1
|
Zhang Q, Xie H, Ji Z, He R, Xu M, He Y, Huang J, Pan S, Hu Y. Cdk5/p25 specific inhibitory peptide TFP5 rescues the loss of dopaminergic neurons in a sub-acute MPTP induced PD mouse model. Neurosci Lett 2016; 632:1-7. [PMID: 27542341 DOI: 10.1016/j.neulet.2016.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by progressively loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies. In 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced PD mice models, the calpain- cyclin-dependent kinase 5 (Cdk5)-myocyte enhancer factor 2 (MEF2) signaling has been proven in governing dopaminergic neuronal death. Under MPTP insult, p35 is cleaved by calpain into p25, which binds to Cdk5 and exhibits hyperactivity of Cdk5/p25. Cdk5/p25 inactivates MEF2, a survivor factor, which is critical for DA neuronal death. In this study, neuroprotective effect of the Cdk5/p25 specific peptide, TFP5, was evaluated in sub-acute MPTP induced PD mouse model by intraperitoneal (i.p.) injection of MPTP for five consecutive days. The results indicated that the levels of p35 and p25, and p25/p35 ratio increased in the sub-acute MPTP mice. TFP5 broadly reached cortex neuron, hippocampus and SNpc areas after i.p. injections. Pretreatment with 45mg/kg/day TFP5, as well as 10mgkg/day Cdk5 inhibitor roscovitine, for three days significantly rescued DA neuronal loss up to 9.8% or 9.7% respectively compared to the saline treated group. Treatment of TFP5 and roscovitine reduced the levels of inactive form of MEF2 and cleaved caspase 3, thus protected apoptosis of DA neurons against MPTP insult. Our results propose that TFP5 might be a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Qishan Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yong He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Jianou Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The 421 Hospital, Guangzhou, Guangdong, PR China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
3
|
Simola N, Morelli M, Frazzitta G, Frau L. Role of movement in long-term basal ganglia changes: implications for abnormal motor responses. Front Comput Neurosci 2013; 7:142. [PMID: 24167489 PMCID: PMC3805948 DOI: 10.3389/fncom.2013.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022] Open
Abstract
Abnormal involuntary movements (AIMs) and dyskinesias elicited by drugs that stimulate dopamine receptors in the basal ganglia are a major issue in the management of Parkinson’s disease (PD). Preclinical studies in dopamine-denervated animals have contributed to the modeling of these abnormal movements, but the precise neurochemical and functional mechanisms underlying these untoward effects are still elusive. It has recently been suggested that the performance of movement may itself promote the later emergence of drug-induced motor complications, by favoring the generation of aberrant motor memories in the dopamine-denervated basal ganglia. Our recent results from hemiparkinsonian rats subjected to the priming model of dopaminergic stimulation are in agreement with this. These results demonstrate that early performance of movement is crucial for the manifestation of sensitized rotational behavior, indicative of an abnormal motor response, and neurochemical modifications in selected striatal neurons following a dopaminergic challenge. Building on this evidence, this paper discusses the possible role of movement performance in drug-induced motor complications, with a look at the implications for PD management.
