1
|
Nishimura K, Ueta Y, Yoshino K. Estrogen-dependent oxytocin expression in the hypothalamus and estrogen-dependent vasopressin in the median eminence. J Obstet Gynaecol Res 2024; 50:2009-2018. [PMID: 39340151 DOI: 10.1111/jog.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
The posterior pituitary (PP) hormones oxytocin (OXT) and arginine vasopressin (AVP) are synthesized within the hypothalamic nucleus and released from the PP into systemic circulation. Hypothalamic AVP projects its axons into the external layer of median eminence (eME) and regulates anterior pituitary hormone secretion during stress responses. Although similar as PP hormones, we demonstrate distinct regulatory roles of estrogen in hypothalamic OXT and AVP dynamics. OXT dynamics in the hypothalamus exhibit sex-dependent variations and that estrogen may influence dynamic OXT level changes, as observed in OXT-mRFP1 transgenic rats. Estrogen was also observed to modulate dynamic changes in AVP levels in the axon terminals of eME in female AVP-eGFP transgenic rats. Although OXT and AVP are produced within the similar hypothalamic region, both exhibit distinct dynamics within the hypothalamus. Estrogen acts on the hypothalamus, and further effects of estrogen replacement therapy can be expected.
Collapse
Affiliation(s)
- Kazuaki Nishimura
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
2
|
Zheng Y, Cheng G, Lin X, Wang J. Effects of prenatal cocaine exposure on estrous cycle, and behavior and expression of estrogen receptor alpha and oxytocin during estrus and diestrus in mice offspring. Behav Pharmacol 2024; 35:386-398. [PMID: 39230562 DOI: 10.1097/fbp.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Increasing evidence indicates that prenatal cocaine exposure may result in many developmental and long-lasting neurological and behavioral effects. The behaviors of female animals are strongly associated with the estrous cycle. Estrogen receptors and oxytocin are important neuroendocrine factors that regulate social behavior and are of special relevance to females. However, whether prenatal cocaine exposure induces estrous cycle changes in offspring and whether neurobehavioral changes in estrus and diestrus offspring differ remains unclear. On gestational day 12, mice were administered cocaine once daily for seven consecutive days, then the estrous cycle was examined in adult female offspring, as well as locomotion, anxiety level, and social behaviors, and the expression of estrogen receptor alpha-immunoreactive and oxytocin-immunoreactive neurons were compared between estrus and diestrus offspring. Prenatal cocaine exposure resulted in the shortening of proestrus and estrus in the offspring. During estrus and diestrus, prenatally cocaine-exposed offspring showed increased anxiety levels and changed partial social behaviors; their motility showed no significant differences in estrus, but declined in diestrus. Prenatal cocaine exposure reduced estrogen receptor alpha-immunoreactive expression in the medial preoptic area, ventromedial hypothalamic nucleus, and arcuate nucleus and oxytocin-immunoreactive expression in the paraventricular nucleus in estrus and diestrus offspring. These results suggest that prenatal cocaine exposure induces changes in the offspring's estrous cycle and expression of estrogen receptor alpha and oxytocin in a brain region-specific manner and that prenatal cocaine exposure and the estrous cycle interactively change motility and partial social behavior. Estrogen receptor alpha and oxytocin signaling are likely to play important concerted roles in mediating the effects of prenatal cocaine exposure on the offspring.
Collapse
Affiliation(s)
- Yanghui Zheng
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | | | | | | |
Collapse
|
3
|
Du R, Liang T, Lu G. Modulation of empathic abilities by the interplay between estrogen receptors and arginine vasopressin. Neurosci Res 2024:S0168-0102(24)00110-X. [PMID: 39245211 DOI: 10.1016/j.neures.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This review examines the complex interactions between estrogen receptors α and β (ERα and ERβ) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERβ, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERβ may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERβ in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Quintana DS, Glaser BD, Kang H, Kildal ESM, Audunsdottir K, Sartorius AM, Barth C. The interplay of oxytocin and sex hormones. Neurosci Biobehav Rev 2024; 163:105765. [PMID: 38885888 DOI: 10.1016/j.neubiorev.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
The neuropeptide oxytocin has historically been associated with reproduction and maternal behavior. However, more recent research has uncovered that oxytocin has a much wider range of roles in physiology and behavior. Despite the excitement surrounding potential therapeutical applications of intranasally administered oxytocin, the results of these intervention studies have been inconsistent. Various reasons for these mixed results have been proposed, which tend to focus on methodological issues, such as study design. While methodological issues are certainly important, emerging evidence suggests that the interaction between oxytocin and sex hormones may also account for these varied findings. To better understand the purpose and function of the interaction of oxytocin with sex hormones, with a focus on estrogens, progesterone, and testosterone, we conducted a comprehensive thematic review via four perspectives: evolutionary, developmental, mechanistic, and survival. Altogether, this synergistic approach highlights the critical function of sex hormone activity for accomplishing the diverse roles of oxytocin via the modulation of oxytocin release and oxytocin receptor activity, which is also likely to contribute to the heterogeneity of outcomes after oxytocin administration.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway
| | - Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
5
|
Torres T, Adam N, Mhaouty-Kodja S, Naulé L. Reproductive function and behaviors: an update on the role of neural estrogen receptors alpha and beta. Front Endocrinol (Lausanne) 2024; 15:1408677. [PMID: 38978624 PMCID: PMC11228153 DOI: 10.3389/fendo.2024.1408677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Infertility is becoming a major public health problem, with increasing frequency due to medical, environmental and societal causes. The increasingly late age of childbearing, growing exposure to endocrine disruptors and other reprotoxic products, and increasing number of medical reproductive dysfunctions (endometriosis, polycystic ovary syndrome, etc.) are among the most common causes. Fertility relies on fine-tuned control of both neuroendocrine function and reproductive behaviors, those are critically regulated by sex steroid hormones. Testosterone and estradiol exert organizational and activational effects throughout life to establish and activate the neural circuits underlying reproductive function. This regulation is mediated through estrogen receptors (ERs) and androgen receptor (AR). Estradiol acts mainly via nuclear estrogen receptors ERα and ERβ. The aim of this review is to summarize the genetic studies that have been undertaken to comprehend the specific contribution of ERα and ERβ in the neural circuits underlying the regulation of the hypothalamic-pituitary-gonadal axis and the expression of reproductive behaviors, including sexual and parental behavior. Particular emphasis will be placed on the neural role of these receptors and the underlying sex differences.
