1
|
Li D, Wang B, Wang R, Huang J, Chen R, Li Y, Wang N, Wang Q, Xu C, Dehaen W, Huai Q. Synthesis, anticancer activity and molecular docking study of triphenylphosphonium-linked derivatives of oleanolic acid. Nat Prod Res 2025:1-9. [PMID: 40096747 DOI: 10.1080/14786419.2025.2477805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Lung cancer and breast cancer both are extremely threatening to humans, so it is needed to develop safe and effective drugs for the treatment of these two ailments. To improve the activity and selectivity of bioactive natural product oleanolic acid (OA), triphenylphosphonium moieties were introduced at different sites of the OA core skeleton. The in vitro antiproliferative activity screening results displayed that the anticancer activity of all target compounds was significantly improved, and some derivatives displayed strong selectivity for breast cancer cells (MCF-7) and lung cancer cells (A549) over the human normal liver cells (QSG-7701 cells). Compounds 6a (for A549 cells) and 5g (for MCF-7 cells) demonstrated the best selectivity (with SI of 12.18 and 7.72, respectively). The docking results showed that 5g and 6c could bind to and interact with PI3K protein through hydrogen bonds and intermolecular hydrophobic forces. These compounds are potential anti-MCF-7 agents and deserve further study.
Collapse
Affiliation(s)
- Deshang Li
- Marine College, Shandong University, Weihai, China
| | - Bo Wang
- Marine College, Shandong University, Weihai, China
| | - Rui Wang
- Department of Chemistry, KU Leuven, Sustainable Chemistry for Metals and Molecules, Leuven, Belgium
| | - Jianjun Huang
- Department of Chemistry, KU Leuven, Sustainable Chemistry for Metals and Molecules, Leuven, Belgium
| | - Ruofan Chen
- Marine College, Shandong University, Weihai, China
| | - Yi Li
- Marine College, Shandong University, Weihai, China
| | - Na Wang
- Marine College, Shandong University, Weihai, China
| | | | - Chenmeng Xu
- Marine College, Shandong University, Weihai, China
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Sustainable Chemistry for Metals and Molecules, Leuven, Belgium
| | - Qiyong Huai
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
2
|
Biswas S, Rajdev P, Banerjee A, Das A. Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters. NANOSCALE 2025; 17:5732-5742. [PMID: 39873404 DOI: 10.1039/d4nr04696j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence. Two polymers (P1 and P2) were intrinsically cationic at physiological pH (7.4), while neutral P3 exhibited pH-triggered (pH ∼6.2) cationic features due to the protonation of the tertiary amine groups present in its backbone. These biocompatible polymers revealed around 85% cellular uptake after 1 hour of incubation. However, the initial uptake for the cationic polymers (P1 and P2) within 15 minutes was significantly greater than that of the neutral P3 because of their stronger electrostatic interactions with the negatively charged cell membranes. Notably, cationic P1 and P2 could specifically target mitochondria in cancerous HeLa cells by escaping the initial endosome/lysosome trap. In contrast, neutral P3 exhibited cell-selective mitochondria targeting in cancerous (HeLa) cells over non-cancerous (NKE) cells. This is attributed to P3's protonation-induced positive charge accumulation in the acidic environment of cancer cells, unlike in the non-acidic environment of non-cancerous cells. This possibly causes P3 nanoassemblies to behave similarly to P1 and P2 in HeLa cells despite P3 being intrinsically neutral. The insights gained from this work may be relevant for future development of cell-specific, mitochondria-targeted drug delivery systems from enzymatically degradable polyester backbones.
Collapse
Affiliation(s)
- Subhendu Biswas
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Ankita Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
Dubey Y, Kanvah S. Multi-organelle imaging with dye combinations: targeting the ER, mitochondria, and plasma membrane. J Mater Chem B 2025; 13:2446-2456. [PMID: 39815810 DOI: 10.1039/d4tb02456g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles. By utilizing binary mixtures, we successfully demonstrated multiple imaging of the sub-cellular organelles, such as the endoplasmic reticulum, plasma membrane, and mitochondria in HeLa cells, and dual imaging of the endoplasmic reticulum and mitochondria in A549 lung carcinoma cells with the help of blue and red-emitting fluorophores without any spectral spillover. Additionally, these photostable probes allowed precise cell staining and differentiation, structural features, and live cell dynamics. This approach of utilizing fluorescent mixtures can gain traction for various cellular studies and investigations.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
4
|
Minori K, Gadelha FR, Bonsignore R, Alcántar GM, Fontes JV, Abbehausen C, Brioschi MBC, de Sousa LM, Consonni SR, Casini A, Miguel DC. An organogold compound impairs Leishmania amazonensis amastigotes survival and delays lesion progression in murine cutaneous leishmaniasis: Mechanistic insights. Biochem Pharmacol 2025; 232:116716. [PMID: 39674234 DOI: 10.1016/j.bcp.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Leishmaniasis is one of the most important neglected diseases, classically characterized by three clinical forms that if left untreated can lead to skin lesions, lifelong scarring, or death depending on the parasite species. Unfortunately, treatment is unsatisfactory and the search for an improved therapy has been a priority. Gold compounds have emerged as promising candidates and among them, Au(I)bis-N-heterocyclic carbene (Au(BzTMX)2) has stood out. We have shown that it alters the plasma membrane permeability of Leishmania amazonensis and L. braziliensis, with superior activity for L. amazonensis. Herein, we moved a step forward towards the elucidation of its mechanism of action in L. amazonensis axenic amastigotes in vitro and in vivo. After 24 h incubation, Au(BzTMX)2 induced changes in safranin O uptake, reflecting the ultrastructural changes observed in mitochondria, especially cristae swelling, and oxygen consumption rates. Besides mitochondrial alterations, plasma membrane blebbing and the formation of multilamellar structures were also observed suggesting an autophagy-like process induction. In vivo, Au(BzTMX)2 was capable of delaying lesion progression, decreasing the total ulcerated area and leading to a marked reduction in the parasite burden of infected BALB/c mice. Taking all into consideration, our results give support to the current knowledge of the importance of gold compounds in therapeutics and open new possibilities for leishmaniasis treatment.
Collapse
Affiliation(s)
- Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Riccardo Bonsignore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 17, Palermo 90128, Italy.
| | - Guillermo Moreno Alcántar
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Josielle V Fontes
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Mariana B C Brioschi
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Sílvio R Consonni
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
6
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Wang J, Cao M, Han L, Shangguan P, Liu Y, Zhong Y, Chen C, Wang G, Chen X, Lin M, Lu M, Luo Z, He M, Sung HHY, Niu G, Lam JWY, Shi B, Tang BZ. Blood-Brain Barrier-Penetrative Fluorescent Anticancer Agents Triggering Paraptosis and Ferroptosis for Glioblastoma Therapy. J Am Chem Soc 2024; 146:28783-28794. [PMID: 39394087 DOI: 10.1021/jacs.4c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Chaoyue Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ming Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mengya Lu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhengqun Luo
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mu He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
8
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Iridium(III) complexes as novel theranostic small molecules for medical diagnostics, precise imaging at a single cell level and targeted anticancer therapy. Eur J Med Chem 2024; 276:116648. [PMID: 38968786 DOI: 10.1016/j.ejmech.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Medical applications of iridium (III) complexes include their use as state-of-the-art theranostic agents - molecules that combine therapeutic and diagnostic functions into a single entity. These complexes offer a promising avenue in medical diagnostics, precision imaging at single-cell resolution and targeted anticancer therapy due to their unique properties. In this review we report a short summary of their application in medical diagnostics, imaging at single-cell level and targeted anticancer therapy. The exceptional photophysical properties of Iridium (III) complexes, including their brightness and photostability, make them excellent candidates for bioimaging. They can be used to image cellular processes and the microenvironment within single cells with unprecedented clarity, aiding in the understanding of disease mechanisms at the molecular level. Moreover the iridium (III) complexes can be designed to selectively target cancer cells,. Upon targeting, these complexes can act as photosensitizers for photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon light activation to induce cell death. The integration of diagnostic and therapeutic capabilities in Iridium (III) complexes offers the potential for a holistic approach to cancer treatment, enabling not only the precise eradication of cancer cells but also the real-time monitoring of treatment efficacy and disease progression. This aligns with the goals of personalized medicine, offering hope for more effective and less invasive cancer treatment strategies.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348, Kraków, Poland; Photo4Chem ltd., Juliusza Lea 114/416A-B, 31-133, Kraków, Poland.
