1
|
Fan X, Wang S, Hu S, Yang B, Zhang H. Host-microbiota interactions: The aryl hydrocarbon receptor in the acute and chronic phases of cerebral ischemia. Front Immunol 2022; 13:967300. [PMID: 36032153 PMCID: PMC9411800 DOI: 10.3389/fimmu.2022.967300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between gut microbiota and brain function has been studied intensively in recent years, and gut microbiota has been linked to a couple of neurological disorders including stroke. There are multiple studies linking gut microbiota to stroke in the “microbiota-gut-brain” axis. The aryl hydrocarbon receptor (AHR) is an important mediator of acute ischemic damage and can result in subsequent neuroinflammation. AHR can affect these responses by sensing microbiota metabolites especially tryptophan metabolites and is engaged in the regulation of acute ischemic brain injury and chronic neuroinflammation after stroke. As an important regulator in the “microbiota-gut-brain” axis, AHR has the potential to be used as a new therapeutic target for ischemic stroke treatment. In this review, we discuss the research progress on AHR regarding its role in ischemic stroke and prospects to be used as a therapeutic target for ischemic stroke treatment, aiming to provide a potential direction for the development of new treatments for ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Fan
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Intensive Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuqi Hu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingjie Yang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
2
|
Colpo GD, Venna VR, McCullough LD, Teixeira AL. Systematic Review on the Involvement of the Kynurenine Pathway in Stroke: Pre-clinical and Clinical Evidence. Front Neurol 2019; 10:778. [PMID: 31379727 PMCID: PMC6659442 DOI: 10.3389/fneur.2019.00778] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Stroke is the second leading cause of death after ischemic heart disease and the third leading cause of disability-adjusted life-years lost worldwide. There is a great need for developing more effective strategies to treat stroke and its resulting impairments. Among several neuroprotective strategies tested so far, the kynurenine pathway (KP) seems to be promising, but the evidence is still sparse. Methods: Here, we performed a systematic review of preclinical and clinical studies evaluating the involvement of KP in stroke. We searched for the keywords: (“kynurenine” or “kynurenic acid” or “quinolinic acid”) AND (“ischemia” or “stroke” or “occlusion) in the electronic databases PubMed, Scopus, and Embase. A total of 1,130 papers was initially retrieved. Results: After careful screening, forty-five studies were included in this systematic review, being 39 pre-clinical and six clinical studies. Despite different experimental models of cerebral ischemia, the results are concordant in implicating the KP in the pathophysiology of stroke. Preclinical evidence also suggests that treatment with kynurenine and KMO inhibitors decrease infarct size and improve behavioral and cognitive outcomes. Few studies have investigated the KP in human stroke, and results are consistent with the experimental findings that the KP is activated after stroke. Conclusion: Well-designed preclinical studies addressing the expression of KP enzymes and metabolites in specific cell types and their potential effects at cellular levels alongside more clinical studies are warranted to confirm the translational potential of this pathway as a pharmacological target for stroke and related complications.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Venugopal R Venna
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D McCullough
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Cuartero MI, de la Parra J, García-Culebras A, Ballesteros I, Lizasoain I, Moro MÁ. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia. Curr Pharm Des 2016; 22:1060-73. [PMID: 25248805 DOI: 10.2174/1381612822666151214125950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Kynurenines are a wide range of catabolites which derive from tryptophan through the "Kynurenine Pathway" (KP). In addition to its peripheral role, increasing evidence shows a role of the KP in the central nervous system (CNS), mediating both physiological and pathological functions. Indeed, an imbalance in this route has been associated with several neurodegenerative disorders such as Alzheimer´s and Huntington´s diseases. Altered KP catabolism has also been described during both acute and chronic phases of stroke; however the contribution of the KP to the pathophysiology of acute ischemic damage and of post-stroke disorders during the chronic phase including depression and vascular dementia, and the exact mechanisms implicated in the regulation of the KP after stroke are not well established yet. A better understanding of the regulation and activity of the KP after stroke could provide new pharmacological tools in both acute and chronic phases of stroke. In this review, we will make an overview of CNS modulation by the KP. We will detail the KP contribution in the ischemic damage, how the unbalance of the KP might trigger an alteration of the cognitive function after stroke as well as potential targets for the development of new drugs.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
4