Collapse
Affiliation(s)
| | | | | | - Lydie Naulé
- Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
6
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Bernier NJ, Balshine S. Social regulation of arginine vasopressin and oxytocin systems in a wild group-living fish. Horm Behav 2024; 161:105521. [PMID: 38452613 DOI: 10.1016/j.yhbeh.2024.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Nisbett KE, Gonzalez LA, Teruel M, Carter CS, Vendruscolo LF, Ragozzino ME, Koob GF. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 2023; 26:100567. [PMID: 37706061 PMCID: PMC10495655 DOI: 10.1016/j.ynstr.2023.100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Anxiety and depression are highly prevalent psychiatric disorders, affecting approximately 18% of the United States population. Evidence indicates that central oxytocin mediates social cognition, social bonding, and social anxiety. Although it is well-established that oxytocin ameliorates social deficits, less is known about the therapeutic effects of oxytocin in non-social contexts. We hypothesized that positive effects of oxytocin in social contexts are attributable to intrinsic effects of oxytocin on neural systems that are related to emotion regulation. The present study investigated the effect of intracerebroventricular (ICV) oxytocin administration (i.e., central action) on anxiety- and depression-like behavior in C57Bl/6J mice using non-social tests. Male and female mice received an ICV infusion of vehicle or oxytocin (100, 200, or 500 ng), then were tested in the elevated zero maze (for anxiety-like behavior) and the tail suspension test (for depression-like behavior). Oxytocin dose-dependently increased open zone occupancy and entries in the elevated zero maze and reduced immobility duration in the tail suspension test in both sexes. Oxytocin decreased anxiety and depression-like behavior in male and female mice. The observed effect of oxytocin on anxiolytic-like behavior appeared to be driven by the males. Given the smaller anxiolytic-like effect of oxytocin in the female mice and the established interaction between oxytocin and reproductive hormones (estrogen and progesterone), we also explored whether oxytocin sensitivity in females varies across estrous cycle phases and in ovariectomized females that were or were not supplemented with estrogen or progesterone. Oxytocin reduced anxiety-like behavior in female mice in proestrus/estrus, ovariectomized females (supplemented or not with estrogen or progesterone), but not females in metestrus/diestrus. Additionally, oxytocin reduced depression-like behavior in all groups tested with slight differences across the various hormonal statuses. These results suggest that the effect of oxytocin in depression- and anxiety-like behavior in mice can be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL 60607, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luis A. Gonzalez
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marina Teruel
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael E. Ragozzino
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Tiberio P, Viganò A, Ilieva MB, Pindilli S, Bianchi A, Zambelli A, Santoro A, De Sanctis R. The Role of Female Reproductive Hormones in the Association between Migraine and Breast Cancer: An Unanswered Question. Biomedicines 2023; 11:1613. [PMID: 37371707 DOI: 10.3390/biomedicines11061613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulating epidemiological studies have investigated a possible interconnection between migraine (Mi) and breast cancer (BC) because of the strong link between these diseases and female reproductive hormones. This review aims to consolidate findings from epidemiological studies and explore biologically plausible hypothetical mechanisms related to hormonal pathways. Current evidence suggests a protective role of Mi in BC development, particularly in case-control studies but not in cohort ones. The inconsistency among studies may be due to several reasons, including diagnostic criteria for Mi and the age gap between the development of these two diseases. Furthermore, recent research has challenged the concept of a net beneficial effect of Mi on BC, suggesting a more complex relationship between the two conditions. Many polymorphisms/mutations in hormone-related pathways are involved in at least one of the two conditions. The most promising evidence has emerged for a specific alteration in the estrogen receptor 1 gene (rs2228480). However, the possible specific mutation or polymorphism involved in this association has not yet been identified. Further studies with robust methodologies are needed to validate the protective role of Mi in BC and fully elucidate the precise nature of this causal relationship.
Collapse
Affiliation(s)
- Paola Tiberio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Alessandro Viganò
- Neurology Unit, IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Mariya Boyanova Ilieva
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | | | - Anna Bianchi
- Neurology Unit, IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
| |
Collapse
|
10
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
11
|
He J, Yan JJ, Zha X, Ding XJ, Zhang YL, Lu Z, Xu XH. Sexually dimorphic effects of estrogen receptor 2 deletion in the dorsal raphe nucleus on emotional behaviors. J Neuroendocrinol 2023; 35:e13195. [PMID: 36072992 DOI: 10.1111/jne.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Sex differences in emotional behaviors and affective disorders have been widely noted, of which sexually dimorphic secretion of gonadal steroid hormones such as estrogen is suspected to play a role. However, the underlying neural mechanisms remain poorly understood. We noted that the expression of estrogen receptor 2 (Esr2, or ERβ), a key mediator of estrogen signaling in the brain, was enriched in the dorsal raphe nucleus (DRN), a region involved in emotion regulation. To investigate whether DRN Esr2 expression confers sex-specific susceptibility or vulnerability in emotional behaviors, we generated a conditional allele of Esr2 that allowed for site-specific deletion of Esr2 in the DRN via local injection of Cre-expressing viruses. DRN-specific Esr2 deletion mildly increased anxiety behaviors in females, as shown by decreased time spent in the center zone of an open field in knockout females. By contrast, DRN Esr2 deletion had no effects on anxiety levels in males, as demonstrated by knockout males spending comparable time in the center zone of an open field and open arms of an elevated-plus maze. Furthermore, in the tail suspension test, DRN Esr2 deletion reduced immobility, a depression-like behavior, in a male-biased manner. Together, these results reveal sex-specific functions of DRN Esr2 in regulating emotional behaviors and suggest targeted manipulation of DRN Esr2 signaling as a potential therapeutic strategy to treat sex-biased affective disorders.
Collapse
Affiliation(s)
- Jing He
- Department of Psychiatry, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xiao-Jing Ding
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zheng Lu
- Department of Psychiatry, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
12
|
Wei F, Xian D, He Y, Yan Z, Deng X, Chen Y, Zhao L, Zhang Y, Li W, Ma B, Zhang J, Jing Y. Effects of maternal deprivation and environmental enrichment on anxiety-like and depression-like behaviors correlate with oxytocin system and CRH level in the medial-lateral habenula. Peptides 2022; 158:170882. [PMID: 36150631 DOI: 10.1016/j.peptides.2022.170882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
The medial-lateral habenula (LHbM)'s role in anxiety and depression behaviors in female mice remains unclear. Here, we used neonatal maternal deprivation (MD) and post-weaning environmental enrichment (EE) to treat female BALB/c offspring and checked anxiety-like and depression-like behaviors as well as the corticotropin-releasing hormone (CRH), oxytocin receptor (OTR), estrogen receptor-beta (ERβ) levels in their LHbM at adulthood. We found that MD enhanced state anxiety-like behaviors in the elevated plus-maze test, and EE caused trait anxiety-like behaviors in the open field test and depression-like behaviors in the tail suspension test. The immunochemistry showed that MD reduced OT immunoreactive neuron numbers in the hypothalamic paraventricular nucleus but increased OTR levels in the LHbM; EE increased CRH levels in the LHbM but decreased OTR levels in the LHbM. The additive effects of EE and MD maintained the behavioral parameters, OT-ir neuronal numbers, CRH levels, and OTR levels similar to the additive of non-MD and non-EE. The correlation analysis showed that CRH levels correlated with synaptic connection levels, OTR levels correlated with nucleus densities, and ERβ levels correlated with Nissl body levels and body weights in female mice. Neither MD nor EE affected ERβ levels in the LHbM. Together, the study revealed the relationships between behaviors and neuroendocrine and neuronal alterations in female LHbM and the effects of experiences including MD and EE on them.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China; Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Donghua Xian
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yunqing He
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ziqing Yan
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao Deng
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajie Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Long Zhao
- Department of Orthopedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wenhao Li
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Bo Ma
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Junfeng Zhang
- Department of Human Anatomy & Shanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shanxi, 710021, PR China.
