1
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Dobrzyn K, Kopij G, Kiezun M, Zaobidna E, Gudelska M, Zarzecka B, Paukszto L, Rak A, Smolinska N, Kaminski T. Visfatin (NAMPT) affects global gene expression in porcine anterior pituitary cells during the mid-luteal phase of the oestrous cycle. J Anim Sci Biotechnol 2024; 15:96. [PMID: 38978053 PMCID: PMC11232246 DOI: 10.1186/s40104-024-01054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The pituitary belongs to the most important endocrine glands involved in regulating reproductive functions. The proper functioning of this gland ensures the undisturbed course of the oestrous cycle and affects the female's reproductive potential. It is believed that visfatin, a hormone belonging to the adipokine family, may regulate reproductive functions in response to the female's metabolic state. Herein we verified the hypothesis that suggests a modulatory effect of visfatin on the anterior pituitary transcriptome during the mid-luteal phase of the oestrous cycle. RESULTS RNA-seq analysis of the porcine anterior pituitary cells revealed changes in the expression of 202 genes (95 up-regulated and 107 down-regulated in the presence of visfatin, when compared to the non-treated controls), assigned to 318 gene ontology terms. We revealed changes in the frequency of alternative splicing events (235 cases), as well as long noncoding RNA expression (79 cases) in the presence of the adipokine. The identified genes were associated, among others, with reproductive system development, epithelial cell proliferation, positive regulation of cell development, gland morphogenesis and cell chemotaxis. CONCLUSIONS The obtained results indicate a modulatory influence of visfatin on the regulation of the porcine transcriptome and, in consequence, pituitary physiology during the mid-luteal phase of the oestrous cycle.
Collapse
Affiliation(s)
- Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Tassinari ID, Rodrigues FDS, Bertram C, Mendes-da-Cruz DA, Guedes RP, Paz AH, Bambini-Junior V, de Fraga LS. Lactate Protects Microglia and Neurons from Oxygen-Glucose Deprivation/Reoxygenation. Neurochem Res 2024; 49:1762-1781. [PMID: 38551797 DOI: 10.1007/s11064-024-04135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig Bertram
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Ana Helena Paz
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil
| | - Victorio Bambini-Junior
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Luciano Stürmer de Fraga
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil.
| |
Collapse
|
4
|
Mudyanselage AW, Wijamunige BC, Kocoń A, Turner R, McLean D, Morentin B, Callado LF, Carter WG. Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues. Antioxidants (Basel) 2024; 13:580. [PMID: 38790685 PMCID: PMC11117938 DOI: 10.3390/antiox13050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocoń
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Ricky Turner
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Denise McLean
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, E-48001 Bilbao, Spain;
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country-UPV/EHU, E-48940 Leioa, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| |
Collapse
|
5
|
Zhao L, Song R, Liu Y. Glycolytic metabolite phosphoenolpyruvate protects host from viral infection through promoting AATK expression. Eur J Immunol 2023; 53:e2350536. [PMID: 37724936 DOI: 10.1002/eji.202350536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of apoptosis-associated tyrosine kinase (AATK) expression. Targeted metabolomic analyses have shown that the intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of AATK. Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of the PEP-AATK axis in controlling viral infections.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renjie Song
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
6
|
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, Genescà M, Grau-Expósito J, Duran-Castells C, Rogenmoser S, Böttcher R, Jungfleisch J, Oliva B, Martinez JP, Li M, David M, Yamagishi M, Ruiz-Riol M, Brander C, Tsunetsugu-Yokota Y, Buzon MJ, Díez J, Meyerhans A. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 2023; 6:487. [PMID: 37165099 PMCID: PMC10172343 DOI: 10.1038/s42003-023-04841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Katarína Frazão Smutná
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Florencia E Alonso
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kerstin Geiger
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Selina Rogenmoser
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - René Böttcher
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer Jungfleisch
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andreas Meyerhans
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
7
|
Woods ML, Weiss A, Sokol AM, Graumann J, Boettger T, Richter AM, Schermuly RT, Dammann RH. Epigenetically silenced apoptosis-associated tyrosine kinase (AATK) facilitates a decreased expression of Cyclin D1 and WEE1, phosphorylates TP53 and reduces cell proliferation in a kinase-dependent manner. Cancer Gene Ther 2022; 29:1975-1987. [PMID: 35902728 PMCID: PMC9750878 DOI: 10.1038/s41417-022-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Silencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival. Inhibition of DNA methyltransferases (DNMTs) reactivated AATK in glioblastoma and pancreatic cancer. In contrast, epigenetic targeting via the CRISPR/dCas9 system with either EZH2 or DNMT3A inhibited the expression of AATK. Via large-scale kinomic profiling and kinase assays, we demonstrate that AATK acts a Ser/Thr kinase that phosphorylates TP53 at Ser366. Furthermore, whole transcriptome analyses and mass spectrometry associate AATK expression with the GO term 'regulation of cell proliferation'. The kinase activity of AATK in comparison to the kinase-dead mutant mediates a decreased expression of the key cell cycle regulators Cyclin D1 and WEE1. Moreover, growth suppression through AATK relies on its kinase activity. In conclusion, the Ser/Thr kinase AATK represses growth and phosphorylates TP53. Furthermore, expression of AATK was correlated with a better patient survival for different cancer entities. This data suggests that AATK acts as an epigenetically inactivated tumor suppressor gene.
Collapse
Affiliation(s)
- Michelle L. Woods
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Astrid Weiss
- grid.8664.c0000 0001 2165 8627Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Anna M. Sokol
- grid.418032.c0000 0004 0491 220XScientific Service Group Biomolecular Mass Spectrometry, Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Johannes Graumann
- grid.418032.c0000 0004 0491 220XScientific Service Group Biomolecular Mass Spectrometry, Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany ,grid.10253.350000 0004 1936 9756Present Address: Institute for Translational Proteomics, Department of Medicine, Philipps-University, 35037 Marburg, Germany
| | - Thomas Boettger
- grid.418032.c0000 0004 0491 220XMax-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Antje M. Richter
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ralph T. Schermuly
- grid.8664.c0000 0001 2165 8627Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Reinhard H. Dammann
- grid.8664.c0000 0001 2165 8627Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany ,grid.440517.3German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| |
Collapse
|
8
|
Yu Z, Liu Y, Li Y, Zhang J, Peng J, Gong J, Xia Y, Wang L. miRNA-338-3p inhibits glioma cell proliferation and progression by targeting MYT1L. Brain Res Bull 2021; 179:1-12. [PMID: 34848272 DOI: 10.1016/j.brainresbull.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/31/2021] [Accepted: 11/24/2021] [Indexed: 01/06/2023]
Abstract
Glioma is a common and aggressive primary malignant brain tumor. MicroRNAs (miRNAs) play key roles in the post-transcriptional regulation of gene expression. Currently, miRNAs are considered to be useful biomarkers for the diagnosis and prognosis of glioma. Previously, we screened three differentially expressed miRNAs from Gene Expression Omnibus (GEO) database which included miRNA-338-3p. miRNA-338-3p is involved in tumor development in different cancers. However, in glioma, its function and its underlying mechanism remain unclear. We found that overexpression of miRNA-338-3p suppressed cell proliferation, migration, invasion, and promoted apoptosis of glioma in vitro. Myelin transcription factor 1-like (MYT1L) was found to be a direct target of miRNA-383-3p in glioma cells as the expression of MYT1L was inhibited by overexpressing miRNA-338-3p. Additionally, silencing MYT1L produced similar effects as overexpressing miRNA-338-3p in glioma cells. Overexpression of MYT1L also completely attenuated the inhibitory effect induced by miRNA-338-3p overexpression. These results suggest that the miRNA-338-3p/ MYT1L axis plays a critical role in the progression of glioma. Our study delineates one of the complex molecular mechanisms that drive the growth of glioma and may be useful in finding novel prognostic predictors and treatment targets in glioma. AVAILABILITY OF DATA AND MATERIALS: All data generated or analysed during this study are included in this published article.