|
Lopez YP, Kenis G, Rutten BPF, Myint AM, Steinbusch HWM, van den Hove DLA. Quinolinic acid-immunoreactivity in the naïve mouse brain. J Chem Neuroanat 2015; 71:6-12. [PMID: 26686288 DOI: 10.1016/j.jchemneu.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Quinolinic acid (QUIN) has been suggested to be involved in infections, inflammatory neurological disorders and in the development of psychiatric disorders. In this view, several studies have been performed to investigate QUIN localization in the brain and its neurotoxic effects. However, evidence is lacking regarding QUIN in healthy, control conditions. The aim of this study was to investigate the region-specific distribution and pattern of QUIN expression in the naïve mouse brain. In addition, possible sex differences in QUIN-immunoreactivity and its link with affect-related behavioural observations were assessed. For this purpose, naïve mice were subjected to the forced swim test (FST) and 20 min open field (OF) testing to measure affect-related behaviour. Afterwards, brains were assessed for QUIN-immunoreactivity. QUIN-immunoreactivity was particularly observed in the cingulate cortex (CC), highlighting clearly delineated cells, and the thalamic reticular nucleus (TRN), showing a more diffuse staining pattern. Subsequently, QUIN-positive cells in the CC were counted, while QUIN-immunoreactivity in the TRN was examined using gray value measurements. No significant differences between sexes were observed for the number of QUIN-positive cells in the CC, neither in levels of QUIN-immunoreactivity in the TRN. A direct correlation was found between QUIN-positive cells in the CC and QUIN-immunoreactivity in the TRN. Moreover, in male mice, a very strong correlation (rsp=.943; p<.01) between QUIN-immunoreactivity at the level of the TRN and motor activity in the OF was observed. Thus, our results suggest that QUIN - detected in the CC and the TRN - may play a role in regulating motor activity in normal conditions.
Collapse
Affiliation(s)
- Yara Pujol Lopez
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Aye M Myint
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
5
|
Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, Rosenfeld JV, Walker DW, Guillemin GJ, Morganti-Kossmann MC. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation 2015; 12:110. [PMID: 26025142 PMCID: PMC4457980 DOI: 10.1186/s12974-015-0328-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Abstract During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery. Methods Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9–10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry. Results In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores. Conclusion TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN’s detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.
Collapse
Affiliation(s)
- Edwin B Yan
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
| | - Tony Frugier
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Chai K Lim
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - May Tan
- Hospital Queen Elizabeth, Karung Berkunci No. 2029, 88586, Kota Kinabalu, Sabah, Malaysia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia.,Department of Surgery, Central Clinical School and Monash Institute of Medical Engineering, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, Australia
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Maria Cristina Morganti-Kossmann
- Australian New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Department of Child Health, Barrow Neurological Institute, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
6
|
Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J 2012; 279:1386-97. [DOI: 10.1111/j.1742-4658.2012.08487.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Ferguson AL, Stone TW. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors. Eur J Neurosci 2010; 31:1208-18. [PMID: 20345917 DOI: 10.1111/j.1460-9568.2010.07157.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.
Collapse
Affiliation(s)
- Alexandra L Ferguson
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
8
|
Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 2009; 283:21-7. [PMID: 19268309 DOI: 10.1016/j.jns.2009.02.326] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The metabolism of tryptophan mostly proceeds through the kynurenine pathway. The biochemical reaction includes both an agonist (quinolinic acid) at the N-methyl-d-aspartate receptor and an antagonist (kynurenic acid). Besides the N-methyl-d-aspartate antagonism, an important feature of kynurenic acid is the blockade of the alpha7-nicotinic acetylcholine receptor and its influence on the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a potent neurotoxin with an additional and marked free radical-producing property. In consequence of these various receptor activities, the possible roles of these substances in various neurological disorders have been proposed. Moreover, the possibility of influencing the kynurenine pathway to reduce quinolinic acid and increase the level of kynurenic acid in the brain offers a new target for drug action designed to change the balance, decreasing excitotoxins and enhancing neuroprotectants. This review surveys both the early and the current research in this field, focusing on the possible therapeutic effects of kynurenines.