| |
Collapse
|
9
|
Gao T, Xiang C, Ding X, Xie M. Dual-locked fluorescent probes for precise diagnosis and targeted treatment of tumors. Heliyon 2024; 10:e38174. [PMID: 39381214 PMCID: PMC11458960 DOI: 10.1016/j.heliyon.2024.e38174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer continues to pose a significant threat to global health, with its high mortality rates largely attributable to delayed diagnosis and non-specific treatments. Early and accurate diagnosis is crucial, yet it remains challenging due to the subtle and often undetectable early molecular changes. Traditional single-target fluorescent probes often fail to accurately identify cancer cells, relying solely on single biomarkers and consequently leading to high rates of false positives and inadequate specificity. In contrast, dual-locked fluorescent probes represent a breakthrough, designed to enhance diagnostic precision. By requiring the simultaneous presence of two specific tumor-associated biomarkers or microenvironmental conditions, these probes significantly reduce non-specific activations typical of conventional single-analyte probes. This review discusses the structural designs, response mechanisms, and biological applications of dual-locked probes, highlighting their potential in tumor imaging and treatment. Importantly, the review addresses the challenges, and perspectives in this field, offering a comprehensive look at the current state and future potential of dual-locked fluorescent probes in oncology.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Can Xiang
- Department of Scientific Management, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xintao Ding
- Department of Biomedical Informatics, Columbia University Graduate School of Arts and Sciences, New York, NY, United States
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
10
|
Bannwart F, Richter LF, Stifel S, Rueter J, Lode HN, Correia JDG, Kühn FE, Prokop A. A New Class of Gold(I) NHC Complexes with Proapoptotic and Resensitizing Properties towards Multidrug Resistant Leukemia Cells Overexpressing BCL-2. J Med Chem 2024; 67:15494-15508. [PMID: 39196554 PMCID: PMC11403678 DOI: 10.1021/acs.jmedchem.4c01117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
From previous studies, it is evident that metal-organic gold(I) complexes have antiproliferative activities. The aim of this study is not only to find new anticancer agents but also to overcome existing cytostatic resistance in cancer cells. The synthesis and medicinal evaluation of two cationic 1,3-disubstituted gold(I) bis-tetrazolylidene complexes 1 and 2 are reported. To determine apoptosis-inducing properties of the complexes, DNA fragmentation was measured using propidium iodide staining followed by flow cytometry. Gold(I) complex 1 targets explicitly malignant cells, effectively inhibiting their growth and selectively inducing apoptosis without signs of necrosis. Even in cells resistant to common treatments such as doxorubicin, it overcomes multidrug resistance and sensitizes existing drug-resistant cells to common cytostatic drugs. It is assumed that gold(I) complex 1 involves the mitochondrial pathway in apoptosis and targets members of the BCL-2 family, enhancing its potential as a therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Franziska Bannwart
- Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Department of Pediatric Hematology/Oncology, Helios Kliniken Schwerin, Wismarsche Str. 393-397, 19055 Schwerin, Germany
| | - Leon F Richter
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technical University of Munich, TUM School of Natural Sciences, Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Simon Stifel
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technical University of Munich, TUM School of Natural Sciences, Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Johanna Rueter
- Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Department of Pediatric Hematology/Oncology, Helios Kliniken Schwerin, Wismarsche Str. 393-397, 19055 Schwerin, Germany
| | - Holger N Lode
- Department of Pediatric Hematology/Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475 Greifswald, Germany
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Bobadela, Lisbon, LRS 2695-066, Portugal
| | - Fritz E Kühn
- Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Technical University of Munich, TUM School of Natural Sciences, Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Aram Prokop
- Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
- Department of Pediatric Hematology/Oncology, Helios Kliniken Schwerin, Wismarsche Str. 393-397, 19055 Schwerin, Germany
- Experimental Oncology, Municipal Hospitals of Cologne, Ostmerheimer Str. 200, 51109 Cologne, Germany
| |
Collapse
|
11
|
Hu Y, Zhang Y, Guo J, Chen S, Jin J, Li P, Pan Y, Lei S, Li J, Wu S, Bu B, Fu L. Synthesis and anti-proliferative effect of novel 4-Aryl-1, 3-Thiazole-TPP conjugates via mitochondrial uncoupling process. Bioorg Chem 2024; 150:107588. [PMID: 38936051 DOI: 10.1016/j.bioorg.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.
Collapse
Affiliation(s)
- Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Guo
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shihao Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jie Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyu Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuchen Pan
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Suheng Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Buzhou Bu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
12
|
Suárez-Rozas C, Jara JA, Cortés G, Rojas D, Araya-Valdés G, Molina-Berrios A, González-Herrera F, Fuentes-Retamal S, Aránguiz-Urroz P, Campodónico PR, Maya JD, Vivar R, Catalán M. Antimigratory Effect of Lipophilic Cations Derived from Gallic and Gentisic Acid and Synergistic Effect with 5-Fluorouracil on Metastatic Colorectal Cancer Cells: A New Synthesis Route. Cancers (Basel) 2024; 16:2980. [PMID: 39272835 PMCID: PMC11393949 DOI: 10.3390/cancers16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Gonzalo Cortés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Diego Rojas
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Gabriel Araya-Valdés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Alfredo Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Sebastián Fuentes-Retamal
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Pablo Aránguiz-Urroz
- School of Health Science, Universidad de Viña del Mar, Viña del Mar 2580022, Chile
| | - Paola Rossana Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Diego Maya
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Raúl Vivar
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Mabel Catalán
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| |
Collapse
|
13
|
Garcia-Sampedro A, Prieto-Castañeda A, Agarrabeitia AR, Bañuelos J, García-Moreno I, Villanueva A, de la Moya S, Ortiz MJ, Acedo P. A highly fluorescent and readily accessible all-organic photosensitizer model for advancing image-guided cancer PDT. J Mater Chem B 2024; 12:7618-7625. [PMID: 38994651 PMCID: PMC11305095 DOI: 10.1039/d4tb00385c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The potential of using image-guided photodynamic therapy (ig-PDT) for cancer, especially with highly biocompatible fluorescent agents free of heavy atoms, is well recognized. This is due to key advantages related to minimizing adverse side effects associated with standard cancer chemotherapy. However, this theragnostic approach is strongly limited by the lack of synthetically-accessible and easily-modulable chemical scaffolds, enabling the rapid design and construction of advanced agents for clinical ig-PDT. In fact, there are still very few ig-PDT agents clinically approved. Herein we report a readily accessible, easy-tunable and highly fluorescent all-organic small photosensitizer, as a model design for accelerating the development and translation of advanced ig-PDT agents for cancer. This scaffold is based on BODIPY, which assures high fluorescence, accessibility, and ease of performance adaptation by workable chemistry. The optimal PDT performance of this BODIPY dye, tested in highly resistant pancreatic cancer cells, despite its high fluorescent behavior, maintained even after fixation and cancer cell death, is based on its selective accumulation in mitochondria. This induces apoptosis upon illumination, as evidenced by proteomic studies and flow cytometry. All these characteristics make the reported BODIPY-based fluorescent photosensitizer a valuable model for the rapid development of ig-PDT agents for clinical use.