Collapse
Affiliation(s)
- Nicola Simola
- 1Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari Cagliari, Italy
| | | | | | | |
Collapse
|
4
|
Performance of movement in hemiparkinsonian rats influences the modifications induced by dopamine agonists in striatal efferent dynorphinergic neurons. Exp Neurol 2013; 247:663-72. [DOI: 10.1016/j.expneurol.2013.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/20/2013] [Accepted: 03/02/2013] [Indexed: 11/22/2022]
|
5
|
Li J, Li J, Liu X, Qin S, Guan Y, Liu Y, Cheng Y, Chen X, Li W, Wang S, Xiong M, Kuzhikandathil EV, Ye JH, Zhang C. MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction. EMBO Mol Med 2013; 5:1402-14. [PMID: 23873704 PMCID: PMC3799494 DOI: 10.1002/emmm.201201900] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/02/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022] Open
Abstract
Alcohol addiction is a major social and health concern. Here, we determined the expression profile of microRNAs (miRNAs) in the nucleus accumbens (NAc) of rats treated with alcohol. The results suggest that multiple miRNAs were aberrantly expressed in rat NAc after alcohol injection. Among them, miR-382 was down-regulated in alcohol-treated rats. In both cultured neuronal cells in vitro and in the NAc in vivo, we identified that the dopamine receptor D1 (Drd1) is a direct target gene of miR-382. Via this target gene, miR-382 strongly modulated the expression of DeltaFosB. Moreover, overexpression of miR-382 significantly attenuated alcohol-induced up-regulation of DRD1 and DeltaFosB, decreased voluntary intake of and preference for alcohol and inhibited the DRD1-induced action potential responses. The results indicated that miRNAs are involved in and may represent novel therapeutic targets for alcoholism.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Pharmacology, Rush University Medical Center, Rush University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pollack AE, Thomas LI. D1 priming enhances both D1- and D2-mediated rotational behavior and striatal Fos expression in 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav 2010; 94:346-51. [DOI: 10.1016/j.pbb.2009.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/11/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
|
7
|
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) continues to constitute a valuable topical tool used chiefly in modeling Parkinson's disease in the rat. The classical method of intracerebral infusion of 6-OHDA involving a massive destruction of nigrostriatal dopaminergic neurons, is largely used to investigate motor and biochemical dysfunctions in Parkinson's disease. Subsequently, more subtle models of partial dopaminergic degeneration have been developed with the aim of revealing finer motor deficits. The present review will examine the main features of 6-OHDA models, namely the mechanisms of neurotoxin-induced neurodegeneration as well as several behavioural deficits and motor dysfunctions, including the priming model, modeled by this means. An overview of the most recent morphological and biochemical findings obtained with the 6-OHDA model will also be provided, particular attention being focused on the newly investigated intracellular mechanisms at the striatal level (e.g., A(2A) and NMDA receptors, PKA, CaMKII, ERK kinases, as well as immediate early genes, GAD67 and peptides). Thanks to studies performed in the 6-OHDA model, all these mechanisms have now been hypothesised to represent the site of pathological dysfunction at cellular level in Parkinson's disease.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | |
Collapse
|
8
|
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the most efficacious drug for the treatment of Parkinson's disease (PD), but causes adverse effects that limit its utility. L-DOPA-induced dyskinesia (abnormal involuntary movements) is a significant clinical problem that attracts growing scientific interest. Current notions attribute the development of dyskinesia to two main factors, viz. the loss of nigrostriatal dopamine (DA) projections and the maladaptive changes produced by L-DOPA at sites postsynaptic to the nigrostriatal neuron. Basic research in the past 15 years has placed a lot of emphasis on the postsynaptic plasticity associated with dyskinesia, but recent experimental work shows that also some presynaptic factors, involving the regulation of L-DOPA/DA release and metabolism in the brain, may show plasticity during treatment. This review summarizes significant studies of L-DOPA-induced dyskinesia in patients and animal models, and outlines directions for future experiments addressing mechanisms of presynaptic plasticity. These investigations may uncover clues to the varying susceptibility to L-DOPA-induced dyskinesia among PD patients, paving the way for tailor-made treatments.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, BMC F11, S.221 84 Lund, Sweden.
