1
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
2
|
Sustained inhibitory transmission but dysfunctional dopamine D2 receptor signaling in dorsal striatal subregions following protracted abstinence from amphetamine. Pharmacol Biochem Behav 2022; 218:173421. [PMID: 35718112 DOI: 10.1016/j.pbb.2022.173421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Behavioral sensitization to amphetamine is a complex phenomenon that engages several neurotransmitter systems and brain regions. While dysregulated signaling in the mesolimbic dopamine system repeatedly has been linked to behavioral sensitization, later research has implicated dorsal striatal circuits and GABAergic neurotransmission in contributing to behavioral transformation elicited by amphetamine. The aim of this study was thus to determine if repeated amphetamine exposure followed by abstinence would alter inhibitory neurotransmission in dorsal striatal subregions. To this end, male Wistar rats received amphetamine (2.0 mg/kg) in an intermittent manner for a total of five days. Behavioral sensitization to amphetamine was measured in locomotor-activity boxes, while neuroadaptations were recorded in the dorsolateral (DLS) and dorsomedial striatum (DMS) using ex vivo electrophysiology at different timepoints of amphetamine abstinence (2 weeks, 4-5 weeks, 10-11 weeks). Data show that repeated drug-exposure produces behavioral sensitization to the locomotor-stimulatory properties of amphetamine, which sustains for at least ten weeks. Electrophysiological recordings demonstrated a long-lasting suppression of evoked population spikes in both striatal subregions. Furthermore, following ten weeks of abstinence, the responsiveness to a dopamine D2 receptor agonist was significantly impaired in brain slices from rats previously receiving amphetamine. However, neither the frequency nor the amplitude of spontaneous inhibitory currents was affected by treatment at any of the time points analyzed. In conclusion, passive administration of amphetamine initiates long-lasting neuroadaptations in brain regions associated with goal-directed behavior and habitual performance, but these transformations do not appear to be driven by changes in GABAergic neurotransmission.
Collapse
|
3
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
4
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Escobar AP, Martínez-Pinto J, Silva-Olivares F, Sotomayor-Zárate R, Moya PR. Altered Grooming Syntax and Amphetamine-Induced Dopamine Release in EAAT3 Overexpressing Mice. Front Cell Neurosci 2021; 15:661478. [PMID: 34234648 PMCID: PMC8255620 DOI: 10.3389/fncel.2021.661478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
The excitatory amino acid transporter EAAT3 plays an important role in the neuronal uptake of glutamate regulating the activation of glutamate receptors. Polymorphisms in the gene-encoding EAAT3 have been associated with obsessive-compulsive disorder (OCD), although the mechanisms underlying this relationship are still unknown. We recently reported that mice with increased EAAT3 expression in forebrain neurons (EAAT3 g lo /CMKII) display behavioral and synaptic features relevant to OCD, including increased grooming, higher anxiety-like behavior and altered cortico-striatal synaptic function. The dopamine neurotransmitter system is implicated in ritualistic behaviors. Indeed, dopaminergic neurons express EAAT3, and mice lacking EAAT3 exhibit decreased dopamine release and decreased expression of the dopamine D1 receptor. Moreover, EAAT3 plays a role on the effect of the psychostimulant amphetamine. As such, we sought to determine if the OCD-like behavior in EAAT3 g lo /CMKII mice is accompanied by altered nigro-striatal dopaminergic transmission. The aim of this study was to analyze dopamine transmission both in basal conditions and after an acute challenge of amphetamine, using behavioral, neurochemical, molecular, and cellular approaches. We found that in basal conditions, EAAT3 g lo /CMKII mice performed more grooming events and that they remained in phase 1 of the grooming chain syntax compared with control littermates. Administration of amphetamine increased the number of grooming events in control mice, while EAAT3 g lo /CMKII mice remain unaffected. Interestingly, the grooming syntax of amphetamine-control mice resembled that of EAAT3 g lo /CMKII mice in basal conditions. Using in vivo microdialysis, we found decreased basal dopamine levels in EAAT3 g lo /CMKII compared with control mice. Unexpectedly, we found that after acute amphetamine, EAAT3 g lo /CMKII mice had a higher release of dopamine compared with that of control mice, suggesting that EAAT3 overexpression leads to increased dopamine releasability. To determine postsynaptic effect of EAAT3 overexpression over dopamine transmission, we performed Western blot analysis of dopaminergic proteins and found that EAAT3 g lo /CMKII mice have higher expression of D2 receptors, suggesting a higher inhibition of the indirect striatal pathway. Together, the data indicate that EAAT3 overexpression impacts on dopamine transmission, making dopamine neurons more sensitive to the effect of amphetamine and leading to a disbalance between the direct and indirect striatal pathways that favors the performance of repetitive behaviors.