Collapse
Affiliation(s)
- Andres Garcia-Sampedro
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Antonia R Agarrabeitia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Sección Departamental de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Arcos de Jalón 118, 28037 Madrid, Spain
| | - Jorge Bañuelos
- Departamento de Química-Física, Universidad del País Vasco-EHU, 48080 Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - María J Ortiz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Royal Free Hospital Campus, University College London, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
14
|
Beerkens APM, Boreel DF, Nathan JA, Neuzil J, Cheng G, Kalyanaraman B, Hardy M, Adema GJ, Heskamp S, Span PN, Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab 2024; 12:13. [PMID: 38702787 PMCID: PMC11067257 DOI: 10.1186/s40170-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
| | - Daan F Boreel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport Qld, 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
15
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
16
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Stojanov SJ, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorg Chem 2024; 145:107168. [PMID: 38354500 DOI: 10.1016/j.bioorg.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Adriana Gargano
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - José L Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, 88055 Belcastro (CZ), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
18
|
Liu Y, Zhao D, Yang F, Ye C, Chen Z, Chen Y, Yu X, Xie J, Dou Y, Chang J. In Situ Self-Assembled Phytopolyphenol-Coordinated Intelligent Nanotherapeutics for Multipronged Management of Ferroptosis-Driven Alzheimer's Disease. ACS NANO 2024; 18:7890-7906. [PMID: 38445977 DOI: 10.1021/acsnano.3c09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Ferroptosis is a vital driver of pathophysiological consequences of Alzheimer's disease (AD). High-efficiency pharmacological inhibition of ferroptosis requires comprehensive coordination of diverse abnormal intracellular events, which is an urgent problem and great challenge for its application in AD treatment. Herein, a triphenylphosphonium-modified quercetin-derived smart nanomedicine (TQCN) is developed for multipronged anti-ferroptosis therapy in AD. Taking advantage of the favorable brain-targeting and mitochondria-locating properties, TQCN can efficiently chelate iron through phytopolyphenol-mediated spontaneous coordination and self-assemble into metal-phenolic nanocomplexes in situ, exerting escalating exogenous offensive effects to attenuate iron overload and its induced free radical burst. Meanwhile, the Nrf2 signaling-mediated endogenous defensive system is reconstituted to restore iron metabolism homeostasis represented by iron export and storage and enhance cytoprotective antioxidant cascades represented by lipid peroxidation detoxification. Benefiting from the multifaceted regulation of pathogenic processes triggering ferroptosis, TQCN treatment can ameliorate various neurodegenerative manifestations associated with brain iron deposition and rescue severe cognitive decline in AD mice. This work displays great promise of in situ self-assembled phytopolyphenol-coordinated intelligent nanotherapeutics as advanced candidates against ferroptosis-driven AD progression.
Collapse
Affiliation(s)
- Yining Liu
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dongju Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Fan Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Caihua Ye
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ziyao Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yihan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xiaomeng Yu
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiyao Xie
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
19
|
Zhang H, Ren G, Hou W, Wang L, Sun Y, Liu J. A Silicon-Rhodamine-Based Heavy-Atom-Free Photosensitizer for Mitochondria-targeted Photodynamic Therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123688. [PMID: 38042121 DOI: 10.1016/j.saa.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Silicon-xanthene derivatives (SiXs) have gained popularity in the field of bioimaging due to their advantageous far-red to near-infrared (NIR) absorption and emission wavelengths, notable brightness (ε × Φ), inherent mitochondrial targeting properties and high photo-stability, making them an excellent candidate for photodynamic therapy (PDT). Nevertheless, the utilization of SiXs as photosensitizers (PSs) for PDT in cancer treatment remains largely unexplored, primarily due to their limited capacity to generate cytotoxic reactive oxygen species (ROS). However, the potential of SiXs in PDT warrants further investigation. In this study, utilizing the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism, we reported one novel heavy-atom-free, mitochondria-targeted, silicon-rhodamine-based photosensitizer (SiR-PXZ), which demonstrated excellent biocompatibility, minimal dark toxicity, favorable water-solubility and stability, and considerable singlet oxygen quantum yield under 660 nm light irradiation (ΦΔ = 0.16 in air-saturated PBS). Moreover, SiR-PXZ could be rapidly taken up by the mitochondria and efficiently induced apoptosis of cancer cells with an IC50 value of 1.2 μM. The in vivo studies showed that SiR-PXZ exhibited excellent anti-tumor effects, making it potentially valuable for clinical application. This study offers a source of ideas for the construction of SiXs-based photosensitizers for photodynamic cancer treatment in the future.
Collapse
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guoxi Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wenhua Hou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Lijuan Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuanqiang Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
20
|
Arbon D, Mach J, Čadková A, Sipkova A, Stursa J, Klanicová K, Machado M, Ganter M, Levytska V, Sojka D, Truksa J, Werner L, Sutak R. Chelation of Mitochondrial Iron as an Antiparasitic Strategy. ACS Infect Dis 2024; 10:676-687. [PMID: 38287902 PMCID: PMC10862539 DOI: 10.1021/acsinfecdis.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.
Collapse
Affiliation(s)
- Dominik Arbon
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Aneta Čadková
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Anna Sipkova
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| | - Jan Stursa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Kristýna Klanicová
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Marta Machado
- Graduate
Program in Areas of Basic and Applied Biology, Instituto de Ciências
Biomédicas Abel Salazar, Universidade
do Porto, Porto 4050-313, Portugal
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Markus Ganter
- Centre for
Infectious Diseases, Parasitology, Heidelberg
University Hospital, Heidelberg 69120, Germany
| | - Viktoriya Levytska
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Daniel Sojka
- Institute
of Parasitology, Biology Centre, Academy
of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice 37005, Czech Republic
| | - Jaroslav Truksa
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
| | - Lukáš Werner
- Institute
of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec 25250, Czech Republic
- Laboratory
of Clinical Pathophysiology, Diabetes Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech
Republic
| | - Robert Sutak
- Department of Parasitology, Faculty
of Science, Charles University, BIOCEV, Vestec 25250, Czech Republic
| |
Collapse
|
21
|
Bedair HM, Samir TM, Mansour FR. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl Microbiol Biotechnol 2024; 108:198. [PMID: 38324052 PMCID: PMC10850035 DOI: 10.1007/s00253-024-13044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
The increasing antibiotic resistance towards a panel of microorganisms is one of the public health concerns. For this reason, the search for alternatives to the widely used antibiotic has been undertaken. In the era of sustainable chemistry, deep eutectic solvents (DESs) have emerged as promising antimicrobial agents. These solvents possess several advantages such as low volatility, low flammability, ease of preparation, and typically low cost of production. These properties make DES suitable for various applications, including extraction of biomolecules and preparation of cosmetics. Natural DESs (NADESs) are special category of DESs prepared from natural sources, which matched the recent trends of leaning back to nature, and decreasing dependence on synthetic precursors. NADES can be prepared by heating and stirring, freeze-drying, evaporation, grinding, and ultrasound-assisted and microwave-assisted synthesis. Utilizing NADESs as an alternative to traditional antibiotics, which become ineffective over time due to bacterial resistance, holds great promise for these reasons. This review aims to discuss the antimicrobial properties of multiple NADESs, including antibacterial and antifungal activities. To the best of our knowledge, this review is the first literature survey of the antimicrobial activities of NADESs. KEY POINTS: • Natural deep eutectic solvents are promising antimicrobial alternative to antibiotics • NADES holds high potential for their activity against bacterial resistance • NADES have also substantial antifungal activities.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, 12566, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
22
|
Sharma A, Lee BS. Toxicity test profile for deep eutectic solvents: A detailed review and future prospects. CHEMOSPHERE 2024; 350:141097. [PMID: 38171392 DOI: 10.1016/j.chemosphere.2023.141097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Deep eutectic solvents (DESs) are preferable in terms of starting materials, storage and synthesis, simplicity, and component material affordability. In several industries ranging from chemical, electrochemical, biological, biotechnology, material science, etc., DES has demonstrated remarkable potential. Despite all these accomplishments, the safety issue with DES must be adequately addressed. Different DES interacts with the cellular membranes differently. It is not possible to classify all DES as easily biodegradable. By expanding the current understanding of the toxicity and biodegradation of DES, interactions between organisms and cellular membranes can be linked. The DES toxicity profile varies according to their concentration, the nature of the individual components, and how they interact with living things. Therefore, the results of this review can serve as a baseline for DES development in the future.