Collapse
Affiliation(s)
- Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Yan Liu
- Department of Neurology, Changsha Central Hospital, University of South China, No.161 Shaoshan road, Yuhua district, Changsha 410007, Hunan, China
| | - You Li
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jikun Zhang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jun Peng
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China
| | - Jianwu Gong
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of Central South University, No.43 Renmin road, Meilan district, Haikou 570208, Hainan, China.
| | - Lei Wang
- Department of Neurosurgery, Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, No.283 Tongzipo road, Yuelu district, Changsha 410006, Hunan, China.
| |
Collapse
|
9
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Ding LY, Hou YC, Kuo IY, Hsu TY, Tsai TC, Chang HW, Hsu WY, Tsao CC, Tian CC, Wang PS, Wang HC, Lee CT, Wang YC, Lin SH, Hughes MW, Chuang WJ, Lu PJ, Shan YS, Huang PH. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. Clin Epigenetics 2020; 12:87. [PMID: 32552862 PMCID: PMC7301993 DOI: 10.1186/s13148-020-00878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). Results By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. Conclusion Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.
Collapse
Affiliation(s)
- Li-Yun Ding
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yi Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Ching Tsai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Wei Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chieh Tsao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Chen Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Shun Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Biostatistics Consulting Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21051714. [PMID: 32138249 PMCID: PMC7084402 DOI: 10.3390/ijms21051714] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.
Collapse
Affiliation(s)
- Metka Ravnik-Glavač
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| |
Collapse
|
12
|
Aravindan N, Subramanian K, Somasundaram DB, Herman TS, Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1086-1105. [PMID: 31867575 PMCID: PMC6924638 DOI: 10.20517/cdr.2019.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) deriving from neural crest cells is the most common extra-cranial solid cancer at infancy. NB originates within the peripheral sympathetic ganglia in adrenal medulla and along the midline of the body. Clinically, NB exhibits significant heterogeneity stretching from spontaneous regression to rapid progression to therapy resistance. MicroRNAs (miRNAs, miRs) are small (19-22 nt in length) non-coding RNAs that regulate human gene expression at the post-transcriptional level and are known to regulate cellular signaling, growth, differentiation, death, stemness, and maintenance. Consequently, the function of miRs in tumorigenesis, progression and resistance is of utmost importance for the understanding of dysfunctional cellular pathways that lead to disease evolution, therapy resistance, and poor clinical outcomes. Over the last two decades, much attention has been devoted to understanding the functional roles of miRs in NB biology. This review focuses on highlighting the important implications of miRs within the context of NB disease progression, particularly miRs’ influences on NB disease evolution and therapy resistance. In this review, we discuss the functions of both the “oncomiRs” and “tumor suppressor miRs” in NB progression/therapy resistance. These are the critical components to be considered during the development of novel miR-based therapeutic strategies to counter therapy resistance.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
13
|
miR-338-3p Is Regulated by Estrogens through GPER in Breast Cancer Cells and Cancer-Associated Fibroblasts (CAFs). Cells 2018; 7:cells7110203. [PMID: 30423928 PMCID: PMC6262471 DOI: 10.3390/cells7110203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.
Collapse
|
14
|
Bhanothu V, Kondapi AK. Status of topoisomerase-2β protein in all-trans retinoic acid-treated human neuroblastoma (SK-N-SH) cells. J Cell Biochem 2018; 120:5169-5182. [PMID: 30318608 DOI: 10.1002/jcb.27793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 09/10/2018] [Indexed: 01/23/2023]
Abstract
Of the mammalian topoisomerase (Topo)-2 isozymes (α and β), Topo-2β protein has been reported to regulate neuronal development and differentiation. However, the status of Topo-2β in all-trans retinoic acid (ATRA)-treated human neuroblastoma (SK-N-SH) cells is not understood. More information about the effects of ATRA on SK-N-SH cells is needed to reveal the role of ATRA in the regulation of Topo-2β levels and spontaneous regression of SK-N-SH cells to predict the clinical activity. This study was proposed to investigate the status and role of Topo-2β protein in ATRA-induced survival and neuronal differentiation of SK-N-SH cells. Microscopic, sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitations and Western blot analysis were used to study and compare Topo-2β protein among 10 µM ATRA-treated SK-N-SH cells and controls at different time points. The level of Topo-2β protein increased in the initial days of treatment but markedly decreased upon induction of differentiation by ATRA in later stages. Upon ATRA treatment, SK-N-SH cells stretched, exhibited neurite extensions, and acquired a neuronal phenotype. Both treated and untreated SK-N-SH cells were able to migrate, occupy the scratched area, and completely recolonized 24 hours later. These results suggest an indirect role of Topo-2β protein in regulation of genes involved in cell migration and differentiation of ATRA-treated SK-N-SH cells. This study suggests that Topo-2β may be part of activation/repression of protein complexes activated by epigenetic modifying agents, differentiating signals, and inducible locus. However, detailed studies are needed to explore the ATRA-downstream genes leading to Topo-2β regulation and regulatory proteins of neuronal differentiation.
Collapse
Affiliation(s)
- Venkanna Bhanothu
- Department of Biotechnology and Bioinformatics, SLS, University of Hyderabad, Hyderabad, India
| | - Anand Kumar Kondapi
- Department of Biotechnology and Bioinformatics, SLS, University of Hyderabad, Hyderabad, India
| |
Collapse
|
15
|
The Antidiabetic Drug Liraglutide Minimizes the Non-Cholinergic Neurotoxicity of the Pesticide Mipafox in SH-SY5Y Cells. Neurotox Res 2018; 35:150-159. [PMID: 30088187 DOI: 10.1007/s12640-018-9941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Organophosphorus (OPs) compounds have been widely used in agriculture, industry, and household, and the neurotoxicity induced by them is still a cause of concern. The main toxic mechanism of OPs is the inhibition of acetylcholinesterase (AChE); however, the delayed neuropathy induced by OPs (OPIDN) is mediated by other mechanisms such as the irreversible inhibition of 70% of NTE activity (neuropathy target esterase) that leads to axonal degeneration. Liraglutide is a long-lasting GLP-1 analog clinically used as antidiabetic. Its neurotrophic and neuroprotective effects have been demonstrated in vitro and in experimental models of neurodegenerative diseases. As in OPIDN, axonal degeneration also plays a role in neurodegenerative diseases. Therefore, this study investigated the protective potential of liraglutide against the neurotoxicity of OPs by using mipafox as a neuropathic agent (at a concentration able to inhibit and age 70% of NTE activity) and a neuronal model with SH-SY5Y neuroblastoma cells, which express both esterases. Liraglutide protected cells against the neurotoxicity of mipafox by increasing neuritogenesis, the uptake of glucose, the levels of cytoskeleton proteins, and synaptic-plasticity modulators, besides decreasing the pro-inflammatory cytokine interleukin 1β and caspase-3 activity. This is the first study to suggest that liraglutide might induce beneficial effects against the delayed, non-cholinergic neurotoxicity of OPs.
