situations in which the quality and the number of pituitary cells are determined by cell proliferation and apoptosis. We show herein that 2 h after triggering apoptosis with rotenone, Apaf-1 redistributed to the proximity of mitochondria. In addition, the degree of colocalization between Apaf-1 and fluorescently labeled caspase-9 significantly increased during the same period. Furthermore, we show herein for the first time in single cells that the colocalization between Apaf-1 and cytochrome c increases only transiently, indicating a transient interaction between cytochrome c and Apaf-1 during the activation of apoptosis in these cells.
Collapse
Affiliation(s)
- Maja Potokar
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
37
|
Thaler C, Koushik SV, Blank PS, Vogel SS. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J 2005; 89:2736-49. [PMID: 16040744 PMCID: PMC1366774 DOI: 10.1529/biophysj.105.061853] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 07/07/2005] [Indexed: 11/18/2022] Open
Abstract
Protein labeling with green fluorescent protein derivatives has become an invaluable tool in cell biology. Protein quantification, however, is difficult when cells express constructs with overlapping fluorescent emissions. Under these conditions, signal separation using emission filters is inherently inefficient. Spectral imaging solves this problem by recording emission spectra directly. Unfortunately, linear unmixing, the algorithm used for quantifying individual fluorophores from emission spectra, fails when resonance energy transfer (RET) is present. We therefore sought to develop an unmixing algorithm that incorporates RET. An equation for spectral emission incorporating RET was derived and an assay based on this formalism, spectral RET (sRET), was developed. Standards with defined RET efficiencies and with known Cerulean/Venus ratios were constructed and used to test sRET. We demonstrate that sRET analysis is a comprehensive, photon-efficient method for imaging RET efficiencies and accurately determines donor and acceptor concentrations in living cells.
Collapse
Affiliation(s)
- Christopher Thaler
- National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Stenovec M, Kreft M, Poberaj I, Betz WJ, Zorec R. Slow spontaneous secretion from single large dense‐core vesicles monitored in neuroendocrine cells. FASEB J 2004; 18:1270-2. [PMID: 15180959 DOI: 10.1096/fj.03-1397fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hormones are released from cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. In stimulated exocytosis vesicle content is discharged swiftly. Although rapid vesicle discharge has also been proposed to mediate basal secretion, this has not been studied directly. We investigated basal hormone release by preloading fluorescent peptides into single vesicles. The hormone discharge, monitored with confocal microscopy, was compared with the simultaneous loading of vesicle by FM styryl dye. In stimulated vesicles FM 4-64 (4 microM), loading and hormone discharge occurs within seconds. In contrast, in approximately 50% of spontaneously releasing vesicles, the vesicle content discharge and the FM 4-64 loading were slow (approximately 3 min). These results show that in peptide secreting neuroendocrine cells the elementary vesicle content discharge differs in basal and in stimulated exocytosis. It is proposed that the view dating back for some decades, which is that, at rest, the vesicle discharge of hormones and neurotransmitters is similar to that occurring after stimulation, needs to be extended. In addition to the classical paradigm that secretory capacity of a cell is determined by controlling the probability of occurrence of elementary exocytotic events, one will have to consider activity modulation of elementary exocytotic events as well.
Collapse
|
39
|
Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon PG, Zorec R. Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia 2004; 46:437-45. [PMID: 15095373 DOI: 10.1002/glia.20018] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Astrocytes, a subtype of glial cells, have numerous characteristics that were previously considered exclusive for neurons. One of these characteristics is a cytosolic [Ca2+] oscillation that controls the release of the chemical transmitter glutamate and atrial natriuretic peptide. These chemical messengers appear to be released from astrocytes via Ca(2+)-dependent exocytosis. In the present study, patch-clamp membrane capacitance measurements were used to monitor changes in the membrane area of a single astrocyte, while the photolysis of caged calcium compounds by a UV flash was used to elicit steps in [Ca2+]i to determine the exocytotic properties of astrocytes. Experiments show that astrocytes exhibit Ca(2+)-dependent increases in membrane capacitance, with an apparent Kd value of approximately 20 microM [Ca2+]i. The delay between the flash delivery and the peak rate in membrane capacitance increase is in the range of tens to hundreds of milliseconds. The pretreatment of astrocytes by the tetanus neurotoxin, which specifically cleaves the neuronal/neuroendocrine type of SNARE protein synaptobrevin, abolished flash-induced membrane capacitance increases, suggesting that Ca(2+)-dependent membrane capacitance changes involve tetanus neurotoxin-sensitive SNARE-mediated vesicular exocytosis. Immunocytochemical experiments show distinct populations of vesicles containing glutamate and atrial natriuretic peptide in astrocytes. We conclude that the recorded Ca(2+)-dependent changes in membrane capacitance represent regulated exocytosis from multiple types of vesicles, about 100 times slower than the exocytotic response in neurons.
Collapse
Affiliation(s)
- Marko Kreft
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|