Collapse
Affiliation(s)
- Angélica P Escobar
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile
| | - Jonathan Martínez-Pinto
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Francisco Silva-Olivares
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Ramón Sotomayor-Zárate
- Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Universidad de Valparaíso, Valparaiso, Chile
| | - Pablo R Moya
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaiso, Chile.,Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
6
|
Escobar AP, Wendland JR, Chávez AE, Moya PR. The Neuronal Glutamate Transporter EAAT3 in Obsessive-Compulsive Disorder. Front Pharmacol 2019; 10:1362. [PMID: 31803055 PMCID: PMC6872633 DOI: 10.3389/fphar.2019.01362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a heterogeneous psychiatric disorder affecting 1%–3% of the population worldwide. About half of OCD afflicted individuals do not respond to currently available pharmacotherapy, which is mainly based on serotonin reuptake inhibition. Therefore, there is a critical need to search novel and improved therapeutic targets to treat this devastating disorder. In recent years, accumulating evidence has supported the glutamatergic hypothesis of OCD, and particularly pointing a potential role for the neuronal glutamate transporter EAAT3. This mini-review summarizes recent findings regarding the neurobiological basis of OCD, with an emphasis on the glutamatergic neurotransmission and EAAT3 as a key player in OCD etiology.
Collapse
Affiliation(s)
- Angélica P Escobar
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jens R Wendland
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
7
|
Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, Spencer S, McFaddin JA, Hooker KN, Kalivas PW, Scofield MD. Effects of Methamphetamine Self-Administration and Extinction on Astrocyte Structure and Function in the Nucleus Accumbens Core. Neuroscience 2019; 406:528-541. [PMID: 30926546 PMCID: PMC6545487 DOI: 10.1016/j.neuroscience.2019.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
Astrocytes provide support for neurons, regulate metabolic processes, and influence neuronal communication in a variety of ways, including through the homeostatic regulation of glutamate. Following 2-h cocaine or methamphetamine self-administration (SA) and extinction, rodents display decreased levels of basal glutamate in the nucleus accumbens core (NAcore), which transitions to elevated glutamate levels during drug seeking. We hypothesized that, like cocaine, this glutamate 'overflow' during methamphetamine seeking arises via decreased expression of the astroglial glutamate transporter GLT-1, and withdrawal of perisynaptic astroglial processes (PAPs) from synapses. As expected, methamphetamine self-administration and extinction decreased the level of contact made by PAPs in the NAcore, yet did not impact glutamate uptake, GLT-1 expression, or the general structural characteristics of astrocytes. Interestingly, systemic administration of N-acetylcysteine (NAC), a drug that both upregulates GLT-1 and promotes glial-glutamate release, reduced cued methamphetamine seeking. In order to test the impact of astrocyte activation and the induction of glial glutamate release within the NAcore, we employed astrocyte-specific expression of designer receptors exclusively activated by designer drugs (DREADDs). We show here that acute activation of Gq-coupled DREADDs in this region inhibited cued methamphetamine seeking. Taken together, these data indicate that cued methamphetamine seeking following two-hour SA is not mediated by deficient glutamate clearance in the NAcore, yet can be inhibited by engaging NAcore astrocytes.