Collapse
|
16
|
miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis 2018; 9:522. [PMID: 29743567 PMCID: PMC5943282 DOI: 10.1038/s41419-018-0611-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC’s mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3′-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.
Collapse
|
17
|
Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, Rogelj B, Glavač D, Ravnik-Glavač M. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. Front Mol Neurosci 2018; 11:106. [PMID: 29670510 PMCID: PMC5893848 DOI: 10.3389/fnmol.2018.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS, thus opening future research toward a better understanding of the cell biology involved in these partly overlapping pathologies.
Collapse
Affiliation(s)
- Katarina Vrabec
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janez Zidar
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Štefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute, Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Han J, Li J, Tang K, Zhang H, Guo B, Hou N, Huang C. miR-338-3p confers 5-fluorouracil resistance in p53 mutant colon cancer cells by targeting the mammalian target of rapamycin. Exp Cell Res 2017; 360:328-336. [PMID: 28928082 DOI: 10.1016/j.yexcr.2017.09.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
Evidence demonstrate that p53 mutations and microRNAs (miRs) are important components of 5-FU resistance in colorectal cancer (CRC). miR-338-3p has been reported associated with cancer prognosis. However whether or not it influences chemotherapy sensitivity and the underlying mechanisms have not been elucidated. Here, three types of human colon cancer cell lines, HT29 (mutant p53), HCT116 (wild-type p53), and HCT116 p53-/- (deficient p53), were treated with 5-FU. We showed that expression of miR-338-3p was correlated with apoptosis and 5-FU resistance in colon cancer cells. Ectopic expression of miR-338-3p conferred resistance to 5-FU in HCT116 cells. Further experiments indicated that miR-338-3p mediated 5-FU resistance through down-regulation of mTOR expression. Moreover, inhibition of miR-338-3p in HT29 and HCT116 p53-/- cells increased their sensitivity to 5-FU treatment. Furthermore, we detected autophagy changes in our experiment because mTOR was known prominently regulating autophagy and the competition between autophagy and apoptosis in response to 5-FU was a mechanism influencing 5-FU sensitivity. Our results reveal a critical and novel role of miR-338-3p in the correlation of 5-FU resistance with p53 status. Moreover, the miR-338-3p inhibitor has the potential to overcome 5-FU resistance in p53 mutant colon cancer cells.
Collapse
Affiliation(s)
- Jia Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jie Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huahua Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Medical College, Yan'an University, Yan'an, China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
19
|
Fernandes LS, Dos Santos NAG, Emerick GL, Santos ACD. L- and T-type calcium channel blockers protect against the inhibitory effects of mipafox on neurite outgrowth and plasticity-related proteins in SH-SY5Y cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1086-1097. [PMID: 28862523 DOI: 10.1080/15287394.2017.1357359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some organophosphorus compounds (OP), including the pesticide mipafox, produce late onset distal axonal degeneration, known as organophosphorus-induced delayed neuropathy (OPIDN). The underlying mechanism involves irreversible inhibition of neuropathy target esterase (NTE) activity, elevated intracellular calcium levels, increased activity of calcium-activated proteases and impaired neuritogenesis. Voltage-gated calcium channels (VGCC) appear to play a role in several neurologic disorders, including OPIDN. Therefore, this study aimed to examine and compare the neuroprotective effects of T-type (amiloride) and L-type (nimodipine) VGCC blockers induced by the inhibitory actions of mipafox on neurite outgrowth and axonal proteins of retinoic-acid-stimulated SH-SY5Y human neuroblastoma cells, a neuronal model widely employed to determine the neurotoxicity attributed to OP. Both nimodipine and amiloride significantly blocked augmentation of intracellular calcium levels and activity of calpains, as well as decreased neurite length, number of differentiated cells, and lowered concentrations of growth-associated protein 43 (GAP-43) and synapsin induced by mipafox. Only nimodipine inhibited reduction of synaptophysin levels produced by mipafox. These findings demonstrate a role for calcium and VGCC in the impairment of neuronal plasticity mediated by mipafox. Data also demonstrated the neuroprotective potential of T-type and L-type VGCC blockers to inhibit OP-mediated actions, which may be beneficial to counteract cases of pesticide poisoning.
Collapse
Affiliation(s)
- Laís Silva Fernandes
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Neife Aparecida G Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Guilherme Luz Emerick
- b Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso - ICS/UFMT/CUS , Sinop , MT , Brazil
| | - Antonio Cardozo Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| |
Collapse
|
20
|
Chen J, Wang T, Zhou XY, Tang CX, Gao DS. Glucose-6-phosphatase-α participates in dopaminergic differentiation. Neurol Res 2017; 39:869-876. [PMID: 28829278 DOI: 10.1080/01616412.2017.1348681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Induction of dopaminergic (DA) differentiation is a cell-based therapy for Parkinson's disease (PD). Here, we explore the key factors of DA differentiation with a focus on glucose-6-phosphatase (G6Pase), a marker enzyme for the endoplasmic reticulum (ER) associated with cell differentiation. METHODS We cultured SH-SY5Y human neuroblastoma cells, a model system for PD research, and added glial cell-derived neurotrophic factor (GDNF; 25, 50, or 100 ng/ml) to stimulate differentiation. Subsequently, several methods, such as microRNA/mRNA microarrays, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect target genes and proteins respectively. RESULTS Light microscopy revealed that 50 ng/ml GDNF most effectively induced DA differentiation. MicroRNA/mRNA microarrays identified that G6PC mRNA was significantly upregulated, which might be influenced by three downregulated microRNAs. Follow-up qRT-PCR results were consistent with the microarray findings, and western blots also supported the results. DISCUSSION Taken together, our results demonstrate that G6PC, a subunit of G6Pase, participates in DA differentiation. Our findings may contribute to provide a foundation for the research on the mechanism of DA differentiation as well as cell-based therapy for PD.