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
13
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
14
|
Targeting Neurons with Functional Oxytocin Receptors: A Novel Set of Simple Knock-In Mouse Lines for Oxytocin Receptor Visualization and Manipulation. eNeuro 2022; 9:ENEURO.0423-21.2022. [PMID: 35082173 PMCID: PMC8856715 DOI: 10.1523/eneuro.0423-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
The neuropeptide oxytocin (Oxt) plays important roles in modulating social behaviors. Oxt receptor (Oxtr) is abundantly expressed in the brain and its relationship to socio-behavioral controls has been extensively studied using mouse brains. Several genetic tools to visualize and/or manipulate Oxtr-expressing cells, such as fluorescent reporters and Cre recombinase drivers, have been generated by ES-cell based gene targeting or bacterial artificial chromosome (BAC) transgenesis. However, these mouse lines displayed some differences in their Oxtr expression profiles probably because of the complex context and integrity of their genomic configurations in each line. Here, we apply our sophisticated genome-editing techniques to the Oxtr locus, systematically generating a series of knock-in mouse lines, in which its endogenous transcriptional regulations are intactly preserved and evaluate their expression profiles to ensure the reliability of our new tools. We employ the epitope tagging strategy, with which C-terminally fused tags can be detected by highly specific antibodies, to successfully visualize the Oxtr protein distribution on the neural membrane with super-resolution imaging for the first time. By using T2A self-cleaving peptide sequences, we also induce proper expressions of tdTomato reporter, codon-improved Cre recombinase (iCre), and spatiotemporally inducible Cre-ERT2 in Oxtr-expressing neurons. Electrophysiological recordings from tdTomato-positive cells in the reporter mice support the validity of our tool design. Retro-orbital injections of AAV-PHP.eB vector into the Cre line further enabled visualization of recombinase activities in the appropriate brain regions. Moreover, the first-time Cre-ERT2 line drives Cre-mediated recombination in a spatiotemporally controlled manner on tamoxifen (TMX) administration. These tools thus provide an excellent resource for future functional studies in Oxt-responsive neurons and should prove of broad interest in the field.
Collapse
|
15
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
16
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
17
|
Xie S, Hu Y, Fang L, Chen S, Botchway BOA, Tan X, Fang M, Hu Z. The association of oxytocin with major depressive disorder: role of confounding effects of antidepressants. Rev Neurosci 2021; 33:59-77. [PMID: 33989469 DOI: 10.1515/revneuro-2020-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/18/2021] [Indexed: 01/15/2023]
Abstract
Major depressive disorder is a genetic susceptible disease, and a psychiatric syndrome with a high rate of incidence and recurrence. Because of its complexity concerning etiology and pathogenesis, the cure rate of first-line antidepressants is low. In recent years, accumulative evidences revealed that oxytocin act as a physiological or pathological participant in a variety of complex neuropsychological activities, including major depressive disorder. Six electronic databases (Web of Science, PubMed, Scopus, Google Scholar, CNKI, and Wanfang) were employed for researching relevant publications. At last, 226 articles were extracted. The current review addresses the correlation of the oxytocin system and major depressive disorder. Besides, we summarize the mechanisms by which the oxytocin system exerts potential antidepressant effects, including regulating neuronal activity, influencing neuroplasticity and regeneration, altering neurotransmitter release, down regulating hypothalamic-pituitary-adrenal axis, anti-inflammatory, antioxidation, and genetic effects. Increasing evidence shows that oxytocin and its receptor gene may play a potential role in major depressive disorder. Future research should focus on the predictive ability of the oxytocin system as a biomarker, as well as its role in targeted prevention and early intervention of major depressive disorder.
Collapse
Affiliation(s)
- Shiyi Xie
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China.,Clinical Medical College, Zhejiang Chinese Medical University, 310053Hangzhou, China
| | - Yan Hu
- Clinical Medical College, Zhejiang Chinese Medical University, 310053Hangzhou, China
| | - Li Fang
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Integrated Chinese and West Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, 208 Huanchendong Road, 310003Hangzhou, China
| |
Collapse
|
18
|
Kreutzmann JC, Fendt M. Intranasal oxytocin compensates for estrus cycle-specific reduction of conditioned safety memory in rats: Implications for psychiatric disorders. Neurobiol Stress 2021; 14:100313. [PMID: 33778132 PMCID: PMC7985696 DOI: 10.1016/j.ynstr.2021.100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
Stress and anxiety disorder patients frequently fail to benefit from psychotherapies which often consist of inhibitory fear learning paradigms. One option to improve the therapy outcome is medication-enhanced psychotherapy. Research in humans and laboratory rodents has demonstrated that oxytocin (OT) reduces fear and facilitates fear extinction. However, the role of OT in conditioned safety learning, an understudied but highly suitable type of inhibitory fear learning, remains to be investigated. The present study aimed at investigating the effect of intranasal OT on conditioned safety. To test this, Sprague Dawley rats (♂n = 57; ♀n = 72) were safety conditioned. The effects of pre-training or pre-testing intranasal OT on conditioned safety and contextual fear, both measured by the acoustic startle response, and on corticosterone plasma levels were assessed. Furthermore, the involvement of the estrous cycle was analyzed. The present data show that intranasal OT administration before the acquisition or recall sessions enhanced conditioned safety memory in female rats while OT had no effects in male rats. Further analysis of the estrus cycle revealed that vehicle-treated female rats in the metestrus showed reduced safety memory which was compensated by OT-treatment. Moreover, all vehicle-treated rats, regardless of sex, expressed robust contextual fear following conditioning. Intranasal OT-treated rats showed a decrease in contextual fear, along with reduced plasma corticosterone levels. The present data demonstrate that intranasal OT has the capacity to compensate deficits in safety learning, along with a reduction in contextual fear and corticosterone levels. Therefore, add-on treatment with intranasal OT could optimize the therapy of anxiety disorders.
Collapse
Affiliation(s)
- Judith C Kreutzmann
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
19
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
20
|
Contoreggi NH, Mazid S, Goldstein LB, Park J, Ovalles AC, Waters EM, Glass MJ, Milner TA. Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor β-containing neurons in the mouse hypothalamic paraventricular nucleus. J Comp Neurol 2021; 529:2283-2310. [PMID: 33341960 DOI: 10.1002/cne.25093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) β and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERβ with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERβ-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERβ-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERβ-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERβ-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERβ-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.