Collapse
Affiliation(s)
- Eniko Vamos
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
9
|
Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG. Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 2007; 22:337-52. [PMID: 17712616 DOI: 10.1007/s11011-007-9064-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review summarises the potential contributions of two groups of compounds to cerebral dysfunction and damage in metabolic disease. The kynurenines are oxidised metabolites of tryptophan, the kynurenine pathway being the major route for tryptophan catabolism in most tissues. The pathway includes quinolinic acid -- an agonist at N-methyl-D-aspartate (NMDA) receptors, kynurenic acid -- an antagonist at glutamate and nicotinic receptors, and other redox active compounds that are able to generate free radicals under many physiological and pathological conditions. The pathway is activated in immune-competent cells, including glia in the central nervous system, and may contribute substantially to delayed neuronal damage following an infarct or metabolic insult. Adenosine is an ubiquitous purine that can protect neurons by suppressing excitatory neurotransmitter release, reducing calcium fluxes and inhibiting NMDA receptors. The extent of brain injury is critically dependent on the balance between the two opposing forces of kynurenines and purines.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, Scotland, UK.
| | | | | | | | | |
Collapse
|
10
|
Fujigaki H, Saito K. Inhibition of increased indoleamine 2,3-dioxygenase activity exacerbates neuronal cell death in various CNS disorders. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
|
12
|
Bari F, Nagy K, Guidetti P, Schwarcz R, Busija DW, Domoki F. Kynurenic acid attenuates NMDA-induced pial arteriolar dilation in newborn pigs. Brain Res 2006; 1069:39-46. [PMID: 16388784 DOI: 10.1016/j.brainres.2005.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 11/11/2005] [Accepted: 11/14/2005] [Indexed: 11/22/2022]
Abstract
The excitatory amino acid glutamate is a potent vasodilator in the central nervous system. Glutamate-induced vasodilation is mediated primarily by N-methyl-D-aspartate (NMDA) and AMPA/kainate (KAIN) receptors. We have now tested whether two metabolites of the kynurenine pathway of tryptophan degradation acting at the NMDA receptor, the antagonist kynurenic acid (KYNA) and the agonist quinolinic acid (QUIN), are capable of modulating the dilation of pial arterioles. The closed cranial window technique was used, and changes in vessel diameter ( approximately 100 microm) were analyzed in anesthetized newborn piglets. Topical application of NMDA (10(-4) M) or KAIN (5 x 10(-5) M) resulted in marked vasodilation (44 +/- 5% and 39 +/- 4%, respectively). Neither KYNA nor QUIN (both at 10(-5) to 10(-3) M) affected the vessel diameter when applied alone. Co-application of KYNA dose-dependently reduced the vasodilation caused by 10(-4) M NMDA and also attenuated the KAIN-induced response. Ten minutes of global cerebral ischemia did not modify the interaction between KAIN and KYNA. In contrast, KYNA did not affect vasodilation to hypercapnia, elicited by the inhalation of 10% CO2. Moreover, endogenous levels of KYNA and QUIN in the cerebral cortex, hippocampus and thalamus were found to be essentially unchanged during the early reperfusion period (0.5-2 h) following an episode of cerebral ischemia. Our data are relevant for the use of drugs that target the kynurenine pathway for therapeutic interventions in cerebrovascular diseases.
Collapse
Affiliation(s)
- Ferenc Bari
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
13
|
Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus. Neuropathol Appl Neurobiol 2005; 31:395-404. [PMID: 16008823 DOI: 10.1111/j.1365-2990.2005.00655.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present immunohistochemical study provides evidence that the kynurenine pathway is up-regulated in Alzheimer's disease (AD) brain, leading to increases in the excitotoxin quinolinic acid (QUIN). We show that the regulatory enzyme of the pathway leading to QUIN synthesis, indoleamine 2,3 dioxygenase (IDO) is abundant in AD compared with controls. In AD hippocampus, both IDO- and QUIN-immunoreactivity (-IR) was detected in cortical microglia, astrocytes and neurones, with microglial and astrocytic expression of IDO and QUIN highest in the perimeter of senile plaques. QUIN-IR was present in granular deposits within the neuronal soma of AD cortex and was also seen uniformly labelling neurofibrillary tangles. Our data imply that QUIN may be involved in the complex and multifactorial cascade leading to neuro-degeneration in AD. These results may open a new therapeutic door for AD patients.