| | | |
Collapse
|
9
|
Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O'Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2003; 100:13650-5. [PMID: 14595022 PMCID: PMC263868 DOI: 10.1073/pnas.2232515100] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent evidence indicates that cyclin-dependent kinases (CDKs, cdks) may be inappropriately activated in several neurodegenerative conditions. Here, we report that cdk5 expression and activity are elevated after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that damages the nigrostriatal dopaminergic pathway. Supporting the pathogenic significance of the cdk5 alterations are the findings that the general cdk inhibitor, flavopiridol, or expression of dominant-negative cdk5, and to a lesser extent dominant-negative cdk2, attenuates the loss of dopaminergic neurons caused by MPTP. In addition, CDK inhibition strategies attenuate MPTP-induced hypolocomotion and markers of striatal function independent of striatal dopamine. We propose that cdk5 is a key regulator in the degeneration of dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Patrice D Smith
- Neuroscience Group, Ottawa Health Research Institute, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J Neurosci 2003. [PMID: 12764095 DOI: 10.1523/jneurosci.23-10-04081.2003] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular mechanisms mediating degeneration of midbrain dopamine neurons in Parkinson's disease (PD) are poorly understood. Here, we provide evidence to support a role for the involvement of the calcium-dependent proteases, calpains, in the loss of dopamine neurons in a mouse model of PD. We show that administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) evokes an increase in calpain-mediated proteolysis in nigral dopamine neurons in vivo. Inhibition of calpain proteolysis using either a calpain inhibitor (MDL-28170) or adenovirus-mediated overexpression of the endogenous calpain inhibitor protein, calpastatin, significantly attenuated MPTP-induced loss of nigral dopamine neurons. Commensurate with this neuroprotection, MPTP-induced locomotor deficits were abolished, and markers of striatal postsynaptic activity were normalized in calpain inhibitor-treated mice. However, behavioral improvements in MPTP-treated, calpain inhibited mice did not correlate with restored levels of striatal dopamine. These results suggest that protection against nigral neuron degeneration in PD may be sufficient to facilitate normalized locomotor activity without necessitating striatal reinnervation. Immunohistochemical analyses of postmortem midbrain tissues from human PD cases also displayed evidence of increased calpain-related proteolytic activity that was not evident in age-matched control subjects. Taken together, our findings provide a potentially novel correlation between calpain proteolytic activity in an MPTP model of PD and the etiology of neuronal loss in PD in humans.
Collapse
|
11
|
Tahara K, Tsuchimoto D, Tominaga Y, Asoh S, Ohta S, Kitagawa M, Horie H, Kadoya T, Nakabeppu Y. DeltaFosB, but not FosB, induces delayed apoptosis independent of cell proliferation in the Rat1a embryo cell line. Cell Death Differ 2003; 10:496-507. [PMID: 12728248 DOI: 10.1038/sj.cdd.4401173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The fates of Rat1a cells expressing FosB and DeltaFosB as fusion proteins (ER-FosB, ER-DeltaFosB) with the ligand binding domain of human estrogen receptor were examined. The binding of estrogen to the fusion proteins resulted in their nuclear translocation and triggered cell proliferation, and thereafter delayed cell death was observed only in cells expressing ER-DeltaFosB. The proliferation of Rat1a cells, but not cell death triggered by ER-DeltaFosB, was completely abolished by butyrolactone I, an inhibitor of cycline-dependent kinases, and was partly suppressed by antisense oligonucleotides against galectin-1, whose expression is induced after estrogen administration. The cell death was accompanied by the activation of caspase-3 and -9, the fragmentation of the nuclear genome and cytochrome c release from the mitochondria, and was suppressed by zDEVD-fmk and zLEHD-fmk but not zIETD-fmk. The cell death was not suppressed by exogenous His-PTD-Bcl-x(L) at all, suggesting involvement of a Bcl-x(L)-resistant pathway for cytochrome c release.
Collapse
Affiliation(s)
- K Tahara
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Andersson M, Westin JE, Cenci MA. Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment. Eur J Neurosci 2003; 17:661-6. [PMID: 12581184 DOI: 10.1046/j.1460-9568.2003.02469.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DeltaFosB-like proteins are particularly stable transcription factors that accumulate in the brain in response to chronic perturbations. In this study we have compared the time-course of striatal FosB/DeltaFosB-like immunoreactivity and prodynorphin mRNA expression after discontinuation of chronic cocaine treatment to intact rats and chronic L-DOPA treatment to unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. The animals were killed between 3 h and 16 days after the last drug injection. In both treatment paradigms, the drug-induced FosB/DeltaFosB immunoreactivity remained significantly elevated in the caudate putamen even at the longest withdrawal period examined. The concomitant upregulation of prodynorphin mRNA, a target of DeltaFosB, paralleled the time-course of DeltaFosB-like immunoreactivity in the 6-OHDA-lesion/L-DOPA model, but was more transient in animals treated with cocaine. These results suggest that DeltaFosB-like proteins have exceptional in vivo stability. In the dopamine-denervated striatum, these proteins may exert sustained effects on the expression of their target genes long after discontinuation of L-DOPA pharmacotherapy.
