1
|
Fernández-Gómez I, Sablón-Carrazana M, Bencomo-Martínez A, Domínguez G, Lara-Martínez R, Altamirano-Bustamante NF, Jiménez-García LF, Pasten-Hidalgo K, Castillo-Rodríguez RA, Altamirano P, Marrero SR, Revilla-Monsalve C, Valdés-Sosa P, Salamanca-Gómez F, Garrido-Magaña E, Rodríguez-Tanty C, Altamirano-Bustamante MM. Diabetes Drug Discovery: hIAPP 1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets. Molecules 2018; 23:molecules23030686. [PMID: 29562662 PMCID: PMC6017868 DOI: 10.3390/molecules23030686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Human islet amyloid peptide (hIAPP1–37) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1–37) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1–37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1–37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1–37. Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP1–37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A–F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Isaac Fernández-Gómez
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | | | | | - Reyna Lara-Martínez
- Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad de México 04510, Mexico.
| | | | | | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
- Cátedras Conacyt, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Perla Altamirano
- Servicio de Medicina Nuclear, Hospital de Especialidades, CMN, La Raza, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Peter Valdés-Sosa
- Departamento de Neuroquímica, Centro de Neurociencias de Cuba, Habana 11600, Cuba.
| | - Fabio Salamanca-Gómez
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico.
| |
Collapse
|
2
|
Dragotto J, Capuozzo E, Fontana M, Curci A, Fiorenza MT, Canterini S. Thiotaurine protects mouse cerebellar granule neurons from potassium deprivation-induced apoptosis by inhibiting the activation of caspase-3. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:513-23. [PMID: 25833523 DOI: 10.1007/978-3-319-15126-7_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jessica Dragotto
- Section of Neuroscience, Department of Psychology, "Daniel Bovet" Neurobiology Research Center, "Sapienza" University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int J Dev Neurosci 2014; 37:26-35. [PMID: 24955869 DOI: 10.1016/j.ijdevneu.2014.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/15/2014] [Accepted: 06/15/2014] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death plays a critical role during cerebellar development. In particular, it has been shown in vivo and in vitro that developing cerebellar granule neurons (CGN) die apoptotically. Apoptosis involves a series of morphological changes and the activation of caspases. Inhibitor of apoptosis proteins (IAPs) is implicated in negative regulation of caspase activation and apoptotic cell death. Although apoptotic death of CGN has been extensively studied, there is no information about the role of IAPs in the developing cerebellum. Here, we studied the participation of some members of IAPs in the survival of the developing rat CGN in culture and under physiological conditions. Under these conditions, we found a differential expression pattern of cIAP-1, cIAP-2, XIAP and survivin during cerebellar development in an age-dependent manner, highlighting the significant increase of XIAP levels. We also detected an interaction between XIAP and caspase 3 at postnatal day (P) 12 and 16. On the other hand, we found a significant decrease of XIAP levels in cultured CGN maintained in chronic potassium deprivation, an apoptotic condition, suggesting a possible relationship between XIAP levels and neuronal viability. Under these conditions, we also detected the interaction of XIAP with active caspase-3. The down-regulation of XIAP in CGN cultured under survival conditions (chronic potassium depolarization) induced a reduction of cell viability and an increment of apoptotic cells. These findings support the idea that IAPs could be involved in the survival of CGN and that XIAP might be critical for neuronal survival in cerebellar development and during chronic depolarization in cultured CGN through a mechanism involving caspase inhibition.