Collapse
Affiliation(s)
- B M Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - K C Leong
- Department of Psychology, Trinity University, San Antonio, TX, USA
| | - C Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C D Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - S Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J A McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K N Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - M D Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
8
|
Garcia EJ, Arndt DL, Cain ME. Dynamic interactions of ceftriaxone and environmental variables suppress amphetamine seeking. Brain Res 2019; 1712:63-72. [PMID: 30716289 DOI: 10.1016/j.brainres.2019.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
Extrasynaptic glutamate within the nucleus accumbens (NAc) is a driver of relapse. Cocaine, ethanol, and methamphetamine reduce the expression of cystine-glutamate antiporter (xCT) and primary glial glutamate transporter 1 (GLT1) leading to increased extrasynaptic glutamate. Ceftriaxone (CTX) restores xCT and GLT1 expression and effectively suppresses cocaine and ethanol reinstatement, however, the effects of CTX on amphetamine (AMP) reinstatement are not determined. Rodents were reared in an enriched condition (EC), isolated (IC), or standard condition (SC) and trained in AMP self-administration (0.1 mg/kg/infusion). EC, IC, and SC rats received injections of SAL or CTX (200 mg/kg) after daily extinction sessions. Then rats were tested in cue- and AMP-induced reinstatement tests. We hypothesized that EC rearing would reduce reinstatement by altering GLT1 or xCT expression in the NAc and medial prefrontal cortex (mPFC). In Experiment 2, pair-housed rats received once-daily AMP (1.0 mg/kg i.p.) or SAL for eight days followed by once-daily CTX (200 mg/kg i.p.) or SAL injections for 10 days. CTX treatment reduced cue-induced drug seeking in EC rats but not IC or SC rats. In an AMP-induced reinstatement test, CTX reduced AMP-induced drug seeking in EC and SC rats, but not IC rats. Western blot analyses revealed that AMP self-administration and non-contingent repeated AMP exposure did not downregulate GLT1 or xCT in the NAc or mPFC. Therefore, the ability for EC housing to reduce amphetamine seeking may work through other mechanisms.
Collapse
Affiliation(s)
- Erik J Garcia
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States.
| | - David L Arndt
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS 66506-5302, United States
| |
Collapse
|
9
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
10
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
11
|
Roberts-Wolfe DJ, Kalivas PW. Glutamate Transporter GLT-1 as a Therapeutic Target for Substance Use Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2016; 14:745-56. [PMID: 26022265 DOI: 10.2174/1871527314666150529144655] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
The development of new treatments for substance use disorders requires identification of targetable molecular mechanisms. Pathology in glutamatergic neurotransmission system in brain reward circuitry has been implicated in relapse to multiple classes of drugs. Glutamate transporter 1 (GLT-1) crucially regulates glutamatergic signaling by removing excess glutamate from the extrasynaptic space. The purpose of this review is to highlight the effects of addictive drug use on GLT-1 and glutamate uptake, and using GLT-1 as a target in addiction pharmacotherapy. Cocaine, opioids, ethanol, nicotine, amphetamines, and cannabinoids each affect GLT-1 expression and glutamate uptake, and restoring GLT-1 expression with N-acetylcysteine or ceftriaxone shows promise in correcting pre-clinical and clinical manifestations of drug addiction.
Collapse
Affiliation(s)
- Douglas J Roberts-Wolfe
- Department of Neuroscience, Medical University of So Carolina, 173 Ashley Ave, BSB403, Charleston, SC 29425, USA.