Collapse
Affiliation(s)
- M Andersson
- Department of Physiological Sciences, Neurobiology Division, Lund University, Wallenberg Neuroscience Center, BMC A11, Sweden
| | | | | |
Collapse
|
13
|
Hu XT, Koeltzow TE, Cooper DC, Robertson GS, White FJ, Vezina P. Repeated ventral tegmental area amphetamine administration alters dopamine D1 receptor signaling in the nucleus accumbens. Synapse 2002; 45:159-70. [PMID: 12112395 DOI: 10.1002/syn.10095] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroadaptations of the mesoaccumbens dopamine (DA) system likely underlie the emergence of locomotor sensitization following the repeated intermittent systemic administration of amphetamine (AMPH). In the nucleus accumbens (NAc), such neuroadaptations include enhanced DA overflow in response to a subsequent AMPH challenge as well as increased sensitivity to the inhibitory effects of D1 DA receptor (D1R) activation and an altered profile of D1R-dependent induction of immediate early genes (IEGs). Previous results indicate that AMPH acts in the ventral tegmental area (VTA) to initiate those changes leading to sensitization of the locomotor activity and NAc DA overflow produced by systemic administration of this drug. These observations are intriguing, given that acute infusion of AMPH into the VTA does not stimulate locomotor activity or, as we report presently, increase extracellular NAc DA concentrations. Two experiments, therefore, assessed the ability of repeated VTA AMPH to produce adaptations in D1R signaling in the NAc. Rats were administered three bilateral VTA infusions of saline or AMPH (2.5 microg/0.5 microl/side, one every third day). In the first experiment, in vivo extracellular electrophysiological recordings revealed that previous exposure to VTA AMPH enhanced the sensitivity of NAc neurons to the inhibitory effects of iontophoretic application of the D1R agonist SKF 38393. This effect was observed early (2-3 days) and at 1 month of withdrawal, but not after 2 months. Similarly, in the second experiment it was found that the D1R-dependent induction by AMPH of Fos, FosB, and JunB, but not NGFI-A, in the NAc was enhanced in rats exposed 1 week earlier to repeated VTA AMPH. These findings indicate that repeated VTA AMPH administration initiates relatively long-lasting adaptations in D1R signaling in the NAc that may, together with presynaptic adaptations affecting DA overflow, contribute to the expression of locomotor sensitization by this drug.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Cellular and Molecular Pharmacology Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nash JE, Brotchie JM. Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Mov Disord 2002; 17:455-66. [PMID: 12112191 DOI: 10.1002/mds.10107] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Treatments for Parkinson's disease based on replacement of lost dopamine have several problems. Following loss of dopamine, enhanced N-methyl-D-aspartate (NMDA) receptor-mediated transmission in the striatum is thought to be part of the cascade of events leading to the generation of parkinsonian symptoms. We determined the localisation and pharmacological characteristics of NMDA receptors that play a role in generating parkinsonian symptoms within the striatum. Rats were lesioned unilaterally with 6-hydroxydopamine (6-OHDA), and cannulae implanted bilaterally to allow injection of a range of NMDA receptor antagonists at different striatal sites. When injected rostrally into the dopamine-depleted striatum, the glycine site partial agonist, (+)-HA-966 (44-400 nmol) caused a dose-dependent contraversive rotational response consistent with an antiparkinsonian action. (+)-HA-966 (400 nmol) had no effect when infused into more caudal regions of the dopamine-depleted striatum, or following injection into any striatal region on the dopamine-intact side. To determine the pharmacological profile of NMDA receptors involved in inducing parkinsonism in 6-OHDA-lesioned rats, a range of NMDA receptor antagonists was infused directly into the rostral striatum. Ifenprodil (100 nmol) and 7-chlorokynurenate (37 nmol), but not MK-801 (15 nmol) or D-APV (25 nmol) elicited a dramatic rotational response when injected into the dopamine-depleted striatum. This pharmacological profile is not consistent with an effect mediated via blocking NR2B-containing NMDA receptors. The effect of intrastriatal injection of ifenprodil was increased in animals previously treated with levodopa (L-dopa) methyl ester. This was seen as an increase in on-time and in peak rotational response. We propose that stimulation of NR2B-containing NMDA receptors in the rostral striatum underlies the generation of parkinsonian symptoms. These studies are in line with previous findings suggesting that administration of NR2B-selective NMDA receptor antagonists may be therapeutically beneficial for parkinsonian patients, when given de novo and following L-dopa treatment.