Collapse
Affiliation(s)
- Jing Chen
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Ting Wang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Xiao-Yan Zhou
- a Experimental Teaching Center of Morphology, Xuzhou Medical University , Xuzhou , China
| | - Chuan-Xi Tang
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| | - Dian-Shuai Gao
- b Department of Human Anatomy and Neurobiology , Xuzhou Medical University , Xuzhou , China
| |
Collapse
|
21
|
Kos A, Klein-Gunnewiek T, Meinhardt J, Loohuis NFMO, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 Attenuates Cortical Neuronal Outgrowth by Modulating the Expression of Axon Guidance Genes. Mol Neurobiol 2017; 54:3439-3452. [PMID: 27180071 PMCID: PMC5658782 DOI: 10.1007/s12035-016-9925-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that confer robustness to gene networks through post-transcriptional gene regulation. Previously, we identified miR-338 as a modulator of axonal outgrowth in sympathetic neurons. In the current study, we examined the role of miR-338 in the development of cortical neurons and uncovered its downstream mRNA targets. Long-term inhibition of miR-338 during neuronal differentiation resulted in reduced dendritic complexity and altered dendritic spine morphology. Furthermore, monitoring axon outgrowth in cortical cells revealed that miR-338 overexpression decreased, whereas inhibition of miR-338 increased axonal length. To identify gene targets mediating the observed phenotype, we inhibited miR-338 in cortical neurons and performed whole-transcriptome analysis. Pathway analysis revealed that miR-338 modulates a subset of transcripts involved in the axonal guidance machinery by means of direct and indirect gene targeting. Collectively, our results implicate miR-338 as a novel regulator of cortical neuronal maturation by fine-tuning the expression of gene networks governing cortical outgrowth.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Teun Klein-Gunnewiek
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Julia Meinhardt
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Nikkie F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud university medical center, 6500 HB, Nijmegen, The Netherlands
| | - Barry B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Gerard J Martens
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands
- Department of Molecular Animal Physiology, Radboud University, Nijmegen, The Netherlands
| | - Armaz Aschrafi
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ, Nijmegen, The Netherlands.
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
22
|
High concentration of trichlorfon (1 mM) disrupts axonal cytoskeleton and decreases the expression of plasticity-related proteins in SH-SY5Y cells. Toxicol In Vitro 2017; 39:84-92. [DOI: 10.1016/j.tiv.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 11/18/2022]
|
23
|
Wang S, Zang C, Xiao T, Fan J, Mei S, Qin Q, Wu Q, Li X, Xu K, He HH, Brown M, Meyer CA, Liu XS. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Res 2016; 26:1417-1429. [PMID: 27466232 PMCID: PMC5052056 DOI: 10.1101/gr.201574.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-regulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersensitive sites identified from published human and mouse DNase-seq data. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of historical epigenetic data for genomic studies of transcriptional regulation.
Collapse
Affiliation(s)
- Su Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai, 200433, China; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Tengfei Xiao
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jingyu Fan
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shenglin Mei
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qian Qin
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu Wu
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xujuan Li
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Kexin Xu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
24
|
Jacovetti C, Jimenez V, Ayuso E, Laybutt R, Peyot ML, Prentki M, Bosch F, Regazzi R. Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion. Mol Endocrinol 2015; 29:693-702. [PMID: 25751313 DOI: 10.1210/me.2014-1299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The elucidation of the mechanisms directing β-cell mass regeneration and maintenance is of interest, because the deficit of β-cell mass contributes to diabetes onset and progression. We previously found that the level of the microRNA (miRNA) miR-338-3p is decreased in pancreatic islets from rodent models displaying insulin resistance and compensatory β-cell mass expansion, including pregnant rats, diet-induced obese mice, and db/db mice. Transfection of rat islet cells with oligonucleotides that specifically block miR-338-3p activity increased the fraction of proliferating β-cells in vitro and promoted survival under proapoptotic conditions without affecting the capacity of β-cells to release insulin in response to glucose. Here, we evaluated the role of miR-338-3p in vivo by injecting mice with an adeno-associated viral vector permitting specific sequestration of this miRNA in β-cells. We found that the adeno-associated viral construct increased the fraction of proliferating β-cells confirming the data obtained in vitro. miR-338-3p is generated from an intron of the gene coding for apoptosis-associated tyrosine kinase (AATK). Similarly to miR-338-3p, we found that AATK is down-regulated in rat and human islets and INS832/13 β-cells in the presence of the cAMP-raising agents exendin-4, estradiol, and a G-protein-coupled Receptor 30 agonist. Moreover, AATK expression is reduced in islets of insulin resistant animal models and selective silencing of AATK in INS832/13 cells by RNA interference promoted β-cell proliferation. The results point to a coordinated reduction of miR-338-3p and AATK under insulin resistance conditions and provide evidence for a cooperative action of the miRNA and its hosting gene in compensatory β-cell mass expansion.
Collapse
Affiliation(s)
- Cécile Jacovetti
- Department of Fundamental Neurosciences (C.J., R.R.), University of Lausanne, 1005 Lausanne, Switzerland; Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology (V.J., E.A., F.B.), School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Diabetes and Obesity Research Program (R.L.), Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, 2010 New South Wales, Australia; and Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.-L.P., M.P.), and Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, Quebec, H2X 0A9 Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Haag T, Herkt CE, Walesch SK, Richter AM, Dammann RH. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms. Genes Cancer 2014; 5:365-74. [PMID: 25352953 PMCID: PMC4209602 DOI: 10.18632/genesandcancer.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022] Open
Abstract
Epigenetic gene inactivation through promoter hypermethylation is an important aberration involved in the silencing of tumor-associated genes in cancer. Here we identified the apoptosis associated tyrosine kinase (AATK) as an epigenetically downregulated tumor related gene. We analyzed the epigenetic regulation of AATK in several human cancer cell lines and normal tissues by methylation and expression analysis. Hypermethylation of AATK was also analyzed in 25 primary lung tumors, 30 breast cancers and 24 matching breast tissues. In normal tissues the AATK CpG island promoter was unmethylated and AATK was expressed. Hypermethylation of AATK occurred frequently in 13 out of 14 (93%) human cancer cell lines. Methylation was reversed by 5-aza-2′-deoxycytidine treatment leading to re-expression of AATK in cancer cell lines. Aberrant methylation of AATK was also revealed in primary lung (40%) and breast (53%) cancers, but was found to be significantly less methylated in matching normal breast tissues (17%; p<0.01). In addition, we observed that AATK is epigenetically reactivated through the chromatin regulator CTCF. We further show that overexpression of Aatk significantly suppresses colony formation in cancer cell lines. Our findings suggest that the apoptosis associated tyrosine kinase is frequently inactivated in human cancers and acts as a tumor suppressive gene.