| | | |
Collapse
|
12
|
Tellez R, Gómez-Viquez L, Liy-Salmeron G, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol Learn Mem 2012; 98:66-77. [DOI: 10.1016/j.nlm.2012.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 01/25/2023]
|
13
|
Tellez R, Gómez-Víquez L, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 2011; 97:189-201. [PMID: 22183017 DOI: 10.1016/j.nlm.2011.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/11/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper Western-blot analysis was used to evaluate expression changes on them during memory formation in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was evaluated in the hippocampus, prefrontal cortex and striatum. Data indicated that in addition of memory performance other behavioral parameters (e.g., explorative behavior, food-intake, etc.) that memory formation was recorded. Thus, memory formation in a Pavlovian/instrumental autoshaping was associated to up-regulation of prefrontal cortex GAT1 and EAAC1, striatal SERT, DAT and EACC1; while, hippocampal EACC1, GAT1 and SERT were down-regulated. METH impaired short (STM) and long-term memory (LTM), at 24 or 48h. The METH-induced amnesia down-regulated SERT, DAT, EACC1 and GAT1 in hippocampus and the GAT1 in striatum; no-changes were observed in prefrontal cortex. Post-training administration of fluoxetine improved LTM (48h), which was associated to DAT, GAT1 (prefrontal cortex) up-regulation, but GAT1 (striatum) and SERT (hippocampus) down-regulation. Fluoxetine plus METH administration was able to prevent amnesia, which was associated to DAT, EACC1 and GAT1 (prefrontal cortex), SERT and DAT (hippocampus) and EACC1 or DAT (striatal) up-regulation. Together these data show that memory formation, amnesia and anti-amnesic effects are associated to specific patters of transporters expression.
Collapse
Affiliation(s)
- Ruth Tellez
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico
| | | | | |
Collapse
|
14
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
15
|
Abstract
The high rates of co-morbidity of drug addiction with depression may be attributable to shared neurobiology. Here, we discuss shared neurobiological substrates in drug withdrawal and depression, with an emphasis on changes in brain reward circuitry that may underlie anhedonia, a core symptom of depression and drug withdrawal. We explored experimentally whether clinical antidepressant medications or other treatments would reverse the anhedonia observed in rats undergoing spontaneous nicotine or amphetamine withdrawal, defined operationally as elevated brain reward thresholds. The co-administration of selective serotonin reuptake inhibitors with a serotonin-1A receptor antagonist, or the tricyclic antidepressant desipramine, or the atypical antidepressant bupropion ameliorated nicotine or amphetamine withdrawal in rats. Thus, increases in monoaminergic neurotransmission, or neuroadaptations induced by increased monoaminergic neurotransmission, ameliorated depression-like aspects of drug withdrawal. Further, chronic pretreatment with the atypical antipsychotic clozapine, that has some efficacy in the treatment of the depression-like symptoms of schizophrenia, attenuated nicotine and amphetamine withdrawal. Finally, a metabotropic glutamate 2/3 receptor antagonist reversed threshold elevations associated with nicotine withdrawal. The effects of these pharmacological manipulations are consistent with the altered neurobiology observed in drug withdrawal and depression. Thus, these data support the hypothesis of common substrates mediating the depressive symptoms of drug withdrawal and those seen in psychiatric patients. Accordingly, the anhedonic state associated with drug withdrawal can be used to study the neurobiology of anhedonia, and thus contribute to the identification of novel targets for the treatment of depression-like symptoms seen in various psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0603, La Jolla, CA 92093, USA
| | | |
Collapse
|
16
|
Barr AM, Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression. Neurosci Biobehav Rev 2005; 29:675-706. [PMID: 15893821 DOI: 10.1016/j.neubiorev.2005.03.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A large body of evidence indicates that the withdrawal from high doses of psychostimulant drugs in humans induces a transient syndrome, with symptoms that appear isomorphic to those of major depressive disorder. Pharmacological treatment strategies for psychostimulant withdrawal in humans have focused mainly on compounds with antidepressant properties. Animal models of psychostimulant withdrawal have been shown to demonstrate a wide range of deficits, including changes in homeostatic, affective and cognitive behaviors, as well as numerous physiological changes. Many of these behavioral and physiological sequelae parallel specific symptoms of major depressive disorder, and have been reversed by treatment with antidepressant drugs. These combined findings provide strong support for the use of psychostimulant withdrawal as an inducing condition in animal models of depression. In the current review we propound that the psychostimulant withdrawal model displays high levels of predictive and construct validity. Recent progress and limitations in the development of this model, as well as future directions for research, are evaluated and discussed.