Collapse
Affiliation(s)
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Lily B Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - John Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| |
Collapse
|
21
|
Effects chronic administration of corticosterone and estrogen on HPA axis activity and telomere length in brain areas of female rats. Brain Res 2020; 1750:147152. [PMID: 33049239 DOI: 10.1016/j.brainres.2020.147152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
Chronic stress is related to the acceleration of telomere shortening. Recent work showed a correlation between chronic psychosocial stress and reduced telomere length in certain cells. The exposure of T lymphocytes to cortisol promoted a significant reduction in telomerase activity. Although stress can promote changes in telomere length, whether increased glucocorticoid concentrations alter telomere length in brain tissue cells is unclear. In addition to modulating the activity of the stress system, estrogen also influences telomere length. The objective of this study was to verify whether chronic exposure to glucocorticoids promotes changes in the telomere length of encephalic areas involved in the control of HPA axis activity and whether estrogen affects these changes. Wistar rats were ovariectomized and treated with estradiol cypionate [(50 or 100 μg/kg, subcutaneously)] or oil and 20 mg/kg corticosterone or vehicle (isotonic saline with 2% Tween 80, subcutaneously) for 28 days. On the day after the end of the hormonal treatment, the animals were euthanized for collection of blood, brain and pituitary gland samples. Estrogen modulated the activity of the HPA axis. CRH, AVP and POMC mRNA levels were reduced by estrogen. At least in doses and treatment time used, there was no correlation between effects of exposure to glucocorticoids and estrogen on telomere length in the brain areas of female rats. However, estrogen treatment reduced the telomere length in the central amygdala and dorsal hippocampus, but not in the PVN, indicating a variation of reaction of telomeres for estrogen in different brain areas.
Collapse
|
22
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
23
|
Sagoshi S, Maejima S, Morishita M, Takenawa S, Otubo A, Takanami K, Sakamoto T, Sakamoto H, Tsukahara S, Ogawa S. Detection and Characterization of Estrogen Receptor Beta Expression in the Brain with Newly Developed Transgenic Mice. Neuroscience 2020; 438:182-197. [PMID: 32387645 DOI: 10.1016/j.neuroscience.2020.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Two types of nuclear estrogen receptors, ERα and ERβ, have been shown to be differentially involved in the regulation of various types of behaviors. Due to a lack of tools for identifying ERβ expression, detailed anatomical distribution and neurochemical characteristics of ERβ expressing cells and cellular co-expression with ERα remain unclear. We have generated transgenic mice ERβ-RFPtg, in which RFP was inserted downstream of ERβ BAC promotor. We verified RFP signals as ERβ by confirming: (1) high ERβ mRNA levels in RFP-expressing cells collected by fluorescence-activated cell sorting; and (2) co-localization of ERβ mRNA and RFP proteins in the paraventricular nucleus (PVN). Strong ERβ-RFP signals were found in the PVN, medial preoptic area (MPOA), bed nucleus of the stria terminalis, medial amygdala (MeA), and dorsal raphe nucleus (DRN). In the MPOA and MeA, three types of cell populations were identified; those expressing both ERα and ERβ, and those expressing exclusively either ERα or ERβ. The majority of PVN and DRN cells expressed only ERβ-RFP. Further, ERβ-RFP positive cells co-expressed oxytocin in the PVN, and tryptophan hydroxylase 2 and progesterone receptors in the DRN. In the MeA, some ERβ-RFP positive cells co-expressed oxytocin receptors. These findings collectively suggest that ERβ-RFPtg mice can be a powerful tool for future studies on ERβ function in the estrogenic regulation of social behaviors.
Collapse
Affiliation(s)
- Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Sho Maejima
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Akito Otubo
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
24
|
Dombret C, Naulé L, Trouillet AC, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Effects of neural estrogen receptor beta deletion on social and mood-related behaviors and underlying mechanisms in male mice. Sci Rep 2020; 10:6242. [PMID: 32277160 PMCID: PMC7148327 DOI: 10.1038/s41598-020-63427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Estradiol derived from neural aromatization of testosterone plays a key role in the organization and activation of neural structures underlying male behaviors. This study evaluated the contribution of the estrogen receptor (ER) β in estradiol-induced modulation of social and mood-related behaviors by using mice lacking the ERβ gene in the nervous system. Mutant males exhibited reduced social interaction with same-sex congeners and impaired aggressive behavior. They also displayed increased locomotor activity, and reduced or unaffected anxiety-state level in three paradigms. However, when mice were exposed to unescapable stress in the forced swim and tail suspension tests, they spent more time immobile and a reduced time in swimming and climbing. These behavioral alterations were associated with unaffected circadian and restraint stress-induced corticosterone levels, and unchanged number of tryptophan hydroxylase 2-immunoreactive neurons in the dorsal raphe. By contrast, reduced mRNA levels of oxytocin and arginine-vasopressin were observed in the bed nucleus of stria terminalis, whereas no changes were detected in the hypothalamic paraventricular nucleus. The neural ERβ is thus involved to different extent levels in social and mood-related behaviors, with a particular action on oxytocin and arginine-vasopressin signaling pathways of the bed nucleus of stria terminalis, yet the involvement of other brain areas cannot be excluded.
Collapse
Affiliation(s)
- Carlos Dombret
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
25
|
Lagunas N, Marraudino M, de Amorim M, Pinos H, Collado P, Panzica G, Garcia-Segura LM, Grassi D. Estrogen receptor beta and G protein-coupled estrogen receptor 1 are involved in the acute estrogenic regulation of arginine-vasopressin immunoreactive levels in the supraoptic and paraventricular hypothalamic nuclei of female rats. Brain Res 2019; 1712:93-100. [DOI: 10.1016/j.brainres.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 01/20/2023]
|
26
|
Lu Q, Lai J, Du Y, Huang T, Prukpitikul P, Xu Y, Hu S. Sexual dimorphism of oxytocin and vasopressin in social cognition and behavior. Psychol Res Behav Manag 2019; 12:337-349. [PMID: 31191055 PMCID: PMC6529726 DOI: 10.2147/prbm.s192951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
The neuropeptides oxytocin (OT) and vasopressin (VP) are hormones that are known to mediate social behavior and cognition, but their influence may be sex-dependent. This paper aims to provide a comprehensive review of the sex-related influence of OT and VP on social cognition, focusing on partner preference and sexual orientation, trust and relevant behaviors, memory modulation, and emotion regulation. Most studies have suggested that OT facilitates familiar-partner preference in both sexes, with females being more significant, increased trust in others, especially for male, enhanced memory in either sex, and reduced anxious emotion in males. However, VP-regulated social cognition has been less studied. Other relevant studies have indicated that VP facilitated familiar-partner preference, improved memory, induced empathy formation, increased positive-emotion recognition, and induced anxiety without any sex difference. However, there was a male preponderance among studies, and results were often too complex to draw firm conclusions. Clarifying the interplay between OT/VP and sex hormones in the regulation of social cognition is necessary for further applications.
Collapse
Affiliation(s)
- Qiaoqiao Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| | - Yanli Du
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Tingting Huang
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Pornkanok Prukpitikul
- Department of Clinical Medicine, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, People's Republic of China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, People's Republic of China
| |
Collapse
|
27
|
Abstract
OBJECTIVE The present study explores the relationship between neuroactive hormones and religious commitment. We hypothesised that religious commitment is mediated by neuropeptide Y and oxytocin. These neurohormones have a well-established role in general well-being, anxiety regulation, stress-resilience, social affiliation and spirituality. METHODS Sixty healthy women (median age 21) participated in the study and completed the Religious Commitment Inventory and other psychometric surveys. Blood was sampled from each participant and serum levels of neuropeptide Y were measured using radioimmunoassay. Oxytocin, stress and sex hormones were measured using enzyme-linked immunosorbent assay. Correlations were tested using non-parametric statistical methods. RESULTS We found a positive correlation between serum neuropeptide Y levels and religious commitment, but not between oxytocin and religious commitment. CONCLUSIONS The present study provides preliminary evidence that neuropeptide Y is a biological correlate of religious commitment.
Collapse
|
28
|
Tsuda MC, Nagata K, Sagoshi S, Ogawa S. Estrogen and oxytocin involvement in social preference in male mice: a study using a novel long-term social preference paradigm with aromatase, estrogen receptor-α and estrogen receptor-β, oxytocin, and oxytocin receptor knockout male mice. Integr Zool 2019; 13:698-710. [PMID: 29873451 DOI: 10.1111/1749-4877.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Certain aspects of social behavior help animals make adaptive decisions during encounters with other animals. When mice choose to approach another conspecific, the motivation and preference behind the interaction is not well understood. Estrogen and oxytocin are known to influence a wide array of social behaviors, including social motivation and social preference. The present study investigated the effects of estrogen and oxytocin on social preference using aromatase (ArKO), estrogen receptor (ER) α (αERKO), ERβ (βERKO), oxytocin (OTKO), oxytocin receptor (OTRKO) knockout and their respective wild-type (WT) male mice. Mice were presented with gonadally-intact versus castrated male (IC), intact male versus ovariectomized female (IF), or intact male versus empty cage (IE) stimuli sets for 5 days. ArWT showed no preference for either stimuli in IC and IF and intact male preference in IE, but ArKO mice preferred a castrated male or an ovariectomized female, or had no preference for either stimulus in IC, IF and IE stimuli sets, respectively, suggesting reduced intact male preference. α and β WT mice preferred a castrated male, showed no preference, and preferred an intact male in IC, IF and IE, respectively. αERKO mice displayed similar modified social preference patterns as ArKO, whereas the social preference of βERKO mice remained similar to βWT. OTWT preferred a castrated male whereas OTKO, OTRWT and OTRKO mice failed to show any preference in IC and none showed preference for either stimuli in IF. Collectively, these findings suggest that estrogen regulates social preference in male mice and that impaired social preference in oxytocin-deficient mice may be due to severe deficits in social recognition.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyo Nagata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Lin YT, Hsu KS. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog Neurobiol 2018; 171:1-14. [DOI: 10.1016/j.pneurobio.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
|
30
|
Dai YC, Zhang HF, Schön M, Böckers TM, Han SP, Han JS, Zhang R. Neonatal Oxytocin Treatment Ameliorates Autistic-Like Behaviors and Oxytocin Deficiency in Valproic Acid-Induced Rat Model of Autism. Front Cell Neurosci 2018; 12:355. [PMID: 30356897 PMCID: PMC6190900 DOI: 10.3389/fncel.2018.00355] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social communication and repetitive/stereotyped behaviors. The neuropeptide oxytocin (OXT) plays a critical role in regulating social behaviors in the central nervous system, as indicated in both human and animal studies. We hypothesized that central OXT deficit is one of causes of etiology of ASD, which may be responsible for the social impairments. To test our hypothesis, central OXT system was examined in valproic acid (VPA)-induced rat model of autism (VPA rat). Our results showed that adolescent VPA rats exhibited a lower level of OXT mRNA and fewer OXT-ir cells in the hypothalamus than control rats. Additionally, OXT concentration in cerebrospinal fluid (CSF) was reduced. The number of OXT-ir cells in the supraoptic nucleus (SON) of neonatal VPA rats was also lower. Autistic-like behaviors were observed in these animals as well. We found that an acute intranasal administration of exogenous OXT restored the social preference of adolescent VPA rats. Additionally, early postnatal OXT treatment had long-term effects ameliorating the social impairments and repetitive behaviors of VPA rats until adolescence. This was accompanied by an increase in OXT-ir cells. Taken together, we demonstrated there was central OXT deficiency in the VPA-induced rat model of autism, and showed evidence that early postnatal OXT treatment had a long-term therapeutic effect on the autistic-like behaviors in VPA rats.
Collapse
Affiliation(s)
- Yu-Chuan Dai
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hong-Feng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Collaborative Innovation Center for Brain Science, Xiamen University, Xiamen, China
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Böckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Wuxi HANS Health Medical Technology Co., Ltd., Wuxi, China
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
31
|
Abstract
Accumulating research indicates oxytocin plays a significant role in regulating the behavioral and neurobiological responses to stress. Evidence from preclinical models suggests the effect of oxytocin on stress-responsivity appears to be dependent on individual characteristics, including sex. Although the interaction between oxytocinergic and stress systems has been widely studied in rodents, recent efforts have been made to examine the interface between these two systems in humans. This brief review examines how administration of oxytocin can influence the neuroendocrine, behavioral, and neural responses to stress, explores how sex may impact these effects, and provides considerations for future work.
Collapse
|
32
|
Borrow AP, Bales NJ, Stover SA, Handa RJ. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology 2018; 159:2803-2814. [PMID: 29788320 PMCID: PMC6692887 DOI: 10.1210/en.2018-00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Chronic exposure to stressors impairs the function of multiple organ systems and has been implicated in increased disease risk. In the rodent, the chronic variable stress (CVS) paradigm has successfully modeled several stress-related illnesses. Despite striking disparities between men and women in the prevalence and etiology of disorders associated with chronic stress, most preclinical research examining chronic stressor exposure has focused on male subjects. One potential mediator of the consequences of CVS is oxytocin (OT), a known regulator of stress neurocircuitry and behavior. To ascertain the sex-specific effects of CVS in the C57BL/6 mouse on OT and the structurally similar neuropeptide arginine vasopressin (AVP), the numbers of immunoreactive and mRNA-containing neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were determined using immunohistochemistry and in situ hybridization, respectively. In addition, the mice underwent a battery of behavioral tests to determine whether CVS affects social behaviors known to be regulated by OT and AVP. Six weeks of CVS increased sociability in the female mouse and decreased PVN OT immunoreactivity (ir) and AVP mRNA. In the male mice, CVS decreased PVN OT mRNA but had no effect on social behavior, AVP, or OT-ir. CVS also increased the soma volume for PVN OT neurons. In contrast, OT and AVP neurons in the SON were unaffected by CVS treatment. These findings demonstrate clear sex differences in the effects of CVS on neuropeptides in the mouse, suggest a pathway through which CVS alters sociability and stress-coping responses in females and reveals a vulnerability to CVS in the C57BL/6 mouse strain.
Collapse
Affiliation(s)
- Amanda P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
33
|
Lymer JM, Sheppard PAS, Kuun T, Blackman A, Jani N, Mahbub S, Choleris E. Estrogens and their receptors in the medial amygdala rapidly facilitate social recognition in female mice. Psychoneuroendocrinology 2018; 89:30-38. [PMID: 29309995 DOI: 10.1016/j.psyneuen.2017.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 12/27/2017] [Indexed: 11/26/2022]
Abstract
Estrogens have been shown to rapidly (within 1 h) affect learning and memory processes, including social recognition. Both systemic and hippocampal administration of 17β-estradiol facilitate social recognition in female mice within 40 min of administration. These effects were likely mediated by estrogen receptor (ER) α and the G-protein coupled estrogen receptor (GPER), as administration of the respective receptor agonists (PPT and G-1) also facilitated social recognition on a rapid time scale. The medial amygdala has been shown to be necessary for social recognition and long-term manipulations in rats have implicated medial amygdalar ERα. As such, our objective was to investigate whether estrogens and different ERs within the medial amygdala play a role in the rapid facilitation of social recognition in female mice. 17β-estradiol, G-1, PPT, or ERβ agonist DPN was infused directly into the medial amygdala of ovariectomized female mice. Mice were then tested in a social recognition paradigm, which was completed within 40 min, thus allowing the assessment of rapid effects of treatments. 17β-estradiol (10, 25, 50, 100 nM), PPT (300 nM), DPN (150 nM), and G-1 (50 nM) each rapidly facilitated social recognition. Therefore, estrogens in the medial amygdala rapidly facilitate social recognition in female mice, and the three main estrogen receptors: ERα, ERβ, and the GPER all are involved in these effects. This research adds to a network of brain regions, including the medial amygdala and the dorsal hippocampus, that are involved in mediating the rapid estrogenic facilitation of social recognition in female mice.
Collapse
Affiliation(s)
- Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Talya Kuun
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea Blackman
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nilay Jani
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sahnon Mahbub
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
34
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
35
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
36
|
Garcia AN, Depena C, Bezner K, Yin W, Gore AC. The timing and duration of estradiol treatment in a rat model of the perimenopause: Influences on social behavior and the neuromolecular phenotype. Horm Behav 2018; 97:75-84. [PMID: 29108778 PMCID: PMC5771824 DOI: 10.1016/j.yhbeh.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
This study tested the effects of timing and duration of estradiol (E2) treatment, factors that are clinically relevant to hormone replacement in perimenopausal women, on social behavior and expression of genes in brain regions that regulate these behaviors. Female rats were ovariectomized (OVX) at 1year of age, roughly equivalent to middle-age in women, and given E2 or vehicle for different durations (3 or 6months) and timing (immediately or after a 3-month delay) relative to OVX. Social and ultrasonic vocalization (USV) behaviors were assessed at the 3 and 6month timepoints, and the rats' brains were then used for gene expression profiling in hypothalamus (supraoptic nucleus, paraventricular nucleus), bed nucleus of the stria terminalis, medial amygdala, and prefrontal cortex using a 48-gene qPCR platform. At the 3-month post-OVX testing period, E2 treatment significantly decreased the number of frequency-modulated USVs emitted. No effects of hormone were found at the 6-month testing period. There were few effects of timing and duration of E2 in a test of social preference of a rat given a choice between her same-sex cagemate and a novel conspecific. For gene expression, effects of timing and duration of E2 were region-specific, with the majority of changes found for genes involved in regulating social behavior such as neuropeptides (Oxt, Oxtr &Avp), neurotransmitters (Drd1, Drd2, Htr2a, Grin2d &Gabbr1), and steroid hormone receptors (Esr2, Ar, Pgr). These data suggest that the mode of E2 treatment has specific effects on social behavior and expression of target genes involved in the regulation of these behaviors.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kelsey Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
37
|
Yamashita J, Kawabata Y, Okubo K. Expression of isotocin is male-specifically up-regulated by gonadal androgen in the medaka brain. J Neuroendocrinol 2017; 29. [PMID: 29024132 DOI: 10.1111/jne.12545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023]
Abstract
Oxytocin, a mammalian neuropeptide primarily synthesised in the supraoptic and paraventricular nuclei of the hypothalamus, mediates a variety of physiological and behavioural processes, ranging from parturition and lactation to affiliation and prosociality. Multiple studies in rodents have shown that the expression of the oxytocin gene (Oxt) is stimulated by oestrogen, whereas androgen has no apparent effect. However, this finding is not consistent across all studies, and no study has examined sex steroid regulation of Oxt or its orthologues in other animals. In the present study, we show that, in the teleost fish, medaka (Oryzias latipes), the expression of the isotocin gene (it), the teleost orthologue of Oxt, in the parvocellular preoptic nuclei (homologous to the mammalian supraoptic nucleus) is male-specifically up-regulated by gonadal androgen, whereas it expression in the magnocellular/gigantocellular preoptic nuclei (homologous to the mammalian paraventricular nucleus) is independent of sex steroids in both sexes. None of the it-expressing neurones appear to co-express androgen receptors, suggesting that the effect of androgen on it expression is indirect. We found that the expression of a kisspeptin gene, kiss2, in the male brain is dependent on gonadal androgen, raising the possibility that the androgen-dependent expression of it may be mediated by kiss2 neurones. Our data also show that the isotocin peptide synthesised in response to androgen is axonally transported to the posterior pituitary to act peripherally. Given that levels of it expression are higher in females than in males, androgen may serve to compensate for the female-biased it expression to ensure a role for isotocin that is equally important for both sexes. These results are unexpectedly quite different from those reported in rodents, indicating that the regulatory role of sex steroids in Oxt/it expression has diverged during evolution, possibly with accompanying changes in the role of oxytocin/isotocin.
Collapse
Affiliation(s)
- J Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Y Kawabata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
38
|
Oyola MG, Thompson MK, Handa AZ, Handa RJ. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. J Comp Neurol 2017; 525:3666-3682. [PMID: 28758220 DOI: 10.1002/cne.24295] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Activation of estrogen receptor beta (ERβ)-expressing neurons regulates the mammalian stress response via the hypothalamic-pituitary-adrenal (HPA) axis. These neurons densely populate the paraventricular nucleus of the hypothalamus (PVN). Recent research has revealed striking differences between rat and mouse PVN cytochemistry, but careful exploration of PVN ERβ neurons in mice has been hindered by a lack of specific ERβ antisera. Therefore, we used male and female transgenic mice expressing EGFP under the control of the mouse ERβ promoter (ERβ-EGFP) to examine the chemical architecture of PVN ERβ cells. Using immunohistochemistry, we found that 90% of ERβ-immunoreactivity (-ir) colocalized with EGFP. Cellular colocalization of EGFP with neuropeptides, transcription modulators, and neuronal tracers was examined throughout the PVN. ERβ-EGFP cells expressed oxytocin more abundantly in the rostral (71 ± 3%) than caudal (33 ± 8%) PVN. Arginine vasopressin colocalized with EGFP more often in females (18 ± 3%) than males (4 ± 1%). Moreover, estrogen receptor α-ir colocalized with ERβ-EGFP at low levels (15 ± 3%). Using a corticotropin releasing hormone-cre driver X tdTomato reporter mouse, we found a moderate colocalization with ERβ-ir (48 ± 16%) in the middle PVN. Peripheral injection of fluorogold revealed that the rostral PVN ERβ-EGFP cells are neuroendocrine neurons whereas non-neuroendocrine (presumably pre-autonomic) ERβ-EGFP neurons predominated in the posterior PVN. These data demonstrate chemoarchitectural differences in ERβ neurons of the mouse PVN that are different from that previously described for the rat, thus, elucidating potential neuronal pathways involved in the regulation of the HPA axis in mice.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Aaron Z Handa
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
39
|
Maejima Y, Aoyama M, Sakamoto K, Jojima T, Aso Y, Takasu K, Takenosihita S, Shimomura K. Impact of sex, fat distribution and initial body weight on oxytocin's body weight regulation. Sci Rep 2017; 7:8599. [PMID: 28819236 PMCID: PMC5561196 DOI: 10.1038/s41598-017-09318-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is considered as a worldwide problem in both males and females. Although many studies have demonstrated the efficiency of oxytocin (Oxt) as an anti-obesity peptide, there is no comparative study of its effect in males and females. This study aims to determine factors (sex, initial body weight, and fat distribution) that may affect the ability of Oxt to regulate body weight (BW). With regard to sex, Oxt reduced BW similarly in males and females under both high fat diet (HFD) and standard chow-fed condition. The BW reduction induced by Oxt correlated with initial BW in male and female mice under HFD conditions. Oxt showed an equal efficacy in fat degradation in both the visceral and subcutaneous fat mass in both males and females fed with HFD. The effect of Oxt on BW reduction was attenuated in standard chow-fed male and female mice. Therefore, our results suggest that administration of Oxt is more effective in reducing BW in subjects with a high initial BW with increased fat accumulation. The present data contains important information for the possible clinical application of Oxt for the treatment of obesity.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan.
| | - Masato Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan
| | - Kazuho Sakamoto
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | | | - Seiichi Takenosihita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima-shi, 960-1295, Japan
| | - Kenju Shimomura
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| |
Collapse
|
40
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
41
|
Berio E, Divari S, Starvaggi Cucuzza L, Biolatti B, Cannizzo FT. 17 β-estradiol upregulates oxytocin and the oxytocin receptor in C2C12 myotubes. PeerJ 2017; 5:e3124. [PMID: 28382233 PMCID: PMC5376115 DOI: 10.7717/peerj.3124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/26/2017] [Indexed: 12/21/2022] Open
Abstract
Background The endocrinology of skeletal muscle is highly complex and many issues about hormone action in skeletal muscle are still unresolved. Aim of the work is to improve our knowledge on the relationship between skeletal muscle and 17β-estradiol. Methods The skeletal muscle cell line C2C12 was treated with 17β-estradiol, the oxytocin peptide and a combination of the two hormones. The mRNA levels of myogenic regulatory factors, myosin heavy chain, oxytocin, oxytocin receptor and adipogenic factors were analysed in C2C12 myotubes. Results It was demonstrated that C2C12 myoblasts and myotubes express oxytocin and its receptor, in particular the receptor levels physiologically increase in differentiated myotubes. Myotubes treated with 17β-estradiol overexpressed oxytocin and oxytocin receptor genes by approximately 3- and 29-fold, respectively. A decrease in the expression of fatty acid binding protein 4 (0.62-fold), a fat metabolism-associated gene, was observed in oxytocin-treated myotubes. On the contrary, fatty acid binding protein 4 was upregulated (2.66-fold) after the administration of the combination of 17β-estradiol and oxytocin. 17β-estradiol regulates oxytocin and its receptor in skeletal muscle cells and they act in a synergic way on fatty acid metabolism. Discussion Oxytocin and its receptor are physiologically regulated along differentiation. 17β-estradiol regulates oxytocin and its receptor in skeletal muscle cells. 17β-estradiol and oxytocin act in a synergic way on fatty acid metabolism. A better understanding of the regulation of skeletal muscle homeostasis by estrogens and oxytocin peptide could contribute to increase our knowledge of muscle and its metabolism.
Collapse
Affiliation(s)
- Enrica Berio
- Department of Veterinary Science, University of Turin , Grugliasco , Torino , Italy
| | - Sara Divari
- Department of Veterinary Science, University of Turin , Grugliasco , Torino , Italy
| | | | - Bartolomeo Biolatti
- Department of Veterinary Science, University of Turin , Grugliasco , Torino , Italy
| | | |
Collapse
|
42
|
Ponti G, Rodriguez-Gomez A, Farinetti A, Marraudino M, Filice F, Foglio B, Sciacca G, Panzica GC, Gotti S. Early postnatal genistein administration permanently affects nitrergic and vasopressinergic systems in a sex-specific way. Neuroscience 2017; 346:203-215. [PMID: 28131623 DOI: 10.1016/j.neuroscience.2017.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/01/2022]
Abstract
Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. In the present study, we have used a different experimental protocol mimicking, in mice, the direct precocious exposure to GEN. Mice pups of both sexes were fed either with oil, estradiol or GEN from birth to postnatal day 8. Nitric oxide synthase and vasopressin neural systems were analyzed in adult mice. Interestingly, we observed that GEN effect was time specific (when compared to our previous study), sex specific, and not always comparable to the effects of estradiol. This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.
Collapse
Affiliation(s)
- G Ponti
- Department of Veterinary Sciences, Largo Braccini 2, 10095 Grugliasco (TO), University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy.
| | - A Rodriguez-Gomez
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - A Farinetti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - F Filice
- Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - B Foglio
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G Sciacca
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| |
Collapse
|
43
|
Patisaul HB. Endocrine Disruption of Vasopressin Systems and Related Behaviors. Front Endocrinol (Lausanne) 2017; 8:134. [PMID: 28674520 PMCID: PMC5475378 DOI: 10.3389/fendo.2017.00134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP) and oxytocin (OT) may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA), the soy phytoestrogen genistein (GEN), and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.
Collapse
Affiliation(s)
- Heather B. Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, NC State University, Raleigh, NC, United States
- *Correspondence: Heather B. Patisaul,
| |
Collapse
|
44
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
45
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
46
|
Yap CC, Wharfe MD, Mark PJ, Waddell BJ, Smith JT. Diurnal regulation of hypothalamic kisspeptin is disrupted during mouse pregnancy. J Endocrinol 2016; 229:307-18. [PMID: 27068699 DOI: 10.1530/joe-16-0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Kisspeptin, the neuropeptide product of the Kiss1 gene, is critical in driving the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (Arc) of the hypothalamus mediate differential effects, with the Arc regulating negative feedback of sex steroids and the AVPV regulating positive feedback, vital for the preovulatory surge and gated under circadian control. We aimed to characterize hypothalamic Kiss1 and Kiss1r mRNA expression in nonpregnant and pregnant mice, and investigate potential circadian regulation. Anterior and posterior hypothalami were collected from C57BL/6J mice at diestrus, proestrus, and days 6, 10, 14, and 18 of pregnancy, at six time points across 24h, for real-time PCR analysis of gene expression. Analysis confirmed that Kiss1 mRNA expression in the AVPV increased at ZT13 during proestrus, with a luteinizing hormone surge observed thereafter. No diurnal regulation was seen at diestrus or at any stage of pregnancy. Anterior hypothalamic Avp mRNA expression exhibited no diurnal variation, but Avpr1a peaked at 12:00h during proestrus, possibly reflecting the circadian input from the suprachiasmatic nucleus to AVPV Kiss1 neurons. Rfrp (Npvf) expression in the posterior hypothalamus did not demonstrate diurnal variation at any stage. Clock genes Bmal1 and Rev-erbα were strongly diurnal, but there was little change between diestrus/proestrus and pregnancy. Our data indicate the absence of the circadian input to Kiss1 in pregnancy, despite high gestational estradiol levels and normal clock gene expression, and may suggest a disruption of a kisspeptin-specific diurnal rhythm that operates in the nonpregnant state.
Collapse
Affiliation(s)
- Cassandra C Yap
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Michaela D Wharfe
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter J Mark
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan J Waddell
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy T Smith
- School of AnatomyPhysiology and Human Biology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
47
|
Massey SH, Backes KA, Schuette SA. PLASMA OXYTOCIN CONCENTRATION AND DEPRESSIVE SYMPTOMS: A REVIEW OF CURRENT EVIDENCE AND DIRECTIONS FOR FUTURE RESEARCH. Depress Anxiety 2016; 33:316-22. [PMID: 26756305 PMCID: PMC4818702 DOI: 10.1002/da.22467] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 11/02/2015] [Accepted: 12/24/2015] [Indexed: 01/07/2023] Open
Abstract
There is substantial recent interest in the role of oxytocin in social and affiliative behaviors-animal models of depression have suggested a link between oxytocin and mood. We reviewed literature to date for evidence of a potential relationship between peripheral oxytocin concentration and depressive symptoms in humans. Pubmed(®) and PsychINFO(®) were searched for biomedical and social sciences literature from 1960 to May 19, 2015 for empirical articles in English involving human subjects focused on the relationship between peripheral oxytocin concentration and depressive symptoms, excluding articles on the oxytocin receptor gene, or involving exogenous (i.e. intranasal) administration of oxytocin. Eight studies meeting criteria were identified and formally reviewed. Studies of pregnant women suggested an inverse relationship between oxytocin level and depressive symptom severity. Findings in nonpregnant women were broadly consistent with the role of oxytocin release in response to stress supported by animal studies. The relationship between oxytocin and depression in men appeared to be in the opposite direction, possibly reflecting the influence of gonadal hormones on oxytocinergic functioning found in other mammalian species. Overall, small sample sizes, heterogeneity in study designs, and other methodological limitations may account for inconsistent findings. Future research utilizing reliable oxytocin measurement protocols including measurements across time, larger sample sizes, and sample homogeneity with respect to multiple possible confounders (age, gender, race and ethnicity, ovarian status among women, and psychosocial context) are needed to elucidate the role of oxytocin in the pathogenesis of depression, and could guide the design of novel pharmacologic agents.
Collapse
Affiliation(s)
- Suena H. Massey
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 1000, Chicago, IL, 60611, USA
,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, 633 North Saint Clair Street, 19th Floor, Chicago, IL, 60611, USA
| | - Katherine A Backes
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 1000, Chicago, IL, 60611, USA
| | - Stephanie A. Schuette
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 676 North Saint Clair Street, Suite 1000, Chicago, IL, 60611, USA
,Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, 633 North Saint Clair Street, 19th Floor, Chicago, IL, 60611, USA
| |
Collapse
|
48
|
Ruka KA, Burger LL, Moenter SM. Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice. Endocrinology 2016; 157:752-63. [PMID: 26562263 PMCID: PMC4733114 DOI: 10.1210/en.2015-1688] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator.
Collapse
Affiliation(s)
- Kristen A Ruka
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| | - Laura L Burger
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology (K.A.R., L.L.B., S.M.M.), Internal Medicine (S.M.M.), and Obstetrics and Gynecology (S.M.M.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
49
|
Garcia AN, Depena CK, Yin W, Gore AC. Testing the critical window of estradiol replacement on gene expression of vasopressin, oxytocin, and their receptors, in the hypothalamus of aging female rats. Mol Cell Endocrinol 2016; 419:102-12. [PMID: 26454088 PMCID: PMC4684429 DOI: 10.1016/j.mce.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/28/2022]
Abstract
The current study tested the "critical window" hypothesis of menopause that postulates that the timing and duration of hormone treatment determine their potential outcomes. Our focus was genes in the rat hypothalamus involved in social and affiliative behaviors that change with aging and/or estradiol (E2): Avp, Avpr1a, Oxt, Oxtr, and Esr2 in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). Rats were reproductively mature or aging adults, ovariectomized, given E2 or vehicle treatment of different durations, with or without a post-ovariectomy delay. Our hypothesis was that age-related changes in gene expression are mitigated by E2 treatments. Contrary to this, PVN Oxtr increased with E2, and Avpr1a increased with age. In the SON, Avpr1a increased with age, Oxtr with age and timing, and Avp was altered by duration. Thus, chronological age and E2 have independent actions on gene expression, with the "critical window" hypothesis supported by the observed timing and duration effects.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina K Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin. Behav Pharmacol 2015; 25:445-57. [PMID: 24949572 DOI: 10.1097/fbp.0000000000000049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.
Collapse
|