Collapse
Affiliation(s)
- Tanja Haag
- Institute for Genetics; Justus-Liebig-University; Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research; Giessen, Germany
| | - Christina E Herkt
- Institute for Genetics; Justus-Liebig-University; Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research; Giessen, Germany
| | - Sara K Walesch
- Institute for Genetics; Justus-Liebig-University; Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research; Giessen, Germany
| | - Antje M Richter
- Institute for Genetics; Justus-Liebig-University; Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research; Giessen, Germany
| | - Reinhard H Dammann
- Institute for Genetics; Justus-Liebig-University; Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research; Giessen, Germany
| |
Collapse
|
26
|
Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma. J Transl Med 2014; 94:430-8. [PMID: 24589855 DOI: 10.1038/labinvest.2014.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/08/2014] [Accepted: 01/16/2014] [Indexed: 11/08/2022] Open
Abstract
Apoptosis-associated tyrosine kinase 1 (AATK1) was initially identified as a protein that was dramatically overexpressed during growth arrest and apoptosis of 32Dcl myeloblastic leukemia cells. AATK is expressed in different regions of the brain and may have a role in normal nervous system development by its dual functions of enhancing apoptosis of mature granule cells and promoting terminal neuronal differentiation of developing neurons. However, its function in cancer has never been studied. Melanoma is a tumor composed of transformed cells within the melanocyte lineage deriving from the embryonic neural crest. It has been shown that developmental pathways in neural crest cells have a direct bearing on melanoma formation and human metastatic melanoma cells express a dedifferentiated phenotype. We found that the expression levels of AATK are lower in metastatic melanoma cell lines compared with primary melanoma cell lines and normal human melanocytes. We found that depletion of AATK mRNA in metastatic melanoma cell lines enhanced cell migration in cell line derived from metastatic melanomas. Overexpression of AATK inhibited cell proliferation, colony formation, and promoted apoptosis in melanoma cell lines derived from primary and metastatic melanomas. Signal transduction pathway analysis revealed that Src is involved in regulating AATK. Our results demonstrate for the first time that AATK inhibits cell proliferation, colony formation, and migration, and also promotes apoptosis in melanoma cells.
Collapse
|
27
|
Guo B, Liu L, Yao J, Ma R, Chang D, Li Z, Song T, Huang C. miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res 2013; 12:313-21. [PMID: 24375644 DOI: 10.1158/1541-7786.mcr-13-0507] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Results from recent studies suggest that aberrant microRNA expression is common in numerous cancers. Although miR-338-3p has been implicated in hepatocellular carcinoma, its role in gastric cancer is unknown. To this end, we report that miR-338-3p is downregulated in both gastric cancer tissue and cell lines. Forced expression of miR-338-3p inhibited cell proliferation and clonogenicity and induced a G1-S arrest as well as apoptosis in gastric cancer cells. Furthermore, P-Rex2a (PREX2) was identified as a direct target of miR-338-3p, and silencing P-Rex2a resulted in the same biologic effects of miR-338-3p expression in gastric cancer cells. Furthermore, both enforced expression of miR-338-3p or silencing of P-Rex2a resulted in activation of PTEN, leading to a decline in AKT phosphorylation. Also, miR-338-3p markedly inhibited the in vivo tumorigenicity in a nude mouse xenograft model system. These results demonstrate that miR-338-3p affects gastric cancer progression through PTEN-AKT signaling by targeting P-Rex2a in gastric cancer cells, which posits miR-338-3p as a novel strategy for gastric cancer treatment. IMPLICATIONS miR-338-3p acts as a novel tumor suppressor that blocks the growth of gastric cancer cells through PTEN-PI3K signaling by targeting P-Rex2a.
Collapse
Affiliation(s)
- Bo Guo
- Xi'an Jiaotong University College of Medicine, Yanta Western Road 76, Xi'an 710061, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
LI YAWEN, XU SHIYUAN, ZHANG QINGGUO, LI LE, LAI LUYING, ZHENG TING, SU JIAOLING, YANG NAIMEI, LI YUANTAO. Cytotoxicity study on SH-SY5Y cells cultured at high glucose levels and treated with bupivacaine. Mol Med Rep 2013; 9:515-20. [DOI: 10.3892/mmr.2013.1843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/06/2013] [Indexed: 11/05/2022] Open
|
29
|
Chen X, Pan M, Han L, Lu H, Hao X, Dong Q. miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett 2013; 587:3729-37. [PMID: 24140344 DOI: 10.1016/j.febslet.2013.09.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/30/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNA) can regulate cancer cell proliferation and metastasis. Here, we show that miR-338-3p is down-regulated in metastatic tumor tissues compared to primary tumors, and that that miR-338-3p can inhibit cell proliferation by inducing cell cycle arrest, as well as restrain cell migration and invasion. PREX2a is confirmed as a direct target of miR-338-3p. Knockdown of PREX2a inhibits cell proliferation, migration and invasion through the PTEN/Akt pathway. miR-338-3p-dependent inhibition of proliferation and invasion can be rescued by PREXa. Overall, this study demonstrates that miR-338-3p affects the PTEN/Akt pathway by down-regulating PREX2a. This newly identified function of miR-338-3p provides novel insights into neuroblastoma and may foster therapeutic applications.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China.
| | | | | | | | | | | |
Collapse
|
30
|
Chen JX, Sun YJ, Wang P, Long DX, Li W, Li L, Wu YJ. Induction of autophagy by TOCP in differentiated human neuroblastoma cells lead to degradation of cytoskeletal components and inhibition of neurite outgrowth. Toxicology 2013; 310:92-7. [DOI: 10.1016/j.tox.2013.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
|
31
|
Won KY, Kim YW, Kim HS, Lee SK, Jung WW, Park YK. MicroRNA-199b-5p is involved in the Notch signaling pathway in osteosarcoma. Hum Pathol 2013; 44:1648-55. [PMID: 23574781 DOI: 10.1016/j.humpath.2013.01.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) play important roles in the development, differentiation, and function of different cell types and in the pathogenesis of various human diseases. miRNAs are differentially expressed in normal and cancer cells. The investigation of miRNA expression between healthy subjects and patients with osteosarcoma is crucial for future clinical trials. We performed miRNA microarray analysis on 8 formalin-fixed, paraffin-embedded osteosarcoma tissue samples. We confirmed the results of the microarray analysis using reverse transcription polymerase chain reaction. miRNA profiling of osteosarcoma tissue samples showed that expression of 10 miRNAs had increased 10-fold compared with normal controls. Among the 10 miRNAs, 3 miRNAs (miR-199b-5p, miR-338-3p, and miR-891a) were confirmed to have been up-regulated by reverse transcription polymerase chain reaction. After transfection of 4 osteosarcoma cell lines with miR-199b-5p inhibitor, the expression of Notch pathway components in the transfected cell lines was changed. These results revealed that miR-199b-5p plays a role in Notch signaling in osteosarcoma. Recently, the inhibition of Notch and HES1 signaling has been suggested as a potential therapeutic strategy to prevent metastasis in human osteosarcoma. Taken together with our results, we suggest that miR-199b-5p inhibitor may also be a therapeutic option for osteosarcoma.
Collapse
Affiliation(s)
- Kyu Yeoun Won
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul 134-727, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
33
|
Esteves SLC, Korrodi-Gregório L, Cotrim CZ, van Kleeff PJM, Domingues SC, da Cruz e Silva OAB, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1γ isoforms linked interactions in the brain. J Mol Neurosci 2012; 50:179-97. [PMID: 23080069 DOI: 10.1007/s12031-012-9902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023]
Abstract
Posttranslational protein modifications, in particular reversible protein phosphorylation, are important regulatory mechanisms involved in cellular signaling transduction pathways. Thousands of human proteins are phosphorylatable and the tight regulation of phosphorylation states is crucial for cell maintenance and development. Protein phosphorylation occurs primarily on serine, threonine, and tyrosine residues, through the antagonistic actions of protein kinases and phosphatases. The catalytic subunit of protein phosphatase 1 (PP1), a major Ser/Thr-phosphatase, associates with a large variety of regulatory subunits that define substrate specificity and determine specific cellular pathway responses. PP1 has been shown to bind to different proteins in the brain in order to execute key and differential functions. This work reports the identification of proteins expressed in the human brain that interact with PP1γ1 and PP1γ2 isoforms by the yeast two-hybrid method. An extensive search of PP1-binding motifs was performed for the proteins identified, revealing already known PP1 regulators but also novel interactors. Moreover, our results were integrated with the data of PP1γ interacting proteins from several public web databases, permitting the development of physical maps of the novel interactions. The PP1γ interactome thus obtained allowed for the identification of novel PP1 interacting proteins, supporting novel functions of PP1γ isoforms in the human brain.