Collapse
Affiliation(s)
- Joanne E Nash
- Manchester Movement Disorder Laboratory, Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
15
|
Tekumalla PK, Calon F, Rahman Z, Birdi S, Rajput AH, Hornykiewicz O, Di Paolo T, Bédard PJ, Nestler EJ. Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson's disease. Biol Psychiatry 2001; 50:813-6. [PMID: 11720701 DOI: 10.1016/s0006-3223(01)01234-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION In the present study, we determined whether certain proteins known to mediate dopamine signaling in striatum show abnormal levels in Parkinson's disease. METHODS Protein levels were assayed by western blotting in samples of caudate nucleus and putamen obtained at autopsy from patients with Parkinson's disease and from control subjects. Levels of several markers of dopaminergic function were also assayed. RESULTS Levels of the transcription factor DeltaFosB and of the G protein modulatory protein RGS9 were both increased in caudate and putamen from patients with Parkinson's disease. Levels of several other proteins were not affected. Interestingly, levels of both DeltaFosB and RGS9 correlated inversely with putamen levels of dopamine, dopamine metabolites, and the dopamine transporter. CONCLUSIONS These findings are consistent with observations in laboratory animals, which have demonstrated elevated levels of DeltaFosB in striatum after denervation of the midbrain dopamine system, and confirm that similar adaptations in DeltaFosB and RGS9 occur in humans with Parkinson's disease. Knowledge of these adaptations can help us understand the changes in striatal function associated with Parkinson's disease and assist in the development of novel treatments.
Collapse
Affiliation(s)
- P K Tekumalla
- Laboratory of Molecular Psychiatry, Yale University School of Medicine and Connecticut Mental Health Center, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Crocker SJ, Lamba WR, Smith PD, Callaghan SM, Slack RS, Anisman H, Park DS. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc Natl Acad Sci U S A 2001; 98:13385-90. [PMID: 11687617 PMCID: PMC60880 DOI: 10.1073/pnas.231177098] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the transcription factor c-Jun is induced in neurons of the central nervous system (CNS) in response to injury. Mechanical transection of the nigrostriatal pathway at the medial forebrain bundle (MFB) results in the delayed retrograde degeneration of the dopamine neurons in the substantia nigra pars compacta (SNc) and induces protracted expression and phosphorylation of c-Jun. However, the role of c-Jun after axotomy of CNS neurons is unclear. Here, we show that adenovirus-mediated expression of a dominant negative form of c-Jun (Ad.c-JunDN) inhibited axotomy-induced dopamine neuron death and attenuated phosphorylation of c-Jun in nigral neurons. Ad.c-JunDN also delayed the degeneration of dopaminergic nigral axons in the striatum after MFB axotomy. Taken together, these findings suggest that activation of c-Jun mediates the loss of dopamine neurons after axotomy injury.