Collapse
Affiliation(s)
- Anshu Sharma
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea.
| | - Bong-Seop Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea.
| |
Collapse
|
23
|
Zhang R, Zhang C, Lu Q, Liang C, Tian M, Li Z, Yang Y, Li X, Deng Y. Cancer-cell-specific Self-Reporting Photosensitizer for Precise Identification and Ablation of Cancer Cells. Anal Chem 2024; 96:1659-1667. [PMID: 38238102 DOI: 10.1021/acs.analchem.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Cancer-cell-specific fluorescent photosensitizers (PSs) are highly desired molecular tools for cancer ablation with minimal damage to normal cells. However, such PSs that can achieve cancer specification and ablation and a self-reporting manner concurrently are rarely reported and still an extremely challenging task. Herein, we have proposed a feasible strategy and conceived a series of fluorescent PSs based on simple chemical structures for identifying and killing cancer cells as well as monitoring the photodynamic therapy (PDT) process by visualizing the change of subcellular localization. All of the constructed cationic molecules could stain mitochondria in cancer cells, identify cancer cells specifically, and monitor cancer cell viability. Among these, IVP-Br has the strongest ability to produce ROS, which serves as a potent PS for specific recognition and killing of cancer cells. IVP-Br could translocate from mitochondria to the nucleolus during PDT, self-reporting the entire therapeutic process. Mechanism study confirms that IVP-Br with light irradiation causes cancer cell ablation via inducing cell cycle arrest, cell apoptosis, and autophagy. The efficient ablation of tumor through PDT induced by IVP-Br has been confirmed in the 3D tumor spheroid chip. Particularly, IVP-Br could discriminate cancer cells from white blood cells (WBCs), exhibiting great potential to identify circulating tumor cells (CTCs).
Collapse
Affiliation(s)
- Ruoyao Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Lu
- China Fire and Rescue Institute, Changping, Beijing 102202, China
| | - Chaohui Liang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Zhao Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanzhan Yang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Institute of Engineering Medicine, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
25
|
Wang X, Jin X, Xie Z, Zhang H, Liu T, Zheng H, Luan X, Sun Y, Fang W, Chang W, Lou H. Benzamidine Conjugation Converts Expelled Potential Active Agents into Antifungals against Drug-Resistant Fungi. J Med Chem 2023; 66:13684-13704. [PMID: 37787457 DOI: 10.1021/acs.jmedchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fungal infections present a growing global public health concern, necessitating the development of novel antifungal drugs. However, many potential antifungals, particularly the expelled potential active agents (EPAAs), are often underestimated owing to their limitations in cellular entry or expulsion by efflux pumps. Herein, we identified 68 EPAAs out of 2322 candidates with activity against a Candida albicans efflux pump-deficient strain and no inhibitory activity against the wild-type strain. Using a novel conjugation strategy involving benzamidine (BM) as a mitochondrion-targeting warhead, we successfully converted EPAAs into potent antifungals against various urgent-threat azole-resistantCandida strains. Among the obtained EPAA-BM conjugates, IS-2-BM (11) exhibited excellent antifungal activities and induced negligible drug resistance. Furthermore, IS-2-BM prevented biofilm formation, eradicated mature biofilms, and exhibited excellent therapeutic effects in a murine model of systemic candidiasis. These findings provide a promising strategy for increasing the possibilities of discovering more antifungals.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Hongyang Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tiantian Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yan Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
26
|
Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA. The increasing importance of novel deep eutectic solvents as potential effective antimicrobials and other medicinal properties. World J Microbiol Biotechnol 2023; 39:330. [PMID: 37792153 DOI: 10.1007/s11274-023-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelhamid Khodja
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb Ibrahim
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Mustafa Khamis
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| |
Collapse
|
27
|
Bielcikova Z, Werner L, Stursa J, Cerny V, Krizova L, Spacek J, Hlousek S, Vocka M, Bartosova O, Pesta M, Kolostova K, Klezl P, Bobek V, Truksa J, Stemberkova-Hubackova S, Petruzelka L, Michalek P, Neuzil J. Mitochondrially targeted tamoxifen as anticancer therapy: case series of patients with renal cell carcinoma treated in a phase I/Ib clinical trial. Ther Adv Med Oncol 2023; 15:17588359231197957. [PMID: 37786538 PMCID: PMC10541747 DOI: 10.1177/17588359231197957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/03/2023] [Indexed: 10/04/2023] Open
Abstract
Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug.
Collapse
Affiliation(s)
- Zuzana Bielcikova
- Department of Oncology, General Faculty Hospital, U Nemocnice 499/2, Prague 2, 128 08, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech RepublicDiabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Vladimir Cerny
- Department of Radiodiagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Krizova
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Spacek
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Hlousek
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Bartosova
- Institute of Pharmacology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Pesta
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Petr Klezl
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic Urology Clinic, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Sona Stemberkova-Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech RepublicDiabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Michalek
- Department of Anesthesiology and Intensive Care, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia Department of Pediatrics and Inherited Metabolic Diseases, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic Department of Physiology, Faculty of Science, Charles University, and General University Hospital, Prague, Czech Republic Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic
| |
Collapse
|
28
|
Fang Z, Chen H. The in vivo drug delivery pattern of the organelle-targeting small molecules. Adv Drug Deliv Rev 2023; 200:115020. [PMID: 37481114 DOI: 10.1016/j.addr.2023.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Eukaryotic cell organelles sustain the life of cells. Their structural changes and dysfunctions can cause abnormal physiological activities and lead to various diseases. Molecular imaging technology enables the visualization of subcellular structures, cells, organs, and the whole living body's structure and metabolism dynamic changes. This could help to reveal the pharmacology mechanisms and drug delivery pathway in vivo. This article discusses the relationship between organelles and human disease, reviews recent probes targeting organelles and their behavior in vivo. We found that mitochondria-targeting probes prefer accumulation in the intestine, heart, and tumor. The lysosome-targeting probe accumulates in the intestine and tumor. Few studies on endoplasmic reticulum- or Golgi apparatus-targeting probes have been reported for in vivo imaging. We hope this review could provide new insights for developing and applying organelle-targeting probes.