Collapse
Affiliation(s)
- Sara L C Esteves
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Serra A, Eirich K, Winkler A, Mrasek K, Göhring G, Barbi G, Cario H, Schlegelberger B, Pokora B, Liehr T, Leriche C, Henne-Bruns D, Barth T, Schindler D. Shared Copy Number Variation in Simultaneous Nephroblastoma and Neuroblastoma due to Fanconi Anemia. Mol Syndromol 2012; 3:120-130. [PMID: 23112754 PMCID: PMC3473353 DOI: 10.1159/000341935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Concurrent emergence of nephroblastoma (Wilms Tumor; WT) and neuroblastoma (NB) is rare and mostly observed in patients with severe subtypes of Fanconi anemia (FA) with or without VACTER-L association (VL). We investigated the hypothesis that early consequences of genomic instability result in shared regions with copy number variation in different precursor cells that originate distinct embryonal tumors. We observed a newborn girl with FA and VL (aplasia of the thumbs, cloacal atresia (urogenital sinus), tethered cord at L3/L4, muscular ventricular septum defect, and horseshoe-kidney with a single ureter) who simultaneously acquired an epithelial-type WT in the left portion of the kidney and a poorly differentiated adrenal NB in infancy. A novel homozygous germline frameshift mutation in PALB2 (c.1676_c1677delAAinsG) leading to protein truncation (pGln526ArgfsX1) inherited from consanguineous parents formed the genetic basis of FA-N. Spontaneous and induced chromosomal instability was detected in the majority of cells analyzed from peripheral lymphocytes, bone marrow, and cultured fibroblasts. Bone marrow cells also showed complex chromosome rearrangements consistent with the myelodysplastic syndrome at 11 months of age. Array-comparative genomic hybridization analyses of both WT and NB showed shared gains or amplifications within the chromosomal regions 11p15.5 and 17q21.31-q25.3, including genes that are reportedly implicated in tumor development such as IGF2, H19, WT2, BIRC5, and HRAS.
Collapse
Affiliation(s)
- A. Serra
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - K. Eirich
- Department of Human Genetics, Julius-Maximilian University, Würzburg, Jena, Germany
| | - A.K. Winkler
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - K. Mrasek
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - G. Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - G. Barbi
- Institute of Human Genetics, Ulm University, Ulm, Jena, Germany
| | - H. Cario
- Department of Pediatric Oncology, Ulm University, Ulm, Jena, Germany
| | - B. Schlegelberger
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - B. Pokora
- Institute of Human Genetics and Anthropology, Heinrich Heine University Medical Faculty, Düsseldorf, Germany
| | - T. Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - C. Leriche
- Department of Pediatric Surgery, Ulm University, Ulm, Jena, Germany
| | - D. Henne-Bruns
- Department of General Surgery, Ulm University, Ulm, Jena, Germany
| | - T.F. Barth
- Department of Pathology, Ulm University, Ulm, Jena, Germany
| | - D. Schindler
- Department of Human Genetics, Julius-Maximilian University, Würzburg, Jena, Germany
| |
Collapse
|
35
|
miR-338-3p is down-regulated by hepatitis B virus X and inhibits cell proliferation by targeting the 3'-UTR region of CyclinD1. Int J Mol Sci 2012; 13:8514-8539. [PMID: 22942717 PMCID: PMC3430248 DOI: 10.3390/ijms13078514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/26/2012] [Accepted: 06/28/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus X protein (HBx) is recognized as an oncogene in hepatocellular carcinoma (HCC). HBx regulates microRNA expression, including down-regulating miR-338-3p in LO2 cells. Here, we investigated miR-338-3p function in HBx-mediated hepatocarcinogenesis. In 23 HBV-infected HCC clinical patient tumor and adjacent non-tumor control tissues, 17 and 19 tumors expressed HBx mRNA and protein, respectively. When considered as a group, HBV-infected HCC tumors had lower miR-338-3p expression than controls; however, miR-338-3p was only significantly down-regulated in HBx-positive tumors, indicating that HBx inversely correlated with miR-338-3p. Functional characterization of miR-338-3p indicated that miR-338-3p mimics inhibited cell proliferation by inducing cell cycle arrest at the G1/S phase as assessed by EdU and cell cycle assays in HBx-expressing LO2 cells. CyclinD1, containing two putative miR-338-3p targets, was confirmed as a direct target using 3′-UTR luciferase reporter assays from cells transfected with mutated binding sites. Mutating the 2397–2403 nt binding site conferred the greatest resistance to miR-338-3p suppression of CyclinD1, indicating that miR-338-3p suppresses CyclinD1 at this site. Overall, this study demonstrates that miR-338-3p inhibits proliferation by regulating CyclinD1, and HBx down-regulates miR-338-3p in HCC. This newly identified miR-338-3p/CyclinD1 interaction provides novel insights into HBx-mediated hepatocarcinogenesis and may facilitate therapeutic development against HCC.
Collapse
|
36
|
Expression profiles of miRNAs during ethanol-induced differentiation of neural stem cells. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 2012; 7:e31022. [PMID: 22363537 PMCID: PMC3281898 DOI: 10.1371/journal.pone.0031022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/31/2011] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration.
Collapse
|
38
|
Huang XH, Chen JS, Wang Q, Chen XL, Wen L, Chen LZ, Bi J, Zhang LJ, Su Q, Zeng WT. miR-338-3p suppresses invasion of liver cancer cell by targeting smoothened. J Pathol 2011; 225:463-72. [PMID: 21671467 DOI: 10.1002/path.2877] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/06/2011] [Accepted: 02/10/2011] [Indexed: 12/11/2022]
Abstract
MicroRNAs are involved in human carcinogenesis and cancer progression. Our previous study has shown that loss of miR-338-3p expression is associated with clinical aggressiveness of hepatocellular carcinoma (HCC). However, the exact roles and mechanisms of miR-338-3p remain unknown in HCC. To determine whether and how miR-338-3p influences liver cancer cell invasion, we studied miR-338-3p in the liver cancer cell lines, and we found that miR-338-3p is down-regulated in treated cells. Forced expression of miR-338-3p in SK-HEP-1 cells suppressed cell migration and invasion, whereas inhibition of miR-338-3p in SMMC-7721 cells induced cell migration and invasion. Furthermore, smoothened (SMO) was identified as a direct target of miR-338-3p. Forced expression of miR-338-3p down-regulated SMO and matrix metalloproteinase (MMP)-9 expression, but inhibition of miR-338-3p up-regulated SMO and MMP9 expression. However, small interfering RNA targeted SMO reversed the effects induced by blockade of miR-338-3p. SMO and MMP9 were overexpressed and associated with invasion and metastasis in HCC tissues. These data indicate that miR-338-3p suppresses cell invasion by targeting the smoothened gene in liver cancer in vitro and miR-338-3p might be a novel potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hui Huang
- Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tsutsumi K, Takano T, Endo R, Fukuda M, Ohshima T, Tomomura M, Hisanaga SI. Phosphorylation of AATYK1 by Cdk5 suppresses its tyrosine phosphorylation. PLoS One 2010; 5:e10260. [PMID: 20422042 PMCID: PMC2857886 DOI: 10.1371/journal.pone.0010260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 03/30/2010] [Indexed: 11/18/2022] Open
Abstract
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.