Collapse
Affiliation(s)
- Alasdair M Barr
- Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037 USA
| | | |
Collapse
|
17
|
Armstrong V, Reichel CM, Doti JF, Crawford CA, McDougall SA. Repeated amphetamine treatment causes a persistent elevation of glial fibrillary acidic protein in the caudate-putamen. Eur J Pharmacol 2004; 488:111-5. [PMID: 15044042 DOI: 10.1016/j.ejphar.2004.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 01/26/2004] [Accepted: 02/03/2004] [Indexed: 12/29/2022]
Abstract
The ability of repeated D-amphetamine (2 mg/kg) treatment to induce behavioral sensitization in rats and alter glial fibrillary acidic protein (GFAP), dopamine transporter (DAT) and glutamate transporter-1 (GLT-1) immunoreactivities was assessed after a 10-day drug abstinence period. Results showed that a sensitizing regimen of amphetamine caused a persistent increase in the number of GFAP-positive cells in the dorsal and ventral caudate-putamen. DAT and GLT-1 immunoreactivities were unaffected. Although the elevated GFAP expression may be due to a mild neurotoxicity, it is also possible that amphetamine-induced increases in GFAP reflect adaptive changes that may be associated with processes underlying behavioral sensitization.
Collapse
Affiliation(s)
- Victoria Armstrong
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | | | | | |
Collapse
|
18
|
Kozell LB, Meshul CK. Nerve terminal glutamate immunoreactivity in the rat nucleus accumbens and ventral tegmental area after a short withdrawal from cocaine. Synapse 2004; 51:224-32. [PMID: 14696010 DOI: 10.1002/syn.10304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cocaine administration has been shown to alter glutamate transmission in numerous studies. Using quantitative electron microscopic immunogold labeling, our laboratory has previously reported that nerve terminal glutamate immunoreactivity is transiently altered following cocaine administration. The present study was undertaken to examine presynaptic nerve terminal glutamate immunoreactivity at shorter time points after withdrawal from cocaine. Animals received saline or cocaine for 7 days followed 3 days later by a cocaine or saline challenge. Most (>75%) cocaine-challenged animals had a heightened locomotor response to cocaine compared to the first day of cocaine and were considered behaviorally sensitized. One day after the challenge, glutamate immunogold-labeling was quantified in nerve terminals making asymmetrical synaptic contacts within the core and shell of the nucleus accumbens and ventral tegmental area. A single dose of cocaine did not alter the density of presynaptic nerve terminal glutamate immunoreactivity in the nucleus accumbens (NAc) or ventral tegmental area (VTA). The density of nerve terminal glutamate immunoreactivity in the shell, but not the core, was significantly increased in the animals receiving repeated cocaine. In the VTA the density of nerve terminal glutamate immunoreactivity did not change in the cocaine-sensitized group, but was significantly increased in the nonsensitized group. The finding that repeated cocaine treatment increased glutamate nerve terminal immunolabeling within the nucleus accumbens shell, but not the core, supports the hypothesis that glutamate synapses in the core and shell are differentially sensitive to repeated cocaine administration. Overall, our study does not support a role for changes in presynaptic glutamate in the development of behavioral sensitization.
Collapse
Affiliation(s)
- L B Kozell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
19
|
Abstract
Traditionally, addiction research in neuroscience has focused on mechanisms involving dopamine and endogenous opioids. More recently, it has been realized that glutamate also plays a central role in processes underlying the development and maintenance of addiction. These processes include reinforcement, sensitization, habit learning and reinforcement learning, context conditioning, craving and relapse. In the past few years, some major advances have been made in the understanding of how glutamate acts and interacts with other transmitters (in particular, dopamine) in the context of processes underlying addiction. It appears that while many actions of glutamate derive their importance from a stimulatory interaction with the dopaminergic system, there are some glutamatergic mechanisms that contribute to addiction independent of dopaminergic systems. Among those, context-specific aspects of behavioral determinants (ie control over behavior by conditioned stimuli) appear to depend heavily on glutamatergic transmission. A better understanding of the underlying mechanisms might open new avenues to the treatment of addiction, in particular regarding relapse prevention.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, R&D, Department of Pharmacology, Aachen, Germany.
| | | |
Collapse
|