Collapse
Affiliation(s)
- Zhao Fang
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Chen
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
29
|
Hall A, Bartek J, Wagner E, Lächelt U, Moghimi SM. High-resolution bioenergetics correlates the length of continuous protonatable diaminoethane motif of four-armed oligo(ethanamino)amide transfectants to cytotoxicity. J Control Release 2023; 361:115-129. [PMID: 37532151 DOI: 10.1016/j.jconrel.2023.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Recent clinical success with Onpattro and cationic ionizable lipid nanoparticle-based mRNA vaccines has rejuvenated research in the design and engineering of broader synthetic cationic vectors for nucleic acid compaction and transfection. However, perturbation of metabolic processes and cytotoxicity are still of concern with synthetic cationic vectors. Here, through an integrated bioenergetic and biomembrane integrity probing in three different human cell lines we reveal the dynamic effect of a library of sequence-defined four-arm oligo(ethanamino)amide transfectant on cell homeostasis, and identify metabolically safe building units over wide concentration ranges. The results show differential effects of the oligo(ethanamino)amide structure of comparable molecular weight on cell energetics. The severity of polycation effect on bioenergetic crisis follows with the length of continuous protonatable diaminoethane motif in the ascending order of glutaryl-triethylene tetramine, succinyl-tetraethylene pentamine and succinyl-pentaethylene hexamine. We further identify oligomeric structures that do not induce bioenergetic crisis even at high concentrations. Finally, transfection studies with a library of polyplexes carrying a reporter gene show no correlation between transfection efficiency and cytotoxicity. These observations demonstrate the usefulness of integrated high-resolution respirometry and plasma membrane integrity probing as a highly sensitive medium-throughput screening strategy for identification and selection of safe building units for transfectant engineering.
Collapse
Affiliation(s)
- Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians Universität, Butenandstrasse 5-13, 81377 Munich, Germany; Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Seyed Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
30
|
Saha PC, Das RS, Das S, Sepay N, Chatterjee T, Mukherjee A, Bera T, Kar S, Bhattacharyya M, Sengupta A, Guha S. Live-Cell Mitochondrial Targeted NIR Fluorescent Covalent Labeling of Specific Proteins Using a Dual Localization Effect. Bioconjug Chem 2023; 34:1407-1417. [PMID: 37289994 DOI: 10.1021/acs.bioconjchem.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, our designed water-soluble NIR fluorescent unsymmetrical Cy-5-Mal/TPP+ consists of a lipophilic cationic TPP+ subunit that can selectively target and accumulate in a live-cell inner mitochondrial matrix where a maleimide residue of the probe undergoes faster chemoselective and site-specific covalent attachment with the exposed Cys residue of mitochondrion-specific proteins. On the basis of this dual localization effect, Cy-5-Mal/TPP+ molecules remain for a longer time period even after membrane depolarization, enabling long-term live-cell mitochondrial imaging. Due to the adequate concentration of Cy-5-Mal/TPP+ reached in live-cell mitochondria, it facilitates site-selective NIR fluorescent covalent labeling with Cys-exposed proteins, which are identified by the in-gel fluorescence assay and LC-MS/MS-based proteomics and supported by a computational method. This dual targeting approach with admirable photostability, narrow NIR absorption/emission bands, bright emission, long fluorescence lifetime, and insignificant cytotoxicity has been shown to improve real-time live-cell mitochondrial tracking including dynamics and interorganelle crosstalk with multicolor imaging applications.
Collapse
Affiliation(s)
- Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Nayim Sepay
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Tanima Chatterjee
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
31
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
32
|
Heisig J, Heise NV, Hoenke S, Ströhl D, Csuk R. The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules 2023; 28:4951. [PMID: 37446613 DOI: 10.3390/molecules28134951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Acid hydrolysis of stevioside resulted in a 63% yield of isosteviol (1), which served as a starting material for the preparation of numerous amides. These compounds were tested for cytotoxic activity, employing a panel of human tumor cell lines, and almost all amides were found to be non-cytotoxic. Only the combination of isosteviol, a (homo)-piperazinyl spacer and rhodamine B or rhodamine 101 unit proved to be particularly suitable. These spacered rhodamine conjugates exhibited cytotoxic activity in the sub-micromolar concentration range. In this regard, the homopiperazinyl-spacered derivatives were found to be better than those compounds with piperazinyl spacers, and rhodamine 101 conjugates were more cytotoxic than rhodamine B hybrids.
Collapse
Affiliation(s)
- Julia Heisig
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Dieter Ströhl
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
33
|
Zhuang J, Wang B, Chen H, Zhang K, Li N, Zhao N, Tang BZ. Efficient NIR-II Type-I AIE Photosensitizer for Mitochondria-Targeted Photodynamic Therapy through Synergistic Apoptosis-Ferroptosis. ACS NANO 2023; 17:9110-9125. [PMID: 37144959 DOI: 10.1021/acsnano.2c12319] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hypoxia, the hallmark of malignant tumors, has been recognized as a major obstacle for photodynamic therapy (PDT). Precisely targeting cancer cells in intricate biological scenarios by a hypoxia-resistant photosensitizer (PS) is the cornerstone to conquer the inevitable tumor recurrence and metastasis. Herein, we describe an organic NIR-II PS (TPEQM-DMA) possessing potent type-I phototherapeutic efficacy to overcome the intrinsic pitfalls of PDT in combating hypoxic tumors. TPEQM-DMA exhibited prominent NIR-II emission (>1000 nm) with an aggregation-induced emission feature and efficiently produced superoxide anion and hydroxyl radical in the aggregate state under white light irradiation exclusively through a low-O2-dependent type-I photochemical process. The suitable cationic nature assisted TPEQM-DMA to accumulate in cancerous mitochondria. Meanwhile, the PDT of TPEQM-DMA impaired the cellular redox homeostasis, led to the mitochondrial dysfunction, and raised the level of lethal peroxidized lipids, which induced cellular apoptosis and ferroptosis. This synergistic cell death modality enabled TPEQM-DMA to suppress the growth of cancer cells, multicellular tumor spheroids, and tumors. To improve the pharmacological properties of TPEQM-DMA, TPEQM-DMA nanoparticles were prepared by encapsulation of polymer. In vivo experiments proved the appealing NIR-II fluorescence imaging-guided PDT effect of TPEQM-DMA nanoparticles for tumors.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Huan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Keyi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Na Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
34
|
Behera PC, Karmakar V, Ghosh A, Dey S, Rangra NK, Bag B. Anti-cancer potential of substituted "amino-alkyl-rhodamine" derivatives against MCF-7 human breast cancer cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1001-1007. [PMID: 36595094 DOI: 10.1007/s00210-022-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most prevalent diagnosed cancer among women and the main cause of morbidity and mortality. As for breast cancer, MCF-7 cells are an important candidate since they are widely utilized in research for estrogen receptor (ER)-positive breast cancer cell assays, and various sub-clones have been identified to reflect different classes of ER-positive tumors with varied levels of nuclear receptor expression. Rhodamines and its derivatives have shown a great interest over the past two decades due to their excellent structural and spectroscopic properties. Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties. Rhodamine derivatives, in particular, have been widely investigated for their therapeutic properties. In this regard, several studies have shown that rhodamine dye derivatives have promising in vitro and in vivo therapeutic efficacy. The present study deals with potential anticancer activity of few synthesized rhodamine derivatives against MCF-7 cell lines.