Collapse
Affiliation(s)
- S J Crocker
- Neuroscience Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Crocker SJ, Wigle N, Liston P, Thompson CS, Lee CJ, Xu D, Roy S, Nicholson DW, Park DS, MacKenzie A, Korneluk RG, Robertson GS. NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson's disease. Eur J Neurosci 2001; 14:391-400. [PMID: 11553289 DOI: 10.1046/j.0953-816x.2001.01653.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder of the basal ganglia, associated with the inappropriate death of dopaminergic neurons of the substantia nigra pars compacta (SNc). Here, we show that adenovirally mediated expression of neuronal apoptosis inhibitor protein (NAIP) ameliorates the loss of nigrostriatal function following intrastriatal 6-OHDA administration by attenuating the death of dopamine neurons and dopaminergic fibres in the striatum. In addition, we also addressed the role of the cysteine protease caspase-3 activity in this adult 6-OHDA model, because a role for caspases has been implicated in the loss of dopamine neurons in PD, and because NAIP is also a reputed inhibitor of caspase-3. Although caspase-3-like proteolysis was induced in the SNc dopamine neurons of juvenile rats lesioned with 6-OHDA and in adult rats following axotomy of the medial forebrain bundle, caspase-3 is not induced in the dopamine neurons of adult 6-OHDA-lesioned animals. Taken together, these results suggest that therapeutic strategies based on NAIP may have potential value for the treatment of PD.
Collapse
Affiliation(s)
- S J Crocker
- Neuroscience Research Institute, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stoessl AJ. Antisense strategies for the treatment of neurological disease. Expert Opin Ther Pat 2001. [DOI: 10.1517/13543776.11.4.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Abstract
Numerous chronic perturbations have been shown to induce highly stable isoforms of the transcription factor deltaFosB in the brain in a region-specific manner. This review examines the functional consequences of the induction of deltaFosB in particular neuronal populations as well as its possible role in behavioral abnormalities such as drug addiction and movement disorders.
Collapse
Affiliation(s)
- M B Kelz
- Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
20
|
Pollack AE, Yates TM. Prior D1 dopamine receptor stimulation is required to prime D2-mediated striatal Fos expression in 6-hydroxydopamine-lesioned rats. Neuroscience 1999; 94:505-14. [PMID: 10579212 DOI: 10.1016/s0306-4522(99)00338-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated dopamine agonist administration to rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway potentiates behavioral and neuronal activation in response to subsequent dopamine agonist treatment. This response sensitization has been termed "priming" or "reverse-tolerance". Our prior work has shown that three pretreatment injections of the mixed D1/D2 agonist apomorphine (0.5 mg/kg) into 6-hydroxydopamine-lesioned rats permits a previously inactive dose of the D2 agonist quinpirole (0.25 mg/kg) to induce robust contralateral rotation and striatal Fos expression in striatoentopeduncular "direct" pathway neurons. These striatal neurons typically express D1 but not D2 receptors. Because apomorphine acts as an agonist at both D1 and D2 receptors, the present study sought to determine whether D1, D2, or concomitant D1/D2 receptor stimulation was required to prime D2-mediated contralateral rotation and striatal Fos expression. Twenty-one days following unilateral stereotaxic injection of 6-hydroxydopamine into the medial forebrain bundle, rats received three pretreatment injections, at three- to six-day intervals, with either: the mixed D1/D2 agonist apomorphine, the D1 agonist SKF38393, the D2 agonist quinpirole, or a combination of SKF38393 + quinpirole. Ten days following the third pretreatment injection, 6-hydroxydopamine-lesioned rats were challenged with the D2 agonist quinpirole (0.25 mg/kg). Pretreatment with SKF38393 (10 mg/kg), quinpirole (1 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted an otherwise inactive dose of quinpirole (0.25 mg/kg) to induce robust contralateral rotation which was similar in magnitude to that observed following apomorphine priming. However, only pretreatment with SKF38393 (10 mg/kg) or SKF38393 (1 mg/kg) + quinpirole (0.25 mg/kg) permitted the same dose of quinpirole (0.25 mg/kg) to induce striatal Fos expression. These results demonstrate that while prior stimulation of D1, D2 or D1/D2 receptors can effectively prime D2-mediated contralateral rotation, prior stimulation of D1 receptors is required to prime D2-mediated striatal Fos expression. This study demonstrates that priming of 6-hydroxydopamine-lesioned rats with a D1 agonist permits a subsequent challenge with a D2 agonist to produce robust rotational behavior that is accompanied by induction of immediate-early gene expression in neurons that comprise the "direct" striatal output pathway. These responses are equivalent to the changes observed in apomorphine-primed 6-hydroxydopamine-lesioned rats challenged with D2 agonist. In contrast, D2 agonist priming was not associated with D2-mediated induction of striatal immediate-early gene expression even though priming of D2-mediated rotational behavior was not different from that observed following priming with apomorphine or D1 agonist. Therefore, while priming-induced alterations in D2-mediated immediate early gene expression in the "direct" striatal output pathway may contribute to the enhanced motor behavior observed, such changes in striatal gene expression do not appear to be required for this potentiated motor response in dopamine-depleted rats.