Collapse
Affiliation(s)
- G J Guillemin
- Centre for Immunology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | | | | | | | | |
Collapse
|
14
|
Klivényi P, Toldi J, Vécsei L. Kynurenines in neurodegenerative disorders: therapeutic consideration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:169-83. [PMID: 14977214 DOI: 10.1007/978-1-4419-8969-7_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Péter Klivényi
- Department of Neurology, University of Szeged POB 427, H-6701, Szeged, Hungary
| | | | | |
Collapse
|
15
|
Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG. Tryptophan metabolites and brain disorders. Clin Chem Lab Med 2003; 41:852-9. [PMID: 12940508 DOI: 10.1515/cclm.2003.129] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tryptophan is metabolised primarily along the kynurenine pathway, of which two components are now known to have marked effects on neurons in the central nervous system. Quinolinic acid is an agonist at the population of glutamate receptors which are sensitive to N-methyl-D-aspartate (NMDA), and kynurenic acid is an antagonist at several glutamate receptors. Consequently quinolinic acid can act as a neurotoxin while kynurenic acid is neuroprotectant. A third kynurenine, 3-hydroxykynurenine, can generate free radicals and contribute to, or exacerbate, neuronal damage. Changes in the absolute or relative concentrations of these kynurenines have been implicated in a variety of central nervous system disorders such as the AIDS-dementia complex and Huntington's disease, raising the possibility that interference with their actions or synthesis could lead to new forms of pharmacotherapy for these conditions.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical & Life Sciences,Division of Neuroscience & Biomedical Systems, West Medical Building, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
16
|
Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002; 1:609-20. [PMID: 12402501 DOI: 10.1038/nrd870] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
17
|
Abstract
In just under 20 years the kynurenine family of compounds has developed from a group of obscure metabolites of the essential amino acid tryptophan into a source of intensive research, with postulated roles for quinolinic acid in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease. One of the kynurenines, kynurenic acid, has become a standard tool for use in the identification of glutamate-releasing synapses, and has been used as the parent for several groups of compounds now being developed as drugs for the treatment of epilepsy and stroke. The kynurenines represent a major success in translating a basic discovery into a source of clinical understanding and therapeutic application, with around 3000 papers published on quinolinic acid or kynurenic acid since the discovery of their effects in 1981 and 1982. This review concentrates on some of the recent work most directly relevant to the understanding and applications of kynurenines in medicine.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical and Life Sciences, University West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
18
|
Abstract
In most tissues, including brain, a major proportion of the tryptophan which is not used for protein synthesis is metabolised along the kynurenine pathway. Long regarded as the route by which many mammals generate adequate amounts of the essential co-factor nicotinamide adenine dinucleotide, two components of the pathway are now known to have marked effects on neurones. Quinolinic acid is an agonist at the N-methyl-D-aspartate sensitive subtype of glutamate receptors in the brain, while kynurenic acid is an antagonist and, thus, a potential neuroprotectant. A third kynurenine, 3-hydroxykynurenine, is involved in the generation of free radicals which can also damage neurones. Quinolinic acid is increasingly implicated in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease, while kynurenic acid has become a standard for the identification of glutamate-releasing synapses, and has been used as the parent for several groups of compounds now being developed as drugs for the treatment of epilepsy and stroke.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
19
|
Koennecke LA, Zito MA, Proescholdt MG, van Rooijen N, Heyes MP. Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates increases in brain quinolinic acid during CNS-localized and systemic immune activation. J Neurochem 1999; 73:770-9. [PMID: 10428075 DOI: 10.1046/j.1471-4159.1999.0730770.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quinolinic acid is a neurotoxic tryptophan metabolite produced locally during immune activation. The present study tested the hypothesis that macrophages are an important source. In normal gerbils, the macrophage toxin liposome-encapsulated clodronate depleted blood monocytes and decreased quinolinic acid levels in liver (85%), duodenum (33%), and spleen (51%) but not serum or brain. In a model of CNS inflammation (an intrastriatal injection of 5 microg of lipopolysaccharide), striatal quinolinic acid levels were markedly elevated on day 4 after lipopolysaccharide in conjunction with infiltration with macrophages (lectin stain). Liposome-encapsulated clodronate given 1 day before intrastriatal lipopolysaccharide markedly reduced parenchymal macrophage invasion in response to lipopolysaccharide infusion and attenuated the increases in brain quinolinic acid (by 60%). A systemic injection of lipopolysaccharide (450 microg/kg) increased blood (by 38-fold), lung (34-fold), liver (23-fold), spleen (8-fold), and striatum (25-fold) quinolinic acid concentrations after 1 day. Liposome-encapsulated clodronate given 4 days before systemic lipopolysaccharide significantly attenuated the increases in quinolinic acid levels in blood (by 80%), liver (87%), spleen (80%), and striatum (68%) but had no effect on the increases in quinolinic acid levels in lung. These results are consistent with the hypothesis that macrophages are an important local source of quinolinic acid in brain and systemic tissues during immune activation.
Collapse
Affiliation(s)
- L A Koennecke
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|