Collapse
Affiliation(s)
- Padma Charan Behera
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India.
| | - Varnita Karmakar
- Department of Pharmacology, Eminent College of Pharmaceutical Technology, Barasat, 700126, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ratu Road, Ranchi, 835222, Jharkhand, India
| | - Suddhasatya Dey
- Department of Pharmacy, Sanaka Educational Trusts Group of Institutions, Durgapur, 713212, West Bengal, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal-Kalan, GT Road, Moga, 142001, PB, India
| | - Bamaprasad Bag
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, P.O.: R.R.L, Bhubaneswar, 751013, Odisha, India.
| |
Collapse
|
35
|
Di Pilato M, Gao Y, Sun Y, Fu A, Grass C, Seeholzer T, Feederle R, Mazo I, Kazer SW, Litchfield K, von Andrian UH, Mempel TR, Jenkins RW, Krappmann D, Keller P. Translational Studies Using the MALT1 Inhibitor ( S)-Mepazine to Induce Treg Fragility and Potentiate Immune Checkpoint Therapy in Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:61-73. [PMID: 37214210 PMCID: PMC10195017 DOI: 10.36401/jipo-22-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 05/19/2023]
Abstract
Introduction Regulatory T cells (Tregs) play a critical role in the maintenance of immune homeostasis but also protect tumors from immune-mediated growth control or rejection and pose a significant barrier to effective immunotherapy. Inhibition of MALT1 paracaspase activity can selectively reprogram immune-suppressive Tregs in the tumor microenvironment to adopt a proinflammatory fragile state, which offers an opportunity to impede tumor growth and enhance the efficacy of immune checkpoint therapy (ICT). Methods We performed preclinical studies with the orally available allosteric MALT1 inhibitor (S)-mepazine as a single-agent and in combination with anti-programmed cell death protein 1 (PD-1) ICT to investigate its pharmacokinetic properties and antitumor effects in several murine tumor models as well as patient-derived organotypic tumor spheroids (PDOTS). Results (S)-mepazine demonstrated significant antitumor effects and was synergistic with anti-PD-1 therapy in vivo and ex vivo but did not affect circulating Treg frequencies in healthy rats at effective doses. Pharmacokinetic profiling revealed favorable drug accumulation in tumors to concentrations that effectively blocked MALT1 activity, potentially explaining preferential effects on tumor-infiltrating over systemic Tregs. Conclusions The MALT1 inhibitor (S)-mepazine showed single-agent anticancer activity and presents a promising opportunity for combination with PD-1 pathway-targeted ICT. Activity in syngeneic tumor models and human PDOTS was likely mediated by induction of tumor-associated Treg fragility. This translational study supports ongoing clinical investigations (ClinicalTrials.gov Identifier: NCT04859777) of MPT-0118, (S)-mepazine succinate, in patients with advanced or metastatic treatment-refractory solid tumors.
Collapse
Affiliation(s)
- Mauro Di Pilato
- MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Yun Gao
- Monopteros Therapeutics, Boston, MA, USA
| | - Yi Sun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Amina Fu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Carina Grass
- Research Unit Signaling and Translation - Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Munich–German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Signaling and Translation - Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Munich–German Research Center for Environmental Health, Neuherberg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Irina Mazo
- Monopteros Therapeutics, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Samuel W. Kazer
- Monopteros Therapeutics, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Thorsten R. Mempel
- Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Krappmann
- Research Unit Signaling and Translation - Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Munich–German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
36
|
Ong HC, Coimbra JTS, Ramos MJ, Xing B, Fernandes PA, García F. Beyond the TPP + "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks. Chem Sci 2023; 14:4126-4133. [PMID: 37063789 PMCID: PMC10094279 DOI: 10.1039/d2sc06508h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondrial targeting represents an attractive strategy for treating metabolic, degenerative and hyperproliferative diseases, since this organelle plays key roles in essential cellular functions. Triphenylphosphonium (TPP+) moieties - the current "gold standard" - have been widely used as mitochondrial targeting vectors for a wide range of molecular cargo. Recently, further optimisation of the TPP+ platform drew considerable interest as a way to enhance mitochondrial therapies. However, although the modification of this system appears promising, the core structure of the TPP+ moiety remains largely unchanged. Thus, this study explored the use of aminophosphonium (PN+) and phosphazenylphosphonium (PPN+) main group frameworks as novel mitochondrial delivery vectors. The PPN+ moiety was found to be a highly promising platform for this purpose, owing to its unique electronic properties and high lipophilicity. This has been demonstrated by the high mitochondrial accumulation of a PPN+-conjugated fluorophore relative to its TPP+-conjugated counterpart, and has been further supported by density functional theory and molecular dynamics calculations, highlighting the PPN+ moiety's unusual electronic properties. These results demonstrate the potential of novel phosphorus-nitrogen based frameworks as highly effective mitochondrial delivery vectors over traditional TPP+ vectors.
Collapse
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - João T S Coimbra
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Pedro A Fernandes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687, s/n 4169-007 Porto Portugal
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo Avda Julian Claveria 8 33006 Asturias Spain
- School of Chemistry, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
37
|
Patil AS, Ibrahim MK, Sathaye S, Degani MS, Pal D, Checker R, Sharma D, Sandur SK. Mitochondriotropic Derivative of Ethyl Ferulate, a Dietary Phenylpropanoid, Exhibits Enhanced Cytotoxicity in Cancer Cells via Mitochondrial Superoxide-Mediated Activation of JNK and AKT Signalling. Appl Biochem Biotechnol 2023; 195:2057-2076. [PMID: 36409426 DOI: 10.1007/s12010-022-04252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Specific targeting of anti-cancer drugs to mitochondria is an emerging strategy to enhance cancer cell killing whilst simultaneously overcoming the problem of drug resistance, low bioavailability and limited clinical success of natural products. We have synthesized a mitochondria targeted derivative of Ethyl Ferulate (EF, a naturally occurring ester of ferulic acid), by conjugating it with triphenylphosphonium ion and compared its cytotoxicity with the parent molecule. Mito-Ethyl Ferulate (M-EF) was found to be more potent than EF (~ 400-fold) in inhibiting the growth of A549 and MCF-7 cells and suppressing the clonogenic potential of A549 cells. Notably, M-EF did not induce any cytotoxicity in normal cells (mouse normal fibroblast cells) up to a concentration of 25 μM. Furthermore, M-EF treatment induced significantly higher cell death in MCF-7 and A549 cells, as compared to EF via induction of apoptosis. M-EF treatment increased mitochondrial superoxide production and induced mitochondrial DNA damage and phosphorylation of JNK and AKT in A549 cells. Furthermore, M-EF induced increase in mitochondrial superoxide production and cytotoxicity was attenuated on pre-treatment with mitochondria-targeted antioxidant (mitoTEMPO) indicating the involvement of mitochondrial ROS in the cytotoxic effects of M-EF. Finally, in silico prediction revealed putative mitochondrial targets of M-EF which are known to regulate mitochondrial ROS and cell viability. In conclusion, the improved cytotoxic efficacy of M-EF exemplifies the use of mitochondria-specific drug delivery in future development of natural product based mitochondrial pharmacology.
Collapse
Affiliation(s)
- Ashwani S Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.,Department of Pharmacology, Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Mahin K Ibrahim
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
38
|
Zhan A, Niu D, Li K, Li J. Characterization of some sucrose-based deep eutectic solvents and their effect on the solubility of piroxicam. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
39
|
Zhu J, Jiang Y, Pan X, Xu K, Niu W, Lv Y, Li C, Wang Y, Xue Z, Lei P, He Y. In Vivo Evaluation of a Gallium-68-Labeled Tumor-Tracking Cyanine Dye for Positron Emission Tomography/Near-Infrared Fluorescence Carcinoma Imaging, Image-Guided Surgery, and Photothermal Therapy. ACS OMEGA 2023; 8:6067-6077. [PMID: 36816684 PMCID: PMC9933465 DOI: 10.1021/acsomega.2c08235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Positron emission tomography (PET)/near-infrared fluorescence (NIRF) dual-modal imaging presents an enticing prospect for tumor diagnosis and surgical navigation. In this study, we developed a novel probe IR808-DOTA for tumor-targeted PET/NIRF imaging, image-guided surgery, and photothermal therapy. This construct had better water solubility and pharmacokinetics than IR808 and had similar photophysical properties, tumor targeting ability, and photothermal anticancer effect to IR808. By a simple labeling process, IR808-DOTA was labeled with gallium-68 and applied as a PET probe for tumor imaging in MCF-7 tumor xenografted mice. IR808-DOTA itself acted as an NIRF imaging agent in the following surgery for intraoperative navigation to aid surgeons in the delineation of tumor margins and visualizing sentinel lymph nodes to facilitate a more thorough tumor resection. Irradiation by laser, IR808-DOTA could prominently inhibit tumor growth in MCF-7 subcutaneous tumor model mice by directly ablating tumor cells, inhibiting tumor proliferation, and promoting tumor cell apoptosis. In summary, 68Ga-DOTA-IR808 could enable a convenient and user-friendly workflow for tumor imaging and guided surgery, and therefore, it may have great prospects for clinical translation as a PET/NIRF dual-modal probe.
Collapse
Affiliation(s)
- Jiaxu Zhu
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yaqun Jiang
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin Pan
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Kui Xu
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wenhao Niu
- Department
of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yibing Lv
- Department
of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Chongjiao Li
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yichun Wang
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zejian Xue
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ping Lei
- Department
of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yong He
- Department
of Nuclear Medicine, Zhongnan Hospital of
Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
40
|
Bielcikova Z, Stursa J, Krizova L, Dong L, Spacek J, Hlousek S, Vocka M, Rohlenova K, Bartosova O, Cerny V, Padrta T, Pesta M, Michalek P, Hubackova SS, Kolostova K, Pospisilova E, Bobek V, Klezl P, Zobalova R, Endaya B, Rohlena J, Petruzelka L, Werner L, Neuzil J. Mitochondrially targeted tamoxifen in patients with metastatic solid tumours: an open-label, phase I/Ib single-centre trial. EClinicalMedicine 2023; 57:101873. [PMID: 37064512 PMCID: PMC10102891 DOI: 10.1016/j.eclinm.2023.101873] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Background Mitochondria present an emerging target for cancer treatment. We have investigated the effect of mitochondrially targeted tamoxifen (MitoTam), a first-in-class anti-cancer agent, in patients with solid metastatic tumours. Methods MitoTam was tested in an open-label, single-centre (Department of Oncology, General Faculty Hospital, Charles University, Czech Republic), phase I/Ib trial in metastatic patients with various malignancies and terminated oncological therapies. In total, 75 patients were enrolled between May 23, 2018 and July 22, 2020. Phase I evaluated escalating doses of MitoTam in two therapeutic regimens using the 3 + 3 design to establish drug safety and maximum tolerated dose (MTD). In phase Ib, three dosing regimens were applied over 8 and 6 weeks to evaluate long-term toxicity of MitoTam as the primary objective and its anti-cancer effect as a secondary objective. This trial was registered with the European Medicines Agency under EudraCT 2017-004441-25. Findings In total, 37 patients were enrolled into phase I and 38 into phase Ib. In phase I, the initial application of MitoTam via peripheral vein indicated high risk of thrombophlebitis, which was avoided by central vein administration. The highest dose with acceptable side effects was 5.0 mg/kg. The prevailing adverse effects (AEs) in phase I were neutropenia (30%), anaemia (30%) and fever/hyperthermia (30%), and in phase Ib fever/hyperthermia (58%) together with anaemia (26%) and neutropenia (16%). Serious AEs were mostly related to thromboembolic (TE) complications that affected 5% and 13% of patients in phase I and Ib, respectively. The only statistically significant AE related to MitoTam treatment was anaemia in phase Ib (p = 0.004). Of the tested regimens weekly dosing with 3.0 mg/kg for 6 weeks afforded the best safety profile with almost all being grade 1 (G1) AEs. Altogether, five fatalities occurred during the study, two of them meeting criteria for Suspected Unexpected Serious Adverse Events Reporting (SUSAR) (G4 thrombocytopenia and G5 stroke). MitoTam showed benefit evaluated as clinical benefit rate (CBR) in 37% patients with the largest effect in renal cell carcinoma (RCC) where four out of six patients reached disease stabilisation (SD), one reached partial response (PR) so that in total, five out of six (83%) patients showed CBR. Interpretation In this study, the MTD was established as 5.0 mg/kg and the recommended dose of MitoTam as 3.0 mg/kg given once per week via central vein with recommended preventive anti-coagulation therapy. The prevailing toxicity included haematological AEs, hyperthermia/fever and TE complications. One fatal stroke and non-fatal G4 thrombocytopenia were recorded. MitoTam showed high efficacy against RCC. Funding Smart Brain Ltd. Translation For the Czech translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Zuzana Bielcikova
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
- Corresponding author. Department of Oncology, General Faculty Hospital and 1st Faculty of Medicine, Charles University, U Nemocnice 499/2, Prague 2 128 08, Czech Republic.
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - Ludmila Krizova
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Lanfeng Dong
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia
| | - Jan Spacek
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Stanislav Hlousek
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - Olga Bartosova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 128 08, Czech Republic
| | - Vladimir Cerny
- Department of Radiodiagnostics, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Tomas Padrta
- Department of Radiodiagnostics, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Michal Pesta
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague 121 06, Czech Republic
| | - Pavel Michalek
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital, Prague 128 08, Czech Republic
| | - Sona Stemberkova Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague 4 140 21, Czech Republic
| | - Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague 10 100 34, Czech Republic
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague 10 100 34, Czech Republic
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague 10 100 34, Czech Republic
| | - Peter Klezl
- Laboratory of Personalized Medicine, Oncology Clinic, Faculty Hospital Kralovske Vinohrady, Prague 10 100 34, Czech Republic
- Urology Clinic, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague 10 100 34, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University, Prague 2 128 08, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, Charles University, and General University Hospital, Prague 128 08, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
- Corresponding author. Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University, Prague 2 128 08, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague 2 128 00, Czech Republic
- Corresponding author. School of Pharmacy and Medical Science, Griffith University, Parklands Avenue, 4222 Southport, Qld, Australia, or Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, Prague-West 252 50, Czech Republic.