Collapse
Affiliation(s)
- Koji Tsutsumi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tetsuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Ryo Endo
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Miyagi, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Biological Science, Waseda University, Tokyo, Japan
| | - Mineko Tomomura
- Meikai Pharmaco-Medical Laboratory (MPL), Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Shin-ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
Abstract
MicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating deficits despite an expansion of the oligodendrocyte progenitor pool. To search for miRNAs responsible for the induction of oligodendrocyte maturation, we identified miR-219 and miR-338 as oligodendrocyte-specific miRNAs in spinal cord. Overexpression of these miRNAs is sufficient to promote oligodendrocyte differentiation. Additionally, blockage of these miRNA activities in oligodendrocyte precursor culture and knockdown of miR-219 in zebrafish inhibit oligodendrocyte maturation. miR-219 and miR-338 function in part by directly repressing negative regulators of oligodendrocyte differentiation, including transcription factors Sox6 and Hes5. These findings illustrate that miRNAs are important regulators of oligodendrocyte differentiation, providing new targets for myelin repair.
Collapse
|
41
|
Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK, Zhang DD. Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med 2009; 47:867-79. [PMID: 19573594 PMCID: PMC2748111 DOI: 10.1016/j.freeradbiomed.2009.06.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
The transcription factor Nrf2 has emerged as a master regulator of the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol 13-acetate, two well-studied inducers of neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 in a dose- and time-dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M and microtubule-associated protein 2. Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation, whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to those from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tongde Wu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Alexandria Lau
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tao Jiang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Zheping Huang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Xiao-Jun Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Weimin Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | - Donna D. Zhang
- Address correspondence and reprint requests to Donna D. Zhang, Department of Pharmacology and Toxicology, University of Arizona, 1703 E Mabel St, Tucson, AZ, 85721. Tel: 1-520-626-9918, Fax: 1-520 626 2466;
| |
Collapse
|
42
|
Tsutsumi K, Tomomura M, Furuichi T, Hisanaga SI. Palmitoylation-dependent endosomal localization of AATYK1A and its interaction with Src. Genes Cells 2008; 13:949-64. [DOI: 10.1111/j.1365-2443.2008.01219.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Barik S. An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res 2008; 36:5232-41. [PMID: 18684991 PMCID: PMC2532712 DOI: 10.1093/nar/gkn513] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Boulevard, Mobile, Alabama 36688-0002, USA.
| |
Collapse
|
44
|
Tomomura M, Morita N, Yoshikawa F, Konishi A, Akiyama H, Furuichi T, Kamiguchi H. Structural and functional analysis of the apoptosis-associated tyrosine kinase (AATYK) family. Neuroscience 2007; 148:510-21. [PMID: 17651901 DOI: 10.1016/j.neuroscience.2007.05.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Apoptosis-associated tyrosine kinase (AATYK) is a protein kinase that is predominantly expressed in the nervous system and is involved in apoptosis and neurite growth of cerebellar granule cells. In this study, we cloned three new members of the mouse AATYK family, AATYK1B, AATYK2 and AATYK3. AATYK1B is a splicing variant of the previously reported AATYK1 (referred to as AATYK1A hereafter). In comparison with AATYK1A, these three AATYK members were characterized by having an extra N-terminal region that consists of a signal peptide-like sequence and a predicted transmembrane (TM) region, which is followed by a kinase domain and a long C-terminal domain. Both TM-containing AATYK isoforms (AATYK(+)TM: AATYK1B, 2, and 3) and TM-lacking isoform (AATYK(-)TM: AATYK1A) were recovered in membrane fractions, suggesting that AATYK(+)TM and AATYK(-)TM are transmembrane- and peripheral-membrane protein kinases, respectively. AATYK1A was recovered in the soluble fraction when the cells were treated with 2-bromo palmitate, suggesting that AATYK1A associates with membrane via palmitoylation. The kinase domain was highly conserved among all AATYK members and was shown to be catalytically active. Three AATYK family members were predominantly expressed in adult mouse brains with almost similar expression profiles: widespread distribution over the various brain regions, especially in the cerebellum and hippocampus, and up-regulated expression during development of the cerebellum. In cultured cerebellar granule cells, AATYK1 was abundantly localized in both soma and axons, AATYK2 distribution was restricted to soma, and AATYK3 was punctately present over the cells. AATYK1 was concentrated in the central domain of growth cones of dorsal root ganglion neurons. Our results indicate that AATYK family members are brain-dominant and membrane-associated kinases with slightly different distribution patterns in the developing and adult mouse brain, which may be involved in fine regulation of neuronal functions including neurite extension and apoptosis.
Collapse
Affiliation(s)
- M Tomomura
- Laboratory for Molecular Neurogenesis, Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gagnon KBE, England R, Diehl L, Delpire E. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol 2007; 292:C1809-15. [PMID: 17267545 DOI: 10.1152/ajpcell.00580.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous work from our laboratory and others has established that Ste-20-related proline-alanine-rich kinase (SPAK/PASK) is central to the regulation of NKCC1 function. With no lysine (K) kinase (WNK4) has also been implicated in the regulation of NKCC1 activity through upstream activation of SPAK. Because previous studies from our laboratory also demonstrated a protein-protein interaction between SPAK and apoptosis-associated tyrosine kinase (AATYK), we explore here the possibility that AATYK is another component of the regulation of NKCC1. Heterologous expression of AATYK1 in NKCC1-injected Xenopus laevis oocytes markedly inhibited cotransporter activity under isosmotic conditions. Interestingly, mutation of key residues in the catalytic domain of AATYK1 revealed that the kinase activity does not play a role in the suppression of NKCC1 function. However, mutagenesis of the two SPAK-binding motifs in AATYK1 completely abrogated this effect. As protein phosphatase 1 (PP1) also plays a central role in the dephosphorylation and inactivation of NKCC1, we investigated the possibility that AATYK1 interacts with the phosphatase. We identified a PP1 docking motif in AATYK1 and demonstrated interaction using yeast-2-hybrid analysis. Mutation of a key valine residue (V1175) within this motif prevented protein-protein interaction. Furthermore, the physical interaction between PP1 and AATYK was required for inhibition of NKCC1 activity in Xenopus laevis oocytes. Taken together, our data are consistent with AATYK1 indirectly inhibiting the SPAK/WNK4 activation of the cotransporter by scaffolding an inhibitory phosphatase in proximity to a stimulatory kinase.