Collapse
|
4
|
Wang Y, Song M, Hou L, Yu Z, Chen H. The newly identified K+ channel blocker talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons. Neurosci Lett 2012; 518:122-7. [DOI: 10.1016/j.neulet.2012.04.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023]
|
5
|
Blancas S, Moran J. Role for apoptosis-inducing factor in the physiological death of cerebellar neurons. Neurochem Int 2011; 58:934-42. [PMID: 21447364 DOI: 10.1016/j.neuint.2011.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/29/2022]
Abstract
Apoptosis-inducing factor (AIF) is implicated in caspase-independent apoptotic-like death. AIF released from mitochondria translocates to the nucleus, where it mediates some apoptotic events such as chromatin condensation and DNA degradation. Here, the role of AIF in the neuronal death was studied under physiological conditions. When we analyzed the cellular localization of AIF during cerebellar development, we found a significant increase in the number of neurons with nuclear AIF localization in an age-dependent manner. On the other hand, cerebellar granule neurons (CGN) chronically cultured in low concentration of potassium (5 mM; K5) die with apoptotic-like characteristics after five days. In the present study we found that K5 induces a caspase-dependent apoptotic-like death of CGN as well as a late nuclear translocation of AIF. When CGN death induced by K5 was carried out in the presence of a general inhibitor of caspases, there was a slight decrement of cell death, but neurons eventually died by showing apoptotic-like features such as phosphatidylserine translocation and nuclear condensation. Besides, there was a significant increment of nuclear AIF translocation. These findings support the idea that AIF could be involved in apoptotic-like death of CGN and that it could be an alternative mechanism of neuronal death during cerebellar development.
Collapse
Affiliation(s)
- Sugela Blancas
- Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
6
|
Ramiro-Cortés Y, Morán J. Role of oxidative stress and JNK pathway in apoptotic death induced by potassium deprivation and staurosporine in cerebellar granule neurons. Neurochem Int 2009; 55:581-92. [DOI: 10.1016/j.neuint.2009.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/01/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
|
7
|
Park BH, Jung JC, Lee GH, Kim TJ, Lee YJ, Kim JY, Kim YW, Jeong JH, Chang Y. Comparison of labeling efficiency of different magnetic nanoparticles into stem cell. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2007.04.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Bazán-Peregrino M, Gutiérrez-Kobeh L, Morán J. Role of brain-derived neurotrophic factor in the protective action of N-methyl-D-aspartate in the apoptotic death of cerebellar granule neurons induced by low potassium. J Neurosci Res 2007; 85:332-41. [PMID: 17086548 DOI: 10.1002/jnr.21112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several neurotrophic factors, including brain-derived neurotrophic factor (BDNF), and neurotransmitters, such as glutamate, may influence neuronal apoptotic death. Rat cerebellar granule neurons (CGN) cultured in low potassium (5 or 10 mM KCl) for more than 5 days in vitro (DIV) die apoptotically. These cells survive in the presence of high potassium (25 mM KCl, K25) or N-methyl-D-aspartate (NMDA), an agonist of glutamatergic receptors. CGN transferred from high to low potassium die apoptotically. Here, we characterized the effect of BDNF and NMDA on the apoptotic death induced by low potassium in CGN. Cell death of CGN by culturing in low potassium for 6 DIV was inhibited by BDNF and NMDA. When CGN were cultured in K25 and transferred to a low-potassium medium, 65% of neurons died after 48 hr. Under these conditions, BDNF, NMDA, or BDNF + NMDA increased CGN survival. Both BDNF and NMDA decreased caspase-9 activity and mRNA caspase-3 levels and activity induced by low potassium. CGN survival induced by BDNF is mediated by TrkB activation, whereas that induced by NMDA is mediated by NMDA receptor and TrkB activation. NMDA, but not BDNF, raised [Ca(2+)](i), which was reduced by low-potassium treatment. These results suggest that NMDA receptor stimulation induces CGN survival through the influx of extracellular Ca(2+) that may evoke the release of BDNF and the activation of TrkB. Complementary mechanisms induced by depolarization and changes in Ca(2+) levels would also contribute to the neuroprotection exerted by NMDA and potassium.
Collapse
Affiliation(s)
- Miriam Bazán-Peregrino
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | |
Collapse
|
9
|
Alavez S, Blancas S, Morán J. Effect of N-methyl-d-aspartate receptor blockade on caspase activation and neuronal death in the developing rat cerebellum. Neurosci Lett 2006; 404:176-81. [PMID: 16781062 DOI: 10.1016/j.neulet.2006.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022]
Abstract
In vitro studies have demonstrated that N-methyl-D-aspartate (NMDA) receptor activation rescue cerebellar granule neurons (CGN) from apoptotic death. It has been suggested that this effect mimics the transient glutamate receptors activation by mossy fibers during cerebellar development. We reported previously that CGN from postnatal days 2-4 (P2-P4) rats increased cell survival in response to NMDA treatment. In this study, we evaluated the effect of dizocilpine (MK-801) administrated for three consecutive days on the apoptotic death of CGN during development. MK-801 treatment decreased the large number of CGN condensed nuclei found at P8, but this drug increased the proportion of condensed nuclei at P16. We also found a high activity of caspases during the first postnatal week that decreased during development. MK-801 treatment did not modify the activity of caspase-8 at any age, but decreased caspase-9 activity at P8 and increased the activity of caspase-1 (76%) at P8, caspase-3 (160%) at P16 and caspase-9 (50%) at P12. These results suggest that NMDA receptor stimulation regulates the activity of caspases in a differential way and plays an important role in the in vivo CGN death during postnatal development.