Collapse
Affiliation(s)
- A E Pollack
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
21
|
Andersson M, Hilbertson A, Cenci MA. Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson's disease. Neurobiol Dis 1999; 6:461-74. [PMID: 10600402 DOI: 10.1006/nbdi.1999.0259] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rats with unilateral dopamine-denervating lesions sustained a 3-week treatment with a daily l-DOPA dose that is in the therapeutic range for Parkinson's disease. In most of the treated animals, chronic l-DOPA administration gradually induced abnormal involuntary movements affecting cranial, trunk, and limb muscles on the side of the body contralateral to the lesion. This effect was paralleled by an induction of FosB-like immunoreactive proteins in striatal subregions somatotopically related to the types of movements that had been elicited by l-DOPA. The induced proteins showed both regional and cellular colocalization with prodynorphin mRNA. Intrastriatal infusion of fosB antisense inhibited the development of dyskinetic movements that were related to the striatal subregion targeted and produced a local specific downregulation of prodynorphin mRNA. These data provide compelling evidence of a causal role for striatal fosB induction in the development of l-DOPA-induced dyskinesia in the rat and of a positive regulation of prodynorphin gene expression by FosB-related transcription factors.
Collapse
Affiliation(s)
- M Andersson
- Department of Physiological Sciences, University of Lund, Wallenberg Neuroscience Centre, Sölvegatan 17, Lund, 223 62, Sweden
| | | | | |
Collapse
|
22
|
Ferré S, Rimondini R, Popoli P, Reggio R, Pèzzola A, Hansson AC, Andersson A, Fuxe K. Stimulation of adenosine A1 receptors attenuates dopamine D1 receptor-mediated increase of NGFI-A, c-fos and jun-B mRNA levels in the dopamine-denervated striatum and dopamine D1 receptor-mediated turning behaviour. Eur J Neurosci 1999; 11:3884-92. [PMID: 10583477 DOI: 10.1046/j.1460-9568.1999.00810.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine A1 receptors antagonistically and specifically modulate the binding and functional characteristics of dopamine D1 receptors. In the striatum this interaction seems to take place in the GABAergic strionigro-strioentopeduncular neurons, where both receptors are colocalized. D1 receptors in the strionigro-strioentopeduncular neurons are involved in the increased striatal expression of immediate-early genes induced by the systemic administration of psychostimulants and D1 receptor agonists. Previous results suggest that a basal expression of the immediate-early gene c-fos tonically facilitates the functioning of strionigro-strioentopeduncular neurons and facilitates D1 receptor-mediated motor activation. The role of A1 receptors in the modulation of the expression of striatal D1 receptor-regulated immediate-early genes and the D1 receptor-mediated motor activation was investigated in rats with a unilateral lesion of the ascending dopaminergic pathways. The systemic administration of the A1 agonist N6-cyclopentyladenosine (CPA, 0.1 mg/kg) significantly decreased the number of contralateral turns induced by the D1 agonist SKF 38393 (3 mg/kg). Higher doses of CPA (0.5 mg/kg) were necessary to inhibit the turning behaviour induced by the D2 agonist quinpirole (0.1 mg/kg). By using in situ hybridization it was found that CPA (0.1 mg/kg) significantly inhibited the SKF 38393-induced increase in the expression of NGFI-A and c-fos mRNA levels in the dopamine-denervated striatum. The increase in jun-B mRNA expression could only be inhibited with the high dose of CPA (0.5 mg/kg). A stronger effect of the A1 agonist was found in the ventral striatum (nucleus accumbens) compared with the dorsal striatum (dorsolateral caudate-putamen). The results indicate the existence of antagonistic A1-D1 receptor-receptor interactions in the dopamine-denervated striatum controlling D1 receptor transduction at supersensitive D1 receptors.