Collapse
Affiliation(s)
- Kenneth B E Gagnon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nasvhille, TN 37232-2520, USA
| | | | | | | |
Collapse
|
46
|
Boehrs JK, He J, Halaby MJ, Yang DQ. Constitutive expression and cytoplasmic compartmentalization of ATM protein in differentiated human neuron-like SH-SY5Y cells. J Neurochem 2007; 100:337-45. [PMID: 17241156 DOI: 10.1111/j.1471-4159.2006.04254.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ataxia telangiectasia (A-T) is an autosomal, recessive disorder mainly characterized by neuronal degeneration. However, the reason for neuronal degeneration in A-T patients is still unclear. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370-kDa protein kinase. We measured the levels of the ATM protein found in differentiated neuron-like rat PC12 cells and differentiated neuron-like human SH-SY5Y cells. We found that, in rat PC12 cells, ATM levels decreased dramatically after differentiation, which is consistent with previous results observed in differentiated mouse neural progenitor cells. In contrast, the levels of ATM were similar before and after differentiation in human SH-SY5Y cells. Using an indirect immunofluorescence assay, we showed that ATM translocates from the nucleus to the cytoplasm in differentiated human SH-SY5Y cells. The translocation of ATM was further verified by subcellular fractionation experiments. The constitutive expression and cytoplasmic translocation of ATM in differentiated SH-SY5Y cells suggest that ATM is important for maintaining the regular function of human neuronal cells. Our results further demonstrated that, in response to insulin, ATM protects differentiated neuron-like SH-SY5Y cells from serum starvation-induced apoptosis. These data provide the first evidence that cytoplasmic ATM promotes survival of human neuronal cells in an insulin-dependent manner.
Collapse
Affiliation(s)
- Jessica K Boehrs
- Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069, USA
| | | | | | | |
Collapse
|
47
|
Kawa S, Ito C, Toyama Y, Maekawa M, Tezuka T, Nakamura T, Nakazawa T, Yokoyama K, Yoshida N, Toshimori K, Yamamoto T. Azoospermia in mice with targeted disruption of the Brek/Lmtk2 (brain-enriched kinase/lemur tyrosine kinase 2) gene. Proc Natl Acad Sci U S A 2006; 103:19344-9. [PMID: 17158803 PMCID: PMC1748228 DOI: 10.1073/pnas.0603603103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brek/Lmtk2 (brain-enriched kinase/lemur tyrosine kinase 2) is a member of the Aatyk family of kinases that comprises Aatyk1, Brek/Lmtk2/Aatyk2, and Aatyk3. Although several potential roles have been proposed for Brek and other Aatyk family members, the physiological functions of these kinases remain unclear. Here, we report that Brek(-/-) male mice are infertile, with azoospermia. Detailed histological analysis revealed that Brek(-/-) germ cells differentiated normally until the round-spermatid stage, but failed to undergo the normal change in morphology to become elongated spermatids. Testicular somatic cells appeared normal in these mice. Expression of Brek in testis was restricted to the germ cells, suggesting that the maturations of germ cells in Brek(-/-) mice are affected in a cell-autonomous manner. On the basis of these findings, we concluded that Brek is essential for a late stage of spermatogenesis. Further clarification of the mechanism by which Brek regulates spermatogenesis may help identify new targets for reproductive contraceptives and treatments against infertility.
Collapse
Affiliation(s)
| | - Chizuru Ito
- Laboratory of Gene Expression and Regulation, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and
| | - Yoshiro Toyama
- Laboratory of Gene Expression and Regulation, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and
| | - Mamiko Maekawa
- Laboratory of Gene Expression and Regulation, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and
| | | | | | | | | | - Nobuaki Yoshida
- Laboratory of Gene Expression and Regulation, Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; and
| | - Kiyotaka Toshimori
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tadashi Yamamoto
- *Division of Oncology, and
- To whom correspondence should be addressed at:
Division of Oncology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Japan. E-mail:
| |
Collapse
|
48
|
Wang H, Brautigan DL. Peptide Microarray Analysis of Substrate Specificity of the Transmembrane Ser/Thr Kinase KPI-2 Reveals Reactivity with Cystic Fibrosis Transmembrane Conductance Regulator and Phosphorylase. Mol Cell Proteomics 2006; 5:2124-30. [PMID: 16887929 DOI: 10.1074/mcp.m600188-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.
Collapse
Affiliation(s)
- Hong Wang
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
49
|
Chang PA, Wu YJ, Li W, Leng XF. Effect of carbamate esters on neurite outgrowth in differentiating human SK-N-SH neuroblastoma cells. Chem Biol Interact 2006; 159:65-72. [PMID: 16256972 DOI: 10.1016/j.cbi.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Carbamate esters are widely used as pesticides and can cause neurotoxicity in humans and animals; the exact mechanism is still unclear. In the present investigation, the effects of carbamates at sublethal concentration on neurite outgrowth and cytoskeleton as well as activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in differentiating human SK-N-SH neuroblastoma cells were studied. The results showed that 50 microM of either aldicarb or carbaryl significantly decreased neurite length in the retinoic acid-induced differentiation of the neuroblastoma cells, compared to cells treated with vehicle. Western blot analyses revealed that neither carbamate had significant effects on the levels of actin, or total neurofilament high molecular proteins (NF-H). However, increased NF-H phosphorylation was observed following carbamate treatment. These changes may represent a useful in vitro marker of carbamate neurotoxicity within a simple model of neuronal cell differentiation. Furthermore, activity of AChE, but not NTE, was significantly inhibited by aldicarb and carbaryl in differentiating cells, which suggested that cytoskeletal protein changes induced by carbamate esters in differentiating cells was associated with inhibition of AChE but not NTE.
Collapse
Affiliation(s)
- Ping-An Chang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | |
Collapse
|
50
|
Chang PA, Chen R, Wu YJ. Reduction of neuropathy target esterase does not affect neuronal differentiation, but moderate expression induces neuronal differentiation in human neuroblastoma (SK-N-SH) cell line. ACTA ACUST UNITED AC 2005; 141:30-8. [PMID: 16122834 DOI: 10.1016/j.molbrainres.2005.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 07/14/2005] [Accepted: 07/24/2005] [Indexed: 12/01/2022]
Abstract
Neuropathy target esterase (NTE) is inhibited and aged by organophosphorus compounds that induce delayed neuropathy in human and some sensitive animals. NTE has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation. However, to date, there is no direct evidence of the relevance of NTE in neurodifferentiation under physiological conditions. In this study, we have investigated a possible role for NTE in the all-trans retinoic acid-induced differentiation of neuroblastoma cells. The functional inactivation of NTE by RNA interference indicated that reduction of NTE does not affect process outgrowth or differentiation of the cells, although moderate expression of NTE by expression of the NTE esterase domain accelerates the elongation of neurite processes. Mipafox, a neurotoxic organophosphate, was shown to block process outgrowth and differentiation in cells that have lowered NTE activity due to RNA interference, suggesting that mipafox may interact with other molecules to exert its effect in this context.
Collapse
Affiliation(s)
- Ping-An Chang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | |
Collapse
|