Collapse
Affiliation(s)
- Silvestre Alavez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF
| | | | | |
Collapse
|
10
|
Alavez S, Blancas S, Morán J. Effect of NMDA antagonists on the death of cerebellar granule neurons at different ages. Neurosci Lett 2006; 398:241-5. [PMID: 16469441 DOI: 10.1016/j.neulet.2006.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 12/15/2005] [Accepted: 01/03/2006] [Indexed: 11/24/2022]
Abstract
Cerebellar granule neurons (CGN) are the most abundant neuronal type in the cerebellum. During development, these cells migrate from the external to the internal granule layer (IGL), where they receive excitatory glutamatergic and cholinergic contacts from mossy fibers. During this period of development a large proportion of CGN are eliminated via apoptosis. In vitro studies have demonstrated that when CGN are obtained from rats at postnatal day 8 (P8), the sustained activation of N-methyl-D-aspartate (NMDA) receptor at 2-4 days in vitro rescues neurons from cell death. The NMDA action on cultured CGN could mimic the in vivo actions of the transient activation of the glutamate receptors by the transmitter released by mossy fibers by P12. However, some results suggest that glutamate stimulation could be relevant for CGN at earlier stages of development. In this study we evaluated the effect of NMDA receptor stimulation or blockade on the cell death of both in vivo and cultured CGN obtained from P2 to P8 rats. Our results showed that the blockade of NMDA receptors with the antagonists D,L-2-amino-5-phosphonovaleric acid or dizocilpine (MK-801) reduces cell survival to 20-40%, whereas NMDA treatment increases neuronal survival by approximately 50-60%. In vivo, the treatment with MK-801 reduced the number of apoptotic CGN in the molecular layer (ML) from P5 to P8. These results suggest that NMDA receptor stimulation plays a critical role in the regulation of CGN death during the first week of rat cerebellar development.
Collapse
Affiliation(s)
- Silvestre Alavez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D. F., México.
| | | | | |
Collapse
|
11
|
Jekabsons MB, Nicholls DG. Bioenergetic analysis of cerebellar granule neurons undergoing apoptosis by potassium/serum deprivation. Cell Death Differ 2006; 13:1595-610. [PMID: 16410795 DOI: 10.1038/sj.cdd.4401851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Apoptosis induced by K+/serum deprivation (low K+) in cerebellar granule neurons has been extensively investigated. The mitochondria play a key role in apoptosis by releasing proapoptotic factors into the cytoplasm, and mitochondrial dysfunction has been proposed as an early or initiating event in this model. To directly test this hypothesis, cellular and mitochondrial bioenergetics were quantified by determining the respiratory parameters of coverslip-attached neurons. While oxidative phosphorylation rate decreased 39-49% in low K+, this was due to decreased cellular ATP demand rather than impaired ATP/ADP exchange or respiratory chain inhibition. From 3 to 5 h in low K+, apoptosis progressed from 13 to 40% despite no appreciable change in respiratory parameters. Changes in steady-state O2-, assessed with dihydroethidium, were seen in granule but not hippocampal neurons. The O2- change correlated with changes in [Ca2+]c, but not mitochondrial respiration. Thus, early mitochondrial dysfunction can be excluded in this common model of neuronal apoptosis.
Collapse
Affiliation(s)
- M B Jekabsons
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | |
Collapse
|
12
|
Xifró X, Falluel-Morel A, Miñano A, Aubert N, Fadó R, Malagelada C, Vaudry D, Vaudry H, Gonzalez B, Rodríguez-Alvarