1
|
Simmons DA, Belichenko NP, Longo FM. Pharmacological Co-Activation of TrkB and TrkC Receptor Signaling Ameliorates Striatal Neuropathology and Motor Deficits in Mouse Models of Huntington's Disease. J Huntingtons Dis 2023; 12:215-239. [PMID: 37638447 DOI: 10.3233/jhd-230589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Loss of neurotrophic support in the striatum, particularly reduced brain-derived neurotrophic factor (BDNF) levels, contributes importantly to Huntington's disease (HD) pathogenesis. Another neurotrophin (NT), NT-3, is reduced in the cortex of HD patients; however, its role in HD is unknown. BDNF and NT-3 bind with high affinity to the tropomyosin receptor-kinases (Trk) B and TrkC, respectively. Targeting TrkB/TrkC may be an effective HD therapeutic strategy, as multiple links exist between their signaling pathways and HD degenerative mechanisms. We developed a small molecule ligand, LM22B-10, that activates TrkB and TrkC to promote cell survival. OBJECTIVE This study aimed to determine if upregulating TrkB/TrkC signaling with LM22B-10 would alleviate the HD phenotype in R6/2 and Q140 mice. METHODS LM22B-10 was delivered by concomitant intranasal-intraperitoneal routes to R6/2 and Q140 mice and then motor performance and striatal pathology were evaluated. RESULTS NT-3 levels, TrkB/TrkC phosphorylation, and AKT signaling were reduced in the R6/2 striatum; LM22B-10 counteracted these deficits. LM22B-10 also reduced intranuclear huntingtin aggregates, dendritic spine loss, microglial activation, and degeneration of dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32) and parvalbumin-containing neurons in the R6/2 and/or Q140 striatum. Moreover, both HD mouse models showed improved motor performance after LM22B-10 treatment. CONCLUSIONS These results reveal an NT-3/TrkC signaling deficiency in the striatum of R6/2 mice, support the idea that targeting TrkB/TrkC alleviates HD-related neurodegeneration and motor dysfunction, and suggest a novel, disease-modifying, multi-target strategy for treating HD.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Sefiani A, Rusyn I, Geoffroy CG. Novel adult cortical neuron processing and screening method illustrates sex- and age-dependent effects of pharmaceutical compounds. Sci Rep 2022; 12:13125. [PMID: 35908049 PMCID: PMC9338961 DOI: 10.1038/s41598-022-17389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases and neurotraumatic injuries are typically age-associated disorders that can reduce neuron survival, neurite outgrowth, and synaptic plasticity leading to loss of cognitive capacity, executive function, and motor control. In pursuit of reducing the loss of said neurological functions, novel compounds are sought that promote neuron viability, neuritogenesis, and/or synaptic plasticity. Current high content in vitro screenings typically use cells that are iPSC-derived, embryonic, or originate from post-natal tissues; however, most patients suffering from neurodegenerative diseases and neurotrauma are of middle-age and older. The chasm in maturity between the neurons used in drug screens and those in a target population is a barrier for translational success of in vitro results. It has been historically challenging to culture adult neurons let alone conduct screenings; therefore, age-appropriate drug screenings have previously not been plausible. We have modified Miltenyi's protocol to increase neuronal yield, neuron purity, and neural viability at a reduced cost to expand our capacity to screen compounds directly in primary adult neurons. To our knowledge, we developed the first morphology-based screening system using adult cortical neurons and the first to incorporate age and sex as biological variables in a screen using adult cortical neurons. By using primary adult cortical neurons from mice that were 4 to 48 weeks old for screening pharmaceutical agents, we have demonstrated age- and sex-dependent effects on neuritogenesis and neuron survival in vitro. Utilizing age- and sex-appropriate in vitro models to find novel compounds increasing neuron survival and neurite outgrowth, made possible by our modified adult neuron processing method, will greatly increase the relevance of in vitro screening for finding neuroprotective compounds.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
3
|
Sharma S. High fat diet and its effects on cognitive health: alterations of neuronal and vascular components of brain. Physiol Behav 2021; 240:113528. [PMID: 34260890 DOI: 10.1016/j.physbeh.2021.113528] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
It has been well recognized that intake of diets rich in saturated fats could result in development of metabolic disorders such as type 2 diabetes mellitus, obesity and cardiovascular diseases. Recent studies have suggested that intake of high fat diet (HFD) is also associated with cognitive dysfunction. Various preclinical studies have demonstrated the impact of short and long term HFD feeding on the biochemical and behavioural alterations. This review summarizes studies and the protocols used to assess the impacts of HFD feeding on cognitive performance in rodents. Further, it discuss the key mechanisms that are altered by HFD feeding, such as, insulin resistance, oxidative stress, neuro-inflammation, transcriptional dysregulation and loss of synaptic plasticity. Along with these, HFD feeding also alters the vascular components of brain such as loss of BBB integrity and reduced cerebral blood flow. It is highly possible that these factors are responsible for the development of cognitive deficits as a result of HFD feeding.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W2Y2, Canada.
| |
Collapse
|
4
|
Apigenin modulates hippocampal CREB-BDNF signaling in high fat, high fructose diet-fed rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Niculescu D, Michaelsen-Preusse K, Güner Ü, van Dorland R, Wierenga CJ, Lohmann C. A BDNF-Mediated Push-Pull Plasticity Mechanism for Synaptic Clustering. Cell Rep 2020; 24:2063-2074. [PMID: 30134168 DOI: 10.1016/j.celrep.2018.07.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023] Open
Abstract
During development, activity-dependent synaptic plasticity refines neuronal networks with high precision. For example, spontaneous activity helps sorting synaptic inputs with similar activity patterns into clusters to enhance neuronal computations in the mature brain. Here, we show that TrkB activation and postsynaptic brain-derived neurotrophic factor (BDNF) are required for synaptic clustering in developing hippocampal neurons. Moreover, BDNF and TrkB modulate transmission at synapses depending on their clustering state, indicating that endogenous BDNF/TrkB signaling stabilizes locally synchronized synapses. Together with our previous data on proBDNF/p75NTR signaling, these findings suggest a push-pull plasticity mechanism for synaptic clustering: BDNF stabilizes clustered synapses while proBDNF downregulates out-of-sync synapses. This idea is supported by our observation that synaptic clustering requires matrix-metalloproteinase-9 activity, a proBDNF-to-BDNF converting enzyme. Finally, NMDA receptor activation mediates out-of-sync depression upstream of proBDNF signaling. Together, these data delineate an efficient plasticity mechanism where proBDNF and mature BDNF establish synaptic clustering through antagonistic modulation of synaptic transmission.
Collapse
Affiliation(s)
- Dragos Niculescu
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 Amsterdam, the Netherlands; Department of Neurogenesis and Circuit Development, Vision Institute, 75012 Paris, France
| | - Kristin Michaelsen-Preusse
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 Amsterdam, the Netherlands
| | - Ülkü Güner
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 Amsterdam, the Netherlands
| | - René van Dorland
- Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Umemori J, Winkel F, Didio G, Llach Pou M, Castrén E. iPlasticity: Induced juvenile-like plasticity in the adult brain as a mechanism of antidepressants. Psychiatry Clin Neurosci 2018; 72:633-653. [PMID: 29802758 PMCID: PMC6174980 DOI: 10.1111/pcn.12683] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The network hypothesis of depression proposes that mood disorders reflect problems in information processing within particular neural networks. Antidepressants (AD), including selective serotonin reuptake inhibitors (SSRI), function by gradually improving information processing within these networks. AD have been shown to induce a state of juvenile-like plasticity comparable to that observed during developmental critical periods: Such critical-period-like plasticity allows brain networks to better adapt to extrinsic and intrinsic signals. We have coined this drug-induced state of juvenile-like plasticity 'iPlasticity.' A combination of iPlasticity induced by chronic SSRI treatment together with training, rehabilitation, or psychotherapy improves symptoms of neuropsychiatric disorders and issues underlying the developmentally or genetically malfunctioning networks. We have proposed that iPlasticity might be a critical component of AD action. We have demonstrated that iPlasticity occurs in the visual cortex, fear erasure network, extinction of aggression caused by social isolation, and spatial reversal memory in rodent models. Chronic SSRI treatment is known to promote neurogenesis and to cause dematuration of granule cells in the dentate gyrus and of interneurons, especially parvalbumin interneurons enwrapped by perineuronal nets in the prefrontal cortex, visual cortex, and amygdala. Brain-derived neurotrophic factor (BDNF), via its receptor tropomyosin kinase receptor B, is involved in the processes of synaptic plasticity, including neurogenesis, neuronal differentiation, weight of synapses, and gene regulation of synaptic formation. BDNF can be activated by both chronic SSRI treatment and neuronal activity. Accordingly, the BDNF/tropomyosin kinase receptor B pathway is critical for iPlasticity, but further analyses will be needed to provide mechanical insight into the processes of iPlasticity.
Collapse
Affiliation(s)
- Juzoh Umemori
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Frederike Winkel
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Giuliano Didio
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Maria Llach Pou
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Eero Castrén
- Neuroscience Center, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Patel D, Roy A, Kundu M, Jana M, Luan CH, Gonzalez FJ, Pahan K. Aspirin binds to PPARα to stimulate hippocampal plasticity and protect memory. Proc Natl Acad Sci U S A 2018; 115:E7408-E7417. [PMID: 30012602 PMCID: PMC6077698 DOI: 10.1073/pnas.1802021115] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite its long history, until now, no receptor has been identified for aspirin, one of the most widely used medicines worldwide. Here we report that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor involved in fatty acid metabolism, serves as a receptor of aspirin. Detailed proteomic analyses including cheminformatics, thermal shift assays, and TR-FRET revealed that aspirin, but not other structural homologs, acts as a PPARα ligand through direct binding at the Tyr314 residue of the PPARα ligand-binding domain. On binding to PPARα, aspirin stimulated hippocampal plasticity via transcriptional activation of cAMP response element-binding protein (CREB). Finally, hippocampus-dependent behavioral analyses, calcium influx assays in hippocampal slices and quantification of dendritic spines demonstrated that low-dose aspirin treatment improved hippocampal plasticity and memory in FAD5X mice, but not in FAD5X/Ppara-null mice. These findings highlight a property of aspirin: stimulating hippocampal plasticity via direct interaction with PPARα.
Collapse
Affiliation(s)
- Dhruv Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612
| | - Chi-Hao Luan
- High-Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612;
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612
| |
Collapse
|
8
|
Simmons DA. Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. J Huntingtons Dis 2018; 6:303-325. [PMID: 29254102 PMCID: PMC5757655 DOI: 10.3233/jhd-170275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in the IT15 gene which encodes the huntingtin (HTT) protein. Currently, no treatments capable of preventing or slowing disease progression exist. Disease modifying therapeutics for HD would be expected to target a comprehensive set of degenerative processes given the diverse mechanisms contributing to HD pathogenesis including neuroinflammation, excitotoxicity, and transcription dysregulation. A major contributor to HD-related degeneration is mutant HTT-induced loss of neurotrophic support. Thus, neurotrophin (NT) receptors have emerged as therapeutic targets in HD. The considerable overlap between NT signaling networks and those dysregulated by mutant HTT provides strong theoretical support for this approach. This review will focus on the contributions of disrupted NT signaling in HD-related neurodegeneration and how targeting NT receptors to augment pro-survival signaling and/or to inhibit degenerative signaling may combat HD pathologies. Therapeutic strategies involving NT delivery, peptidomimetics, and the targeting of specific NT receptors (e.g., Trks or p75NTR), particularly with small molecule ligands, are discussed.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Wang M, Li D, Yun D, Zhuang Y, Repunte-Canonigo V, Sanna PP, Behnisch T. Translation of BDNF-gene transcripts with short 3' UTR in hippocampal CA1 neurons improves memory formation and enhances synaptic plasticity-relevant signaling pathways. Neurobiol Learn Mem 2016; 138:121-134. [PMID: 27394686 DOI: 10.1016/j.nlm.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
While the brain-derived neurotrophic factor (BDNF) gene and its multiple transcripts have been recognized as a key factor for learning, but the specific involvement of BDNF translated from BDNF transcripts with short-3' untranslated region (short 3' UTR) in learning and memory requires further analysis. In this paper, we present data to show that the transduction of hippocampal CA1 neurons with AAV9-5' UTR-BDNF (short 3' UTR)-IRES-ZsGreen and the subsequent expression of BDNF enhanced the phosphorylation of synaptic plasticity relevant proteins and improved passive avoidance and object location, but not object recognition memory. In addition, BDNF improved the relearning of object location. At higher BDNF overexpression levels, the fear behavior was accompanied with a decline in the passive avoidance memory 24h post training, and with an enhanced fear conditioning performance. In addition, these animals developed spontaneous seizures. Thus, the expression of BDNF in the hippocampal CA1 region has the potential to improve fear and object location memory in wild type mouse strains when the region and expression levels of BDNF are well controlled.
Collapse
Affiliation(s)
- Man Wang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Dongxue Li
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Yun
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pietro Paolo Sanna
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Simmons DA, Belichenko NP, Yang T, Condon C, Monbureau M, Shamloo M, Jing D, Massa SM, Longo FM. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease. J Neurosci 2013; 33:18712-27. [PMID: 24285878 PMCID: PMC3841443 DOI: 10.1523/jneurosci.1310-13.2013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/09/2013] [Accepted: 10/12/2013] [Indexed: 02/08/2023] Open
Abstract
Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75(NTR), could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5-6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Department of Neurology and Neurological Sciences and
| | | | - Marie Monbureau
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, California 94305
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medical College, New York, New York 10021, and
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, Department of Veterans Affairs Medical Center and Department of Neurology, University of California, San Francisco, San Francisco, California 94121
| | | |
Collapse
|
11
|
Ferreira GK, Scaini G, Jeremias IC, Carvalho-Silva M, Gonçalves CL, Pereira TCB, Oliveira GMT, Kist LW, Bogo MR, Schuck PF, Ferreira GC, Streck EL. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain. Mol Neurobiol 2013; 49:734-40. [PMID: 24091827 DOI: 10.1007/s12035-013-8552-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.
Collapse
Affiliation(s)
- Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TSK. A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 2013; 7:301-7. [PMID: 23606317 DOI: 10.1007/s12079-013-0200-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Varot K Sandhya
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, 560066, India,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mojtahedi S, Kordi MR, Hosseini SE, Omran SF, Soleimani M. Effect of treadmill running on the expression of genes that are involved in neuronal differentiation in the hippocampus of adult male rats. Cell Biol Int 2013; 37:276-83. [DOI: 10.1002/cbin.10022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Shima Mojtahedi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | | | - Simin Fallah Omran
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences; University of Tehran; Tehran; Iran
| | | |
Collapse
|
14
|
Coulibaly AP, Isaacson LG. Transient changes in spinal cord glial cells following transection of preganglionic sympathetic axons. Auton Neurosci 2012; 168:32-42. [PMID: 22289358 PMCID: PMC3321080 DOI: 10.1016/j.autneu.2012.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 01/06/2012] [Accepted: 01/09/2012] [Indexed: 11/26/2022]
Abstract
Following peripheral nerve injury, retrograde signals originating from the injury site may activate intrinsic factors in the injured neurons, possibly leading to regenerative growth. Retrograde influences from peripheral injury sites may lead to the activation of glial cells in the vicinity of the centrally located cell bodies of the injured neurons. Few studies have examined changes in the spinal cord intermediolateral cell column (IML), which houses sympathetic preganglionic cell bodies, following injury to distal axons in the cervical sympathetic trunk (CST). The goal of the present study was to determine if transection of the CST results in plasticity in glial cells in the IML. At 1 day following injury, changes in the expression of microglial marker Iba1 were observed and the typical oligodendrocyte-neuronal relationship was altered. By 7 days, astrogliosis, microglial aggregation, and increased numbers of oligodendrocytes, as well as enhanced glial-glial and glial-neuronal relationships were present. The majority of cases were similar to controls at 3 weeks following injury and no changes were observed in any cases at 10 weeks following the injury. These results revealed changes in astrocytes, microglia, oligodendrocytes in the spinal cord following transection of preganglionic axons comprising the CST, indicating their ability to respond to distal axonal injury.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, Oxford, OH 45056
| | - Lori G. Isaacson
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, Oxford, OH 45056
| |
Collapse
|
15
|
Gong Y, Lippa CF. Review: disruption of the postsynaptic density in Alzheimer's disease and other neurodegenerative dementias. Am J Alzheimers Dis Other Demen 2010; 25:547-55. [PMID: 20858652 PMCID: PMC2976708 DOI: 10.1177/1533317510382893] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The most common causes of neurodegenerative dementia include Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). We believe that, in all 3, aggregates of pathogenic proteins are pathological substrates which are associated with a loss of synaptic function/plasticity. The synaptic plasticity relies on the normal integration of glutamate receptors at the postsynaptic density (PSD). The PSD organizes synaptic proteins to mediate the functional and structural plasticity of the excitatory synapse and to maintain synaptic homeostasis. Here, we will discuss the relevant disruption of the protein network at the PSD in these dementias and the accumulation of the pathological changes at the PSD years before clinical symptoms. We suggest that the functional and structural plasticity changes of the PSD may contribute to the loss of molecular homeostasis within the synapse (and contribute to early symptoms) in these dementias.
Collapse
Affiliation(s)
- Yuesong Gong
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
16
|
Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010; 70:304-22. [PMID: 20186705 DOI: 10.1002/dneu.20765] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a prototypic neurotrophin that regulates diverse developmental events from the selection of neural progenitors to the terminal dendritic differentiation and connectivity of neurons. We focus here on activity-dependent synaptic regulation by BDNF and its receptor, full length TrkB. BDNF-TrkB signaling is involved in transcription, translation, and trafficking of proteins during various phases of synaptic development and has been implicated in several forms of synaptic plasticity. These functions are carried out by a combination of the three signaling cascades triggered when BDNF binds TrkB: The mitogen-activated protein kinase (MAPK), the phospholipase Cgamma (PLC PLCgamma), and the phosphatidylinositol 3-kinase (PI3K) pathways. MAPK and PI3K play crucial roles in both translation and/or trafficking of proteins induced by synaptic activity, whereas PLCgamma regulates intracellular Ca(2+) that can drive transcription via cyclic AMP and a protein kinase C. Conversely, the abnormal regulation of BDNF is implicated in various developmental and neurodegenerative diseases that perturb neural development and function. We will discuss the current state of understanding BDNF signaling in the context of synaptic development and plasticity with a focus on the postsynaptic cell and close with the evidence that basic mechanisms of BDNF function still need to be understood to effectively treat genetic disruptions of these pathways that cause devastating neurodevelopmental diseases.
Collapse
Affiliation(s)
- Akira Yoshii
- McGovern Institute for Brain Research, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
17
|
Gardoni F, Ghiglieri V, Di Luca M, Calabresi P. Assemblies of glutamate receptor subunits with post-synaptic density proteins and their alterations in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2010; 183:169-82. [PMID: 20696320 DOI: 10.1016/s0079-6123(10)83009-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors have been implicated as a mediator of neuronal injury associated with many neurological disorders including ischemia, epilepsy, brain trauma, dementia and neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease. To this, non-selective NMDA receptor antagonists have been tried and have been shown to be effective in many experimental animal models of disease, and some of these compounds have moved into clinical trials. However, the initial enthusiasm for this approach has waned, because the therapeutic index for most NMDA antagonists is quite poor, with significant adverse effects at clinically effective doses, thus limiting their utility. More recently, the concept that the exact pathways downstream NMDA receptor activation could represent a key variable element among neurological disorders has been put forward. In particular, variations in NMDA receptor subunit composition could be important in different disorders, both in the pathophysiological mechanisms of cell death and in the application of specific symptomatic therapies. As to PD, NMDA receptor complex has been shown to be altered in experimental models of parkinsonism and in PD in humans. Further, it has become increasingly evident that the NMDA receptor complex is intimately involved in the regulation of corticostriatal long-term potentiation, which is altered in experimental parkinsonism. The following sections will examine the modifications of specific NMDA receptor subunits as well as post-synaptic associated signalling complex including kinases and scaffolding proteins in experimental parkinsonism. These findings may allow the identification of specific molecular targets whose pharmacological or genetic manipulation might lead to innovative therapies for PD.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological Sciences, University of Milano, Milano, Italy
| | | | | | | |
Collapse
|
18
|
Christie BR, Eadie BD, Kannangara TS, Robillard JM, Shin J, Titterness AK. Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus. Neuromolecular Med 2008; 10:47-58. [PMID: 18535925 DOI: 10.1007/s12017-008-8033-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 01/09/2023]
Abstract
Exercise that engages the cardiovascular system has a myriad of effects on the body; however, we usually do not give much consideration to the benefits it may have for our minds. An increasing body of evidence suggests that exercise can have some remarkable effects on the brain. In this article, we will introduce how exercise can impact the capacity for neurons in the brain to communicate with one another. To properly convey this information, we will first briefly introduce the field of synaptic plasticity and then examine how the introduction of exercise to the experimental setting can actually alter the basic properties of synaptic plasticity in the brain. Next, we will examine some of the candidate physiological processes that might underlay these alterations. Finally, we will close by noting that, taken together, this data points toward our brains being dynamic systems that are in a continual state of flux and that physical exercise may help us to maximize the performance of both our body and our minds.
Collapse
Affiliation(s)
- Brian R Christie
- Division of Medical Sciences and Department of Biology, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC, Canada, V8W 2Y2.
| | | | | | | | | | | |
Collapse
|
19
|
Huang YZ, Pan E, Xiong ZQ, McNamara JO. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 2008; 57:546-58. [PMID: 18304484 DOI: 10.1016/j.neuron.2007.11.026] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/19/2007] [Accepted: 11/28/2007] [Indexed: 10/21/2022]
Abstract
The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.
Collapse
Affiliation(s)
- Yang Z Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
20
|
Kron M, Reuter J, Gerhardt E, Manzke T, Zhang W, Dutschmann M. Emergence of brain-derived neurotrophic factor-induced postsynaptic potentiation of NMDA currents during the postnatal maturation of the Kolliker-Fuse nucleus of rat. J Physiol 2008; 586:2331-43. [PMID: 18339694 DOI: 10.1113/jphysiol.2007.148916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Kölliker-Fuse nucleus (KF) contributes essentially to respiratory pattern formation and adaptation of breathing to afferent information. Systems physiology suggests that these KF functions depend on NMDA receptors (NMDA-R). Recent investigations revealed postnatal changes in the modulation of glutamatergic neurotransmission by brain-derived neurotrophic factor (BDNF) in the KF. Therefore, we investigated postnatal changes in NMDA-R subunit composition and postsynaptic modulation of NMDA-R-mediated currents by BDNF in KF slice preparations derived from three age groups (neonatal: postnatal day (P) 1-5; intermediate: P6-13; juvenile: P14-21). Immunohistochemistry showed a developmental up-regulation of the NR2D subunit. This correlated with a developmental increase in decay time of NMDA currents and a decline of desensitization in response to repetitive exogenous NMDA applications. Thus, developmental up-regulation of the NR2D subunit, which reduces the Mg(2+) block of NMDA-R, causes these specific changes in NMDA current characteristics. This may determine the NMDA-R-dependent function of the mature KF in the control of respiratory phase transition. Subsequent experiments revealed that bath-application of BDNF progressively potentiated these repetitively evoked NMDA currents only in intermediate and juvenile age groups. Pharmacological inhibition of protein kinase C (PKC), as a downstream component of the BDNF-tyrosine kinase B receptor (trkB) signalling, prevented BDNF-induced potentiation of NMDA currents. BDNF-induced potentiation of NMDA currents in later developmental stages might be essential for synaptic plasticity during the adaptation of the breathing pattern in response to peripheral/central commands. The lack of plasticity in neonatal neurones strengthens the hypothesis that the respiratory network becomes permissive for activity-dependent plasticity with ongoing postnatal development.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neuro and Sensory Physiology, University Medicine Göttingen, Georg August University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Kron M, Zhang W, Dutschmann M. Developmental changes in the BDNF-induced modulation of inhibitory synaptic transmission in the Kölliker-Fuse nucleus of rat. Eur J Neurosci 2007; 26:3449-57. [PMID: 18052976 DOI: 10.1111/j.1460-9568.2007.05960.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Kölliker-Fuse nucleus (KF), part of the pontine respiratory group, is involved in the control of respiratory phase duration, and receives both excitatory and inhibitory afferent input from various other brain regions. There is evidence for developmental changes in the modulation of excitatory inputs to the KF by the neurotrophin brain-derived neurotrophic factor (BDNF). In the present study we investigated if BDNF exerts developmental effects on inhibitory synaptic transmission in the KF. Recordings of inhibitory postsynaptic currents (IPSCs) in KF neurons in a pontine slice preparation revealed general developmental changes. Recording of spontaneous and evoked IPSCs (sIPSCs, eIPSCS) revealed that neonatally the gamma-aminobutyric acid (GABA)ergic fraction of IPSCs was predominant, while in later developmental stages glycinergic neurotransmission significantly increased. Bath-application of BDNF significantly reduced sIPSC frequency in all developmental stages, while BDNF-mediated modulation on eIPSCs showed developmental differences. The eIPSCs mean amplitude was uniformly and significantly reduced following BDNF application only in neurons from rats younger than postnatal day 10. At later postnatal stages the response pattern became heterogeneous, and both augmentations and reductions of eIPSC amplitudes occurred. All BDNF effects on eIPSCs and sIPSCs were reversed with the tyrosine kinase receptor-B inhibitor K252a. We conclude that developmental changes in inhibitory neurotransmission, including the BDNF-mediated modulation of eIPSCs, relate to the postnatal maturation of the KF. The changes in BDNF-mediated modulation of IPSCs in the KF may have strong implications for developmental changes in synaptic plasticity and the adaptation of the breathing pattern to afferent inputs.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neuro and Sensory Physiology, University Medicine Göttingen, Georg August University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
22
|
Deltheil T, Guiard BP, Guilloux JP, Nicolas L, Deloménie C, Repérant C, Le Maitre E, Leroux-Nicollet I, Benmansour S, Coudoré F, David DJ, Gardier AM. Consequences of changes in BDNF levels on serotonin neurotransmission, 5-HT transporter expression and function: studies in adult mice hippocampus. Pharmacol Biochem Behav 2007; 90:174-83. [PMID: 17980409 DOI: 10.1016/j.pbb.2007.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/19/2007] [Accepted: 09/27/2007] [Indexed: 12/17/2022]
Abstract
In vivo intracerebral microdialysis is an important neurochemical technique that has been applied extensively in genetic and pharmacological studies aimed at investigating the relationship between neurotransmitters. Among the main interests of microdialysis application is the infusion of drugs through the microdialysis probe (reverse dialysis) in awake, freely moving animals. As an example of the relevance of intracerebral microdialysis, this review will focus on our recent neurochemical results showing the impact of Brain-Derived Neurotrophic Factor (BDNF) on serotonergic neurotransmission in basal and stimulated conditions. Indeed, although the elevation of 5-HT outflow induced by chronic administration of selective serotonin reuptake inhibitors (SSRIs) causes an increase in BDNF protein levels and expression (mRNA) in the hippocampus of rodents, the reciprocal interaction has not been demonstrated yet. Thus, the neurochemical sight of this question will be addressed here by examining the consequences of either a constitutive decrease or increase in brain BDNF protein levels on hippocampal extracellular levels of 5-HT in conscious mice.
Collapse
Affiliation(s)
- Thierry Deltheil
- Univ. Paris Sud, EA 3544, Fac. Pharmacie, Chatenay-Malabry cedex F-92296, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kron M, Mörschel M, Reuter J, Zhang W, Dutschmann M. Developmental changes in brain-derived neurotrophic factor-mediated modulations of synaptic activities in the pontine Kölliker-Fuse nucleus of the rat. J Physiol 2007; 583:315-27. [PMID: 17569735 PMCID: PMC2277243 DOI: 10.1113/jphysiol.2007.134726] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Kölliker-Fuse nucleus (KF), part of the respiratory network, is involved in the modulation of respiratory phase durations in response to peripheral and central afferent inputs. The KF is immature at birth. Developmental changes in its physiological and anatomical properties have yet to be investigated. Since brain-derived neurotrophic factor (BDNF) is of major importance for the maturation of neuronal networks, we investigated its effects on developmental changes in the KF on different postnatal days (neonatal, P1-5; intermediate, P6-13; juvenile, P14-21) by analysing single neurones in the in vitro slice preparation and network activities in the perfused brainstem preparation in situ. The BDNF had only weak effects on the frequency of mixed excitatory and inhibitory spontaneous postsynaptic currents (sPSCs) in neonatal slice preparations. Postnatally, in the intermediate and juvenile age groups, a significant augmentation of the sPSC frequency was observed in the presence of 100 pm BDNF (+23.5+/-12.6 and +76.7+/-28.4%, respectively). Subsequent analyses of BDNF effects on evoked excitatory postsynaptic currents (eEPSCs) revealed significant enhancement of eEPSC amplitude of +20.8+/-7.0% only in juvenile stages (intermediates, -13.2+/-4.8%). On the network level, significant modulation of phrenic nerve activity following BDNF microinjection into the KF was also observed only in juveniles. The data suggest that KF neurones are subject to BDNF-mediated fast synaptic modulation after completion of postnatal maturation. After maturation, BDNF contributes to modulation of fast excitatory neurotransmission in respiratory-related KF neurones. This may be important for network plasticity associated with the processing of afferent information.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neuro and Sensory Physiology, University Medical Center Göttingen, Georg-August-University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 2007; 10:702-11. [PMID: 17515902 DOI: 10.1038/nn1903] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/30/2007] [Indexed: 01/28/2023]
Abstract
The N-methyl-D-aspartate receptor (NMDAR), brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95) and phosphatidylinositol 3-kinase (PI3K) have all been implicated in long-term potentiation. Here we show that these molecules are involved in a single pathway for synaptic potentiation. In visual cortical neurons in young rodents, the neurotrophin receptor TrkB is associated with PSD-95. When BDNF is applied to cultured visual cortical neurons, PSD-95-labeled synaptic puncta enlarge, and fluorescent recovery after photobleaching (FRAP) reveals increased delivery of green fluorescent protein-tagged PSD-95 to the dendrites. The recovery of fluorescence requires TrkB, signaling through PI3K and the serine-threonine kinase Akt, and an intact Golgi apparatus. Stimulation of NMDARs mimics the PSD-95 trafficking that is induced by BDNF but requires active BDNF and PI3K. Furthermore, local dendritic contact with a BDNF-coated microsphere induces PSD-95 FRAP throughout the dendrites of the stimulated neuron, suggesting that this mechanism induces rapid neuron-wide synaptic increases in PSD-95 and refinement whenever a few robust inputs activate the NMDAR-BDNF-PI3K pathway.
Collapse
Affiliation(s)
- Akira Yoshii
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA.
| | | |
Collapse
|
25
|
Bramham CR. Control of synaptic consolidation in the dentate gyrus: mechanisms, functions, and therapeutic implications. PROGRESS IN BRAIN RESEARCH 2007; 163:453-71. [PMID: 17765733 DOI: 10.1016/s0079-6123(07)63025-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Synaptic consolidation refers to the development and stabilization of protein synthesis-dependent modifications of synaptic strength as observed during long-term potentiation (LTP) and long-term depression (LTD). Activity-dependent changes in synaptic strength are thought to underlie memory storage and other adaptive responses of the nervous systems of importance in mood stability, reward behavior, and pain control. This chapter focuses on the mechanisms and functions of synaptic consolidation in the dentate gyrus, a critical structure not only in hippocampal memory function, but also in regulation of stress responses and cognitive aspects of depression. Recent evidence suggests that synaptic consolidation at excitatory medial perforant path-granule cell synapses requires brain-derived neurotrophic factor (BDNF) signaling and induction of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc). Arc mRNA is strongly induced and transported to dendritic processes following high-frequency stimulation (HFS) that induces LTP in the rat dentate gyrus in vivo. Sustained synthesis of Arc during a surprisingly protracted time-window is required for hyperphosphorylation of actin depolymerizing factor/cofilin and local expansion of the actin cytoskeleton in vivo. Furthermore, this process of Arc-dependent synaptic consolidation is activated in response to brief infusion of BDNF. Microarray expression profiling has revealed a panel of BDNF-regulated genes that may cooperate with Arc during synaptic consolidation. In addition to regulating gene expression, BDNF signaling modulates the fine localization and biochemical activation of the translation machinery. By modulating the spatial and temporal translation of newly induced (Arc) and constitutively-expressed mRNA in dendrites, BDNF may effectively control the window of synaptic consolidation. Dysregulation of BDNF synthesis and Arc function, specifically within the dentate gyrus, is linked to behavioral symptoms and cognitive deficits in animal models of depression and Alzheimer's disease. Therapeutics strategies targeting synaptic consolidation hold promise for the future.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
26
|
Abstract
Since the discovery of nerve growth factor (NGF) in the 1950s and brain-derived neurotrophic factor (BDNF) in the 1980s, a great deal of evidence has mounted for the roles of neurotrophins (NGF; BDNF; neurotrophin-3, NT-3; and neurotrophin-4/5, NT-4/5) in development, physiology, and pathology. BDNF in particular has important roles in neural development and cell survival, as well as appearing essential to molecular mechanisms of synaptic plasticity and larger scale structural rearrangements of axons and dendrites. Basic activity-related changes in the central nervous system (CNS) are thought to depend on BDNF modulation of synaptic transmission. Pathologic levels of BDNF-dependent synaptic plasticity may contribute to conditions such as epilepsy and chronic pain sensitization, whereas application of the trophic properties of BDNF may lead to novel therapeutic options in neurodegenerative diseases and perhaps even in neuropsychiatric disorders. In this chapter, I review neurotrophin structure, signal transduction mechanisms, localization and regulation within the nervous system, and various potential roles in disease. Modulation of neurotrophin action holds significant potential for novel therapies for a variety of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, Irvine, CA 92868, USA.
| |
Collapse
|
27
|
Gomes RA, Hampton C, El-Sabeawy F, Sabo SL, McAllister AK. The dynamic distribution of TrkB receptors before, during, and after synapse formation between cortical neurons. J Neurosci 2006; 26:11487-500. [PMID: 17079678 PMCID: PMC6674530 DOI: 10.1523/jneurosci.2364-06.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although brain-derived neurotrophic factor (BDNF) potently regulates neuronal connectivity in the developing CNS, the mechanism by which BDNF influences the formation and/or maintenance of glutamatergic synapses remains unknown. Details about the subcellular localization of the BDNF receptor, TrkB, relative to synaptic and nonsynaptic proteins on excitatory neurons should provide insight into how BDNF might exert its effects during synapse formation. Here, we investigated the subcellular localization of tyrosine kinase receptor B (TrkB) relative to synaptic vesicle-associated proteins and NMDA receptors using immunocytochemistry, confocal microscopy, and time-lapse imaging in dissociated cultures of cortical neurons before, during, and after the peak of synapse formation. We find that TrkB is present in puncta on the surface and intracellularly in both dendrites and axons throughout development. Before synapse formation, some TrkB puncta in dendrites colocalize with NMDA receptors, and almost all TrkB puncta in axons colocalize with synaptic vesicle proteins. Clusters of TrkB fused to the enhanced green fluorescent protein (TrkB-EGFP) are highly mobile in both axons and dendrites. In axons, TrkB-EGFP dynamics are almost identical to vesicle-associated protein (VAMP2-EGFP), and these proteins are often transported together. Finally, surface TrkB is found in structures that actively participate in synapse formation: axonal growth cones and dendritic filopodia. Over time, surface TrkB becomes enriched at glutamatergic synapses, which contain both catalytic and truncated TrkB. These results suggest that TrkB is in the right place at the right time to play a direct role in the formation of glutamatergic synapses between cortical neurons.
Collapse
Affiliation(s)
- Raquel A. Gomes
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Cara Hampton
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Faten El-Sabeawy
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | - Shasta L. Sabo
- Center for Neuroscience, University of California at Davis, Davis, California 95616
| | | |
Collapse
|
28
|
Agassandian K, Gedney M, Cassell MD. Neurotrophic factors in the central nucleus of amygdala may be organized to provide substrates for associative learning. Brain Res 2006; 1076:78-86. [PMID: 16473337 DOI: 10.1016/j.brainres.2006.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
The central nucleus of amygdala was examined to identify the ultrastructural distribution of neurotrophins responsible for the complex of neuronal signaling processes which regulate synaptic transmission and neuronal plasticity, and possibly underlie memory formation. We investigated at the electron microscopic level the cellular organization of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), in the extended amygdala (CE). We also investigated the interaction between cortical inputs to CE and BDNF and TrkB. Our results indicate the presence of pro-BDNF and BDNF in terminals in the CE which show a strong association with immunoreactive postsynaptic densities. TrkB receptor immunoreactivity was localized to postsynaptic densities of asymmetric synapses on dendrites and dendritic spines. Cortical terminals formed asymmetric synapses with dendritic shafts and spines, but were not BDNF immunoreactive. TrkB receptors were observed opposed to cortical terminals. These data also suggest that one potential substrate for associative learning may be the interaction of different cortical inputs with neurotrophin-containing terminals ending on dendritic spines and other neuronal structures of CE.
Collapse
Affiliation(s)
- Khristofor Agassandian
- Department of Anatomy and Cell Biology, The University of Iowa, 51, Newton Road, BSB, Iowa City, IA 52245, USA.
| | | | | |
Collapse
|
29
|
Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, Aebersold R, Sonderegger P. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 2005; 5:2531-41. [PMID: 15984043 DOI: 10.1002/pmic.200401198] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.
Collapse
Affiliation(s)
- Sabine P Schrimpf
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Petralia RS, Sans N, Wang YX, Wenthold RJ. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 2005; 29:436-52. [PMID: 15894489 PMCID: PMC1414063 DOI: 10.1016/j.mcn.2005.03.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 03/21/2005] [Accepted: 03/28/2005] [Indexed: 11/16/2022] Open
Abstract
In glutamatergic synapses, glutamate receptors (GluRs) associate with many other proteins involved in scaffolding and signal transduction. The ontogeny of these postsynaptic density (PSD) proteins involves changes in their composition during development, paralleling changes in GluR type and function. In the CA1 region of the hippocampus, at postnatal day 2 (P2), many synapses already have a distinct PSD. We used immunoblot analysis, subcellular fractionation, and quantitative immunogold electron microscopy to examine the distribution of PSD proteins during development of the hippocampus. Synapses at P2 contained substantial levels of NR1 and NR2B and most GluR-associated proteins, including SAP102, SynGAP, the chain of proteins from GluRs/SAP102 through GKAP/Shank/Homer and metabotropic glutamate receptors, and the adhesion factors, cadherin, catenin, neuroligin, and Nr-CAM. Development was marked by substantial decreases in NR2B and SAP102 and increases in NR2A, PSD-95, AMPA receptors, and CaMKII. Other components showed more moderate changes.
Collapse
Affiliation(s)
- Ronald S Petralia
- Laboratory of Neurochemistry, NIDCD/NIH, 50/4142, 50 South Drive MSC 8027, Bethesda, MD 20892-8027, USA.
| | | | | | | |
Collapse
|
31
|
Roumier A, Béchade C, Poncer JC, Smalla KH, Tomasello E, Vivier E, Gundelfinger ED, Triller A, Bessis A. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2005; 24:11421-8. [PMID: 15601948 PMCID: PMC6730361 DOI: 10.1523/jneurosci.2251-04.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several proteins are expressed in both immune and nervous systems. However, their putative nonimmune functions in the brain remain poorly understood. KARAP/DAP12 is a transmembrane polypeptide associated with cell-surface receptors in hematopoeitic cells. Its mutation in humans induces Nasu-Hakola disease, characterized by presenile dementia and demyelinization. However, alteration of white matter occurs months after the onset of neuropsychiatric symptoms, suggesting that other neuronal alterations occur in the early phases of the disease. We hypothesized that KARAP/DAP12 may impact synaptic function. In mice deficient for KARAP/DAP12 function, long-term potentiation was enhanced and was partly NMDA receptor (NMDAR) independent. This effect was accompanied by changes in synaptic glutamate receptor content, as detected by the increased rectification of AMPA receptor EPSCs and increased sensitivity of NMDAR EPSCs to ifenprodil. Biochemical analysis of synaptic proteins confirmed these electrophysiological data. In mutants, the AMPA receptor GluR2 subunit expression was decreased only in the postsynaptic densities but not in the whole membrane fraction, demonstrating specific impairment of synaptic receptor accumulation. Alteration of the BNDF-tyrosine kinase receptor B (TrkB) signaling in the mutant was demonstrated by the dramatic decrease of synaptic TrkB with no change in other regulatory or scaffolding proteins. Finally, KARAP/DAP12 was detected only in microglia but not in neurons, astrocytes, or oligodendrocytes. KARAP/DAP12 may thus alter microglial physiology and subsequently synaptic function and plasticity through a novel microglia-neuron interaction.
Collapse
Affiliation(s)
- Anne Roumier
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, Institut National de la Santé et de la Recherche Médicale (INSERM) U497, Ecole Normale Supérieure, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76:99-125. [PMID: 16099088 DOI: 10.1016/j.pneurobio.2005.06.003] [Citation(s) in RCA: 860] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/09/2005] [Accepted: 06/16/2005] [Indexed: 12/19/2022]
Abstract
Interest in BDNF as an activity-dependent modulator of neuronal structure and function in the adult brain has intensified in recent years. Localization of BDNF-TrkB to glutamate synapses makes this system attractive as a dynamic, activity-dependent regulator of excitatory transmission and plasticity. Despite individual breakthroughs, an integrated understanding of BDNF function in synaptic plasticity is lacking. Here, we attempt to distill current knowledge of the molecular mechanisms and function of BDNF in LTP. BDNF activates distinct mechanisms to regulate the induction, early maintenance, and late maintenance phases of LTP. Evidence from genetic and pharmacological approaches is reviewed and tabulated. The specific contribution of BDNF depends on the stimulus pattern used to induce LTP, which impacts the duration and perhaps the subcellular site of BDNF release. Particular attention is given to the role of BDNF as a trigger for protein synthesis-dependent late phase LTP--a process referred to as synaptic consolidation. Recent experiments suggest that BDNF activates synaptic consolidation through transcription and rapid dendritic trafficking of mRNA encoded by the immediate early gene, Arc. A model is proposed in which BDNF signaling at glutamate synapses drives the translation of newly transported (Arc) and locally stored (i.e., alphaCaMKII) mRNA in dendrites. In this model BDNF tags synapses for mRNA capture, while Arc translation defines a critical window for synaptic consolidation. The biochemical mechanisms by which BDNF regulates local translation are also discussed. Elucidation of these mechanisms should shed light on a range of adaptive brain responses including memory and mood resilience.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine, Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | |
Collapse
|
33
|
Isokawa M. N-methyl-D-aspartic acid-induced and Ca-dependent neuronal swelling and its retardation by brain-derived neurotrophic factor in the epileptic hippocampus. Neuroscience 2005; 131:801-12. [PMID: 15749335 DOI: 10.1016/j.neuroscience.2004.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2004] [Indexed: 12/23/2022]
Abstract
Dentate granule cell (DGC) swelling was studied by imaging changes in light transmittance from hippocampal slices in the rat pilocarpine model of epilepsy and human epileptic specimens. Brief bath-application of N-methyl-D-aspartic acid (NMDA) induced swelling in the control rat DGC (physiological swelling). Physiological swelling was short-lasting, and rapidly recovered upon removal of NMDA. In contrast, the swelling induced in the pilocarpine-treated rat hippocampus and human epileptic hippocampus (epileptic swelling) was long-lasting, and often recovered slowly over an hour. Both types of swelling were blocked by the NMDA receptor (NMDAR) antagonist, D-APV, suggesting that they shared the same induction mechanism. However, the swellings differed in their sensitivity to a calcium chelator, 1.2-bis(2-aminophenoxy)ethane-N,N,N,N-tetra-acetate (BAPTA), and an endoplasmic reticulum (ER) Ca2+-ATPase inhibitor, thapsigargin (TG). BAPTA and TG affected only epileptic swelling, and physiological swelling was spared. This suggested that the NMDAR-induced epileptic swelling might involve an additional mechanism for its maintenance, likely recruiting ER Ca2+ stores. Brain-derived neurotrophic factor (BDNF) slightly attenuated physiological swelling, and blocked epileptic swelling. The present study suggests a functional link between the activation of NMDAR and a release of Ca2+ from internal stores during the induction of epileptic swelling, and a neuroprotective role of BDNF on the NMDAR-induced swelling in the epileptic hippocampus.
Collapse
Affiliation(s)
- M Isokawa
- Department of Physiology and Program in Neuroscience University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
35
|
Wu K, Len GW, McAuliffe G, Ma C, Tai JP, Xu F, Black IB. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms. ACTA ACUST UNITED AC 2005; 130:178-86. [PMID: 15519688 DOI: 10.1016/j.molbrainres.2004.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that BDNF and NMDA activate the same tyrosine phosphorylation site(s) in GluR1. Our findings suggest that BDNF-mediated GluR1 tyrosine phosphorylation potentially regulates synaptic plasticity postsynaptically through NR2B subunits of the NMDA receptor.
Collapse
Affiliation(s)
- Kuo Wu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ji Y, Pang PT, Feng L, Lu B. Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci 2005; 8:164-72. [PMID: 15665879 DOI: 10.1038/nn1381] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 11/15/2004] [Indexed: 01/17/2023]
Abstract
Synaptic actions of brain-derived neurotrophic factor (BDNF) are 'gated' by cyclic AMP (cAMP), but the underlying molecular mechanisms remain unclear. Here we report that cAMP regulates BDNF function in mature hippocampal neurons by modulating the signaling and trafficking of its receptor TrkB. cAMP gated the TrkB tyrosine kinase with three characteristic features: BDNF-induced TrkB phosphorylation was attenuated by inhibitors of cAMP signaling, it was potentiated by cAMP analogs, and activation of the cAMP pathway alone had no effect. In addition, cAMP facilitated trafficking of TrkB to dendritic spines, possibly by promoting its interaction with synaptic scaffolding protein PSD-95. Norepinephrinergic and dopaminergic agonists, which elevate intracellular cAMP concentration, also enhanced TrkB phosphorylation and its translocation to spines. cAMP gated long-term modulation by BDNF of spine density, but not the number of primary dendrites. These results reveal a specific role of cAMP in controlling BDNF actions in the brain, and provide new insights into the molecular mechanism underlying cAMP gating.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
37
|
SWANWICK CATHERINECROFT, HARRISON MADALINEB, KAPUR JAIDEEP. Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. J Comp Neurol 2004; 478:405-17. [PMID: 15384067 PMCID: PMC2892721 DOI: 10.1002/cne.20295] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates synapses, but the distribution of BDNF and its receptor TrkB relative to the location of glutamatergic and gamma-aminobutyric acidergic (GABAergic) synapses is presently unknown. Immunocytochemistry was performed in primary hippocampal neuron cultures to determine whether BDNF and TrkB are preferentially localized to excitatory or inhibitory markers at 7, 14, and 21 days in vitro (DIV). Glutamatergic sites were localized with vesicular glutamate transporter type 1 (VGLUT1) as presynaptic marker and the NR1 subunit of the NMDA receptor and the GluR1 subunit of the AMPA receptor as receptor markers. GABAergic sites were labeled with the 65-kDa isoform of glutamic acid decarboxylase (GAD-65) as presynaptic marker and the gamma2 subunit of the GABAA receptor as receptor marker. During development, <30% of BDNF punctae and TrkB clusters were localized to glutamatergic and GABAergic markers. Because their rates of colocalization did not change from 7 to 21 DIV, this study details the distribution of BDNF and TrkB at 14 DIV. BDNF was preferentially colocalized with glutamatergic markers VGLUT1 and NR1 ( approximately 30% each). TrkB was also relatively highly colocalized with VGLUT1 and NR1 ( approximately 20% each) but was additionally highly colocalized with GABAergic markers GAD-65 ( approximately 20%) and gamma2 ( approximately 30%). NR1 clusters colocalized with BDNF puncta and TrkB clusters were mostly extrasynaptic, as were gamma2 clusters colocalized with TrkB clusters. These results show that, whereas most BDNF and TrkB protein is extrasynaptic, BDNF is preferentially associated with excitatory markers and that TrkB is associated equally with excitatory and inhibitory markers.
Collapse
Affiliation(s)
| | - MADALINE B. HARRISON
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908
| | - JAIDEEP KAPUR
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22908
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908
- Correspondence to: Jaideep Kapur, Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
38
|
Koponen E, Lakso M, Castrén E. Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. ACTA ACUST UNITED AC 2004; 130:81-94. [PMID: 15519679 DOI: 10.1016/j.molbrainres.2004.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 01/03/2023]
Abstract
Significant body of evidence indicates an important role for brain-derived neurotrophic factor (BDNF) in the hippocampal synaptic plasticity; however, the exact mechanisms how the BDNF signal is converted to plastic changes during memory processes are under an intense investigation. To specifically address the role of the trkB receptor, we have previously generated transgenic mice overexpressing the full-length trkB receptor and observed a continuous activation of the trkB.TK+ receptor, improved learning and memory but an attenuated LTP in these mice. In this study, we describe the trkB.TK+ mRNA and protein distribution in the transgenic mice, showing the most prominent increase in the full-length trkB expression in the cortical layer V pyramidal neurons and dentate gyrus of the hippocampus. In addition, we have analyzed the mRNA expression patterns of a group of genes associated with both plastic changes in the nervous system and BDNF signaling. Regulated expression of immediate early genes c-fos, fra-2 and junB was observed in the transgenic mice. Furthermore, the mRNA expression of alpha-Ca2+/calmodulin-dependent kinase II (alpha-CaMKII) was reduced in both the hippocampus and parietal cortex, whereas growth-associated protein 43 (GAP-43) mRNA expressions were induced in the corresponding regions. Conversely, the mRNA expression of the transcription factor cAMP response element binding protein (CREB) was not altered in the trkB.TK+mice. Finally, the density of neuropeptide Y (NPY)-expressing cells was increased in the trkB.TK+ mice dentate hilus. Altogether, these results demonstrate in vivo that the increased trkB.TK+ signaling regulates several important plasticity-related genes.
Collapse
Affiliation(s)
- Eija Koponen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. BOX 1627, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
39
|
Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004; 24:4250-8. [PMID: 15115821 PMCID: PMC6729276 DOI: 10.1523/jneurosci.3920-03.2004] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, modulates neuronal survival, differentiation, and synaptic function. Reduced BDNF expression in the cortex caused by mutation of the huntingtin gene has been suggested to play a role in the striatal degeneration observed in Huntington's disease. BDNF expression rises dramatically in the cortex during the first few weeks of postnatal life in mice. Previously, it has been impossible to study the specific long-term effects of BDNF absence on CNS structures because of the early postnatal lethality of BDNF-/- mice. Mice harboring a floxed BDNF gene were bred with Emx1(IREScre/+) mice to generate Emx-BDNF(KO) mice that lack cortical BDNF but are viable. Adult Emx-BDNF(KO) mice display a hindlimb clasping phenotype similar to that observed in mouse models of Huntington's disease. The striatum of postnatal Emx-BDNF(KO) mice was reduced in volume compared with controls, and the most abundant neuron type of the striatum, medium spiny neurons (MSNs), had shrunken cell somas, thinner dendrites, and fewer dendritic spines at 35 d of age. Although significant striatal neuron losses were not detected at 35 or 120 d postnatal, 35% of striatal neurons were missing in Emx-BDNF(KO) mice aged beyond 1 year. Thus, cortical BDNF, although not required for the generation or near-term survival of MSN, is necessary for normal striatal neuron dendrite morphology during the period when BDNF expression rises in the cortex. Furthermore, a long-term in vivo requirement for cortical BDNF in supporting the survival of MSNs is revealed.
Collapse
Affiliation(s)
- Zachary C Baquet
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
40
|
Binder DK. The Role of BDNF in Epilepsy and Other Diseases of the Mature Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:34-56. [PMID: 15250584 DOI: 10.1007/978-1-4757-6376-8_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is ubiquitous in the central nervous system (CNS) throughout life. In addition to trophic effects on target neurons, BDNF appears to be part of a general mechanism for activity-dependent modification of synapses in the developing and adult nervous system. Thus, diseases of abnormal trophic support (such as neurodegenerative diseases) and diseases of abnormal excitability (such as epilepsy and central pain sensitization) can be related in some cases to abnormal BDNF signaling. For example, various studies have shown that BDNF is upregulated in areas implicated in epileptogenesis, and interference with BDNF signal transduction inhibits the development of the epileptic state. Further study of the cellular and molecular mechanisms by which BDNF influences cell survival and excitability will likely provide novel concepts and targets for the treatment of diverse CNS diseases.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California at San Francisco, Moffitt Hospital, USA
| |
Collapse
|
41
|
Abstract
Neurotrophins are a family of growth factors critical for the development and functioning of the nervous system. Although originally identified as neuronal survival factors, neurotrophins elicit many biological effects, ranging from proliferation to synaptic modulation to axonal pathfinding. Recent data indicate that the nature of the signaling cascades activated by neurotrophins, and the biological responses that ensue, are specified not only by the ligand itself but also by the temporal pattern and spatial location of stimulation. Studies on neurotrophin signaling have revealed variations in the Ras/MAP kinase, PI3 kinase, and phospholipase C pathways, which transmit spatial and temporal information. The anatomy of neurons makes them particularly appropriate for studying how the location and tempo of stimulation determine the signal cascades that are activated by receptor tyrosine kinases such as the Trk receptors. These signaling variations may represent a general mechanism eliciting specificity in growth factor responses.
Collapse
Affiliation(s)
- Rosalind A Segal
- Departments of Neurobiology and Pediatric Oncology, Harvard Medical School and Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Abstract
The mammalian cerebral cortex requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between hundreds of thousands of differentiating neurons. Although the development of the cerebral cortex has been well described anatomically, the cellular and molecular mechanisms that guide neuronal differentiation and formation of connections are just beginning to be understood. Moreover, despite evidence that coordinated patterns of activity underlie reorganization of brain circuits during critical periods of development, the molecular signals that translate activity into structural and functional changes in connections remain unknown. Recently, the neurotrophins have emerged as attractive candidates not only for regulating neuronal differentiation in the developing brain, but also for mediating activity-dependent synaptic plasticity. The neurotrophins meet many of the criteria required for molecular signals involved in neuronal differentiation and plasticity. They are present in the cerebral cortex during development and their expression is regulated by synaptic activity. In turn, the neurotrophins themselves strongly influence both short-term synaptic plasticity and long-term potentiation and depression. In addition to their functional effects, the neurotrophins also profoundly regulate the structural changes that underlie axonal and dendritic differentiation. Finally, the neurotrophins have been implicated in mediating synaptic competition required for activity-dependent plasticity during the critical period. This chapter presents and discusses the rapidly accumulating evidence that the neurotrophins are critical for neuronal differentiation and that they may be involved in activity-dependent synaptic refinement in the developing cerebral cortex.
Collapse
Affiliation(s)
- A Kimberley McAllister
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, California 95616, USA
| |
Collapse
|
43
|
Abstract
BDNF and its specific receptor TrkB are concerned with synaptic plasticity as well as maintenance of the nervous system. TrkB has three subtypes: full-length TrkB (TK+), which has a tyrosine kinase containing intracellular domain, and two truncated TrkBs (TK-; T1 and T2), which lack tyrosine kinases. To understand the molecular interaction among these subtypes, we investigated the expression and distribution of BDNF, TK+, and T1 in the adult monkey cerebellum by single and double immunohistochemistry and Western blot analysis. We observed by single immunohistochemistry that BDNF, TK+, and T1 are distributed in almost all the somata and dendrites of Purkinje and granule cells. In the double-stained sections, three kinds of regions were observed: TK+ >T1; TK+ =T1; TK+ <T1. Moreover, three types of TrkB dimers (TK+/TK+ homodimer, TK+/TK- heterodimer, and TK-/TK- homodimer) were induced by stimulating with exogenous BDNF. These observations suggest that the functions of BDNF may be modified by interaction among subtypes of TrkB in each region of the Purkinje cells.
Collapse
Affiliation(s)
- Koji Ohira
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Kanrin, Inuyama, 484-8506, Aichi, Japan
| | | |
Collapse
|
44
|
Abstract
Synapse formation and stabilization in the vertebrate central nervous system is a dynamic process, requiring bi-directional communication between pre- and postsynaptic partners. Numerous mechanisms coordinate where and when synapses are made in the developing brain. This review discusses cellular and activity-dependent mechanisms that control the development of synaptic connectivity.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Skup M, Dwornik A, Macias M, Sulejczak D, Wiater M, Czarkowska-Bauch J. Long-term locomotor training up-regulates TrkB(FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp Neurol 2002; 176:289-307. [PMID: 12359171 DOI: 10.1006/exnr.2002.7943] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurotrophins are potent regulators of neuronal survival, maintenance, and synaptic strength. In particular, brain-derived neurotrophic factor (BDNF), acting through full-length TrkB receptor (TrkB(FL)), is implicated in the stimulation of neurotransmission. Physical activity has been reported to increase BDNF expression in the brain and spinal cord. In this study we have evaluated the hypothesis that activation of a spinal neuronal network, due to exercise, affects the entire spinal neurotrophin system acting via TrkB receptors by modulation of BDNF, neurotrophin 4 (NT-4), and their TrkB receptor proteins. We investigated the effect of treadmill walking (4 weeks, 1 km daily) on distribution patterns and response intensity of these proteins in the lumbar spinal cord of adult rats. Training enhanced immunoreactivity (IR) of both neurotrophins. BDNF IR increased in cell processes of spinal gray matter, mainly in dendrites. NT-4 IR was augmented in the white matter fibers, which were, in part, of astrocytic identity. Training strongly increased both staining intensity and number of TrkB(FL)-like IR small cells of the spinal gray matter. The majority of these small cells were oligodendrocytes, representing both their precursor and their mature forms. In contrast, training did not exert an effect on expression of the truncated form of TrkB receptor in the spinal cord. These results show that both neuronal and nonneuronal cells may be actively recruited to BDNF/NT-4/TrkB(FL) neurotrophin signaling which can be up-regulated by training. Oligodendrocytes of the spinal gray matter were particularly responsive to exercise, pointing to their involvement in activity-driven cross talk between neurons and glia.
Collapse
Affiliation(s)
- Malgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St. 02-093 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Yamauchi T. Molecular constituents and phosphorylation-dependent regulation of the post-synaptic density. MASS SPECTROMETRY REVIEWS 2002; 21:266-286. [PMID: 12533800 DOI: 10.1002/mas.10033] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The post-synaptic density (PSD) contains receptors with associated signaling- and scaffolding-proteins that organize signal-transduction pathways near the post-synaptic membrane. The PSD plays an important role in synaptic plasticity, and protein phosphorylation is critical to the regulation of PSD function, including learning and memory. Recently, studies have investigated the protein constituents of the PSD and substrate proteins for various protein kinases by proteomic analysis. The present review focuses on the molecular properties of PSD proteins, and substrates of protein kinases and their regulation by phosphorylation in order to understand the role of PSD in synaptic plasticity.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan.
| |
Collapse
|
47
|
Abstract
Neurotrophins have profound effects on synaptic function and structure. They can be derived from presynaptic, as well as postsynaptic, sites. To date, it has not been possible to measure the release of neurotrophins from axon terminals in intact tissue. We implemented a novel, extremely sensitive assay for the release and transfer of anterogradely transported neurotrophin-3 (NT-3) from a presynaptic to a postsynaptic location that uses synaptosomal fractionation after introduction of radiolabeled NT-3 into the retinotectal projection of chick embryos. Release of the anterogradely transported NT-3 in intact tissue was assessed by measuring the amount remaining in synaptosomal preparations after treatment of whole tecta with pharmacological agents. Use of this assay reveals that release of NT-3 from axon terminals is increased by depolarization, calcium influx via N-type calcium channels, and cAMP analogs, and release is most profoundly increased by excitation with kainic acid or mobilization of calcium from intracellular stores. NT-3 release depends on extracellular sodium, CaM kinase II activity, and requires intact microtubules and microfilaments. Dantrolene inhibits the high potassium-induced release of NT-3, indicating that release of calcium from intracellular stores is required. Tetanus toxin also inhibits NT-3 release, suggesting that intact synaptobrevin or synaptobrevin-like molecules are required for exocytosis. Ultrastructural autoradiography and immunolabel indicate that NT-3 is packaged in presumptive large dense-core vesicles. These data show that release of NT-3 from axon terminals depends on multiple regulatory proteins and ions, including the mobilization of local calcium. The data provide insight in the mechanisms of anterograde neurotrophins as synaptic modulators.
Collapse
|
48
|
Romanczyk TB, Weickert CS, Webster MJ, Herman MM, Akil M, Kleinman JE. Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan. Eur J Neurosci 2002; 15:269-80. [PMID: 11849294 DOI: 10.1046/j.0953-816x.2001.01858.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Signalling through tyrosine kinase receptor B (trkB) influences neuronal survival, differentiation and synaptogenesis. trkB exists in a full-length form (trkB(TK+)), which contains a catalytic tyrosine kinase (TK) domain, and a truncated form (trkB(TK-)), which lacks this domain. In the rodent brain, expression of trkB(TK+) decreases and trkBTK- increases during postnatal life. We hypothesized that both forms of trkB receptor mRNA would be present in the human neocortex and that the developmental profile of trkB gene expression in human may be distinct from that in rodent. We detected both trkB(TK+) and trkB(TK-) mRNA in RNA extracted from multiple human brain regions by Northern blot. Using in situ hybridization, we found trkB(TK+) mRNA in all cortical layers, with highest expression in layer IV and intermediate-to-high expression in layers III and V of the human dorsolateral prefrontal cortex. trkB(TK+) mRNA was present in neurons with both pyramidal and nonpyramidal shapes in the dorsolateral prefrontal cortex. trkB(TK+) mRNA levels were significantly increased in layer III in young adults as compared with infants and the elderly. In the elderly, trkB(TK+) mRNA levels were reduced markedly in all cortical layers. Unlike the mRNA encoding the full-length form of trkB, trkB(TK-) mRNA was distributed homogeneously across the grey matter, and trkB(TK-) mRNA levels increased only slightly during postnatal life. The results suggest that neurons in the human dorsolateral prefrontal cortex are responsive to neurotrophins throughout postnatal life and that this responsiveness may be modulated during the human lifespan.
Collapse
Affiliation(s)
- T B Romanczyk
- Clinical Brain Disorders Branch, IRP, NIMH, NIH, Building 10/4 N312, MSC 1385, Bethesda, MD 20892-1385, USA
| | | | | | | | | | | |
Collapse
|
49
|
Cheung HH, Gurd JW. Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J Neurochem 2001; 78:524-34. [PMID: 11483655 DOI: 10.1046/j.1471-4159.2001.00433.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylation of the NMDA receptor by Src-family tyrosine kinases has been implicated in the regulation of receptor function. We have investigated the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B by exogenous Src and Fyn and compared this to phosphorylation by tyrosine kinases associated with the postsynaptic density (PSD). Phosphorylation of the receptor by exogenous Src and Fyn was dependent upon initial binding of the kinases to PSDs via their SH2-domains. Src and Fyn phosphorylated similar sites in NR2A and NR2B, tryptic peptide mapping identifying seven and five major tyrosine-phosphorylated peptides derived from NR2A and NR2B, respectively. All five tyrosine phosphorylation sites on NR2B were localized to the C-terminal, cytoplasmic domain. Phosphorylation of NR2B by endogenous PSD tyrosine kinases yielded only three tyrosine-phosphorylated tryptic peptides, two of which corresponded to Src phosphorylation sites, and one of which was novel. Phosphorylation-site specific antibodies identified NR2B Tyr1472 as a phosphorylation site for intrinsic PSD tyrosine kinases. Phosphorylation of this site was inhibited by the Src-family-specific inhibitor PP2. The results identify several potential phosphorylation sites for Src in the NMDA receptor, and indicate that not all of these sites are available for phosphorylation by kinases located within the structural framework of the PSD.
Collapse
Affiliation(s)
- H H Cheung
- Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | |
Collapse
|
50
|
von Bartheld CS, Wang X, Butowt R. Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol 2001; 24:1-28. [PMID: 11831547 DOI: 10.1385/mn:24:1-3:001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional views of neurotrophic factor biology held that trophic factors are released from target cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell bodies. Increasing evidence indicates that several trophic factors such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), glial cell-line derived neurotrophic factor (GDNF), insulin-like growth factor (IGF-I), and neurotrophin-3 (NT-3), can move anterogradely along axons. They can escape the degradative pathway upon internalization and are recycled for future uses. Internalized ligands can move through intermediary cells by transcytosis, presumably by endocytosis via endosomes to the Golgi system, by trafficking of the factor to dendrites or by sorting into anterograde axonal transport with subsequent release from axon terminals and uptake by second- or third-order target neurons. Such data suggest the existence of multiple "trophic currencies," which may be used over several steps in neural networks to enable nurturing relationships between connected neurons or glial cells, not unlike currency exchanges between trading partners in the world economy. Functions of multistep transfer of trophic material through neural networks may include regulation of neuronal survival, differentiation of phenotypes and dendritic morphology, synapse plasticity, as well as excitatory neurotransmission. The molecular mechanisms of sorting, trafficking, and release of trophic factors from distinct neuronal compartments are important for an understanding of neurotrophism, but they present challenging tasks owing to the low levels of the endogenous factors.
Collapse
Affiliation(s)
- C S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA.
| | | | | |
Collapse
|