Collapse
Affiliation(s)
- S Ferré
- Department of Neurochemistry, 08036 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pollack AE, Strauss JB. Time dependence and role of N-methyl-D-aspartate glutamate receptors in the priming of D2-mediated rotational behavior and striatal Fos expression in 6-hydroxydopamine lesioned rats. Brain Res 1999; 827:160-8. [PMID: 10320705 DOI: 10.1016/s0006-8993(99)01325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Administration of dopamine agonists to 6-hydroxydopamine (6-OHDA) lesioned rats enhances the rotational response to subsequent administration of dopamine agonist, an effect called 'priming'. Previously, we have shown that 6-OHDA rats primed with three injections of the D1/D2 dopamine agonist apomorphine (0.5 mg/kg) permitted a challenge with an otherwise inactive dose of the D2 agonist quinpirole (0.25 mg/kg) to elicit robust rotational behavior and to induce Fos expression in striatoentopeduncular neurons. In this study, the time-course and role of N-methyl-d-aspartate (NMDA) glutamate receptors on apomorphine-priming of these D2 responses were investigated. The enhanced rotational behavior and striatal Fos expression observed following challenge with quinpirole (0.25 mg/kg) peaked 1 day following the third apomorphine priming injection and persisted, in reduced form, for at least 4 months. Pretreatment with the NMDA antagonists MK-801 or 3-[(+)-2-carboxypiperazin-4-yl]-propyl-1-phosphonate (CPP) dose-dependently attenuated apomorphine-priming of quinpirole-mediated rotational behavior and striatal Fos induction compared to 6-OHDA rats primed with apomorphine alone. Taken together, these data suggest that priming of these D2-mediated responses in 6-OHDA rats develops rapidly, persists for several months, and is dependent on concomitant NMDA receptor stimulation. Since this priming effect resembles response fluctuations observed in patients with Parkinson's disease receiving long-term l-dihydroxyphenylalanine therapy, the results of the present study suggest that interventions that prevent the development of this enhanced response, such as NMDA antagonists, could prove useful in reducing the incidence these response fluctuations.
Collapse
Affiliation(s)
- A E Pollack
- Department of Psychology, Box 1853, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
24
|
Szklarczyk AW, Kaczmarek L. Brain as a unique antisense environment. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:105-16. [PMID: 10192296 DOI: 10.1089/oli.1.1999.9.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the last few years, antisense oligodeoxyribonucleotides (asODN) have become a commonly used tool for blocking of gene expression in the mammalian central nervous system. Successful gene inhibition has been reported for such diverse targets as those encoding neurotransmitter receptors, neuropeptides, trophic factors, transcription factors, cytokines, transporters, ion channels, and others. This review presents a discussion of recent studies on ODN in the brain, with a focus on specific approaches taken by the researchers in this field and especially on peculiar features of this organ as a milieu for asODN action. It is concluded that from the presented literature survey no coherent view on how to rationally design ODN for brain studies has emerged.
Collapse
Affiliation(s)
- A W Szklarczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | |
Collapse
|