| |
Collapse
|
41
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
42
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
43
|
Zhou J, Wang H, Wang W, Ma Z, Chi Z, Liu S. A Cationic Amphiphilic AIE Polymer for Mitochondrial Targeting and Imaging. Pharmaceutics 2022; 15:103. [PMID: 36678732 PMCID: PMC9866158 DOI: 10.3390/pharmaceutics15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are important organelles that play key roles in generating the energy needed for life and in pathways such as apoptosis. Direct targeting of antitumor drugs, such as doxorubicin (DOX), to mitochondria into cells is an effective approach for cancer therapy and inducing cancer cell death. To achieve targeted and effective delivery of antitumor drugs to tumor cells, to enhance the therapeutic effect, and to reduce the side effects during the treatment, we prepared a cationic amphiphilic polymer with aggregation-induced emission (AIE) characteristic. The polymer could be localized to mitochondria with excellent organelle targeting, and it showed good mitochondrial targeting with low toxicity. The polymer could also self-assemble into doxorubicin-loaded micelles in phosphate buffer, with a particle size of about 4.3 nm, an encapsulation rate of 11.03%, and micelle drug loading that reached 0.49%. The results of in vitro cytotoxicity experiments showed that the optimal dosage was 2.0 μg/mL, which had better inhibitory effect on tumor cells and less biological toxicity on heathy cells. Therefore, the cationic amphiphilic polymer can partially replace expensive commercial mitochondrial targeting reagents, and it can be also used as a drug loading tool to directly target mitochondria in cells for corresponding therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Siwei Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
45
|
New Betulin Derivatives with Nitrogen Heterocyclic Moiety-Synthesis and Anticancer Activity In Vitro. Biomolecules 2022; 12:biom12101540. [PMID: 36291749 PMCID: PMC9599051 DOI: 10.3390/biom12101540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022] Open
Abstract
As part of the search for new medicinal substances with potential application in oncology, the synthesis of new compounds combining the betulin molecule and the indole system was carried out. The structure of the ester derivatives obtained in the Steglich reaction was confirmed by spectroscopic methods (1H and 13C NMR, HR-MS). The obtained new 3-indolyl betulin derivatives were evaluated for anticancer activity against several human cancer cell lines (melanomas, breast cancers, colorectal adenocarcinomas, lung cancer) as well as normal human fibroblasts. The significant reduction in MCF-7 cells viability for 28-hydroxy-(lup-20(29)-ene)-3-yl 2-(1H-indol-3-yl)acetate was observed at a concentration of 10 µg/mL (17 µM). In addition, cytometric analysis showed that this compound strongly reduces the proliferation rate of breast cancer cells. For this, the derivative showing the promising cytotoxic effect on MCF-7 breast cancer cells, the pharmacokinetic profile prediction was performed using in silico methods. Based on the results obtained in the study, it can be concluded that indole-functionalized triterpene EB367 is a promising starting point for further research in the field of breast cancer therapy or the synthesis of new derivatives.
Collapse
|
46
|
Fialova JL, Hönigova K, Raudenska M, Miksatkova L, Zobalova R, Navratil J, Šmigová J, Moturu TR, Vicar T, Balvan J, Vesela K, Abramenko N, Kejik Z, Kaplanek R, Gumulec J, Rosel D, Martasek P, Brábek J, Jakubek M, Neuzil J, Masarik M. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed Pharmacother 2022; 154:113582. [DOI: 10.1016/j.biopha.2022.113582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022] Open
|
47
|
Song G, He H, Chen W, Lv Y, Chu PK, Wang H, Li P. Reversibly Migratable Fluorescent Probe for Precise and Dynamic Evaluation of Cell Mitochondrial Membrane Potentials. BIOSENSORS 2022; 12:798. [PMID: 36290933 PMCID: PMC9599583 DOI: 10.3390/bios12100798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The mitochondrial membrane potential (MMP, ΔΨmito) provides the charge gradient required for mitochondrial functions and is a key indicator of cellular health. The changes in MMP are closely related to diseases and the monitoring of MMP is thus vital for pathological study and drug development. However, most of the current fluorescent probes for MMP rely solely on the cell fluorescence intensity and are thus restricted by poor photostability, rendering them not suitable for long-term dynamic monitoring of MMP. Herein, an MMP-responsive fluorescent probe pyrrolyl quinolinium (PQ) which is capable of reversible migration between mitochondria and nucleolus is developed and demonstrated for dynamic evaluation of MMP. The fluorescence of PQ translocates from mitochondria to nucleoli when MMP decreases due to the intrinsic RNA-specificity and more importantly, the translocation is reversible. The cytoplasm to nucleolus fluorescence intensity ratio is positively correlated with MMP so that this method avoids the negative influence of photostability and imaging parameters. Various situations of MMP can be monitored in real time even without controls. Additionally, long-term dynamic evaluation of MMP is demonstrated for HeLa cells using PQ in oxidative environment. This study is expected to give impetus to the development of mitochondria-related disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Guofen Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiwei He
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanling Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanliang Lv
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Sultana K, Rahman MT, Habib K, Das L. Recent Advances in Deep Eutectic Solvents as Shale Swelling Inhibitors: A Comprehensive Review. ACS OMEGA 2022; 7:28723-28755. [PMID: 36033715 PMCID: PMC9404197 DOI: 10.1021/acsomega.2c03008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Inhibitors have evolved from their primary function of controlling swelling during hydraulic fracturing processes in shale reservoirs. This study provides a comprehensive review of recent deep eutectic solvent (DES) advancements as inhibitors in swelling inhibition techniques. The swelling inhibitory potentials and mechanisms of DESs have been studied analytically and compared to existing conventional inhibitors. The functional effects of concentration, temperature, and types of DES are explored. Data on the effect of DES on rheology, swelling, zeta potential, shale cutting recovery, surface tension, particle size distribution, XRD, and FTIR analyses are presented. Along with preparation procedures, environmental concerns and applications of DESs in several fields are discussed. This study suggests that DESs are preferable swelling inhibitors due to their inhibitory performance, cost-effectiveness, and environmental friendliness. Moreover, this review includes guidelines and recommendations for selecting and designing DES to inhibit swelling more effectively.
Collapse
Affiliation(s)
- Kakon Sultana
- Department
of Petroleum and Mining Engineering, Chittagong
University of Engineering and Technology, Chittagong, Bangladesh
| | - Md Tauhidur Rahman
- Department
of Petroleum Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Khairul Habib
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Likhan Das
- Department
of Mechanical Engineering, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
49
|
Ferguson ID, Lin YHT, Lam C, Shao H, Tharp KM, Hale M, Kasap C, Mariano MC, Kishishita A, Patiño Escobar B, Mandal K, Steri V, Wang D, Phojanakong P, Tuomivaara ST, Hann B, Driessen C, Van Ness B, Gestwicki JE, Wiita AP. Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma. Cell Chem Biol 2022; 29:1288-1302.e7. [PMID: 35853457 PMCID: PMC9434701 DOI: 10.1016/j.chembiol.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/21/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To identify pathways mediating resistance, we first mapped proteasome-associated genetic co-dependencies. We identified heat shock protein 70 (HSP70) chaperones as potential targets, consistent with proposed mechanisms of myeloma cells overcoming PI-induced stress. We therefore explored allosteric HSP70 inhibitors (JG compounds) as myeloma therapeutics. JG compounds exhibited increased efficacy against acquired and intrinsic PI-resistant myeloma models, unlike HSP90 inhibition. Shotgun and pulsed SILAC mass spectrometry demonstrated that JGs unexpectedly impact myeloma proteostasis by destabilizing the 55S mitoribosome. Our data suggest JGs have the most pronounced anti-myeloma effect not through inhibiting cytosolic HSP70 proteins but instead through mitochondrial-localized HSP70, HSPA9/mortalin. Analysis of myeloma patient data further supports strong effects of global proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results characterize myeloma proteostasis networks under therapeutic pressure while motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christine Lam
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Hao Shao
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin M Tharp
- Department of Surgery, University of California, San Francisco, San Francisco CA 94143, USA
| | - Martina Hale
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Corynn Kasap
- Department of Medicine, Division of Hematology or Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margarette C Mariano
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Audrey Kishishita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bonell Patiño Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Kamal Mandal
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghui Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul Phojanakong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christoph Driessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA.
| |
Collapse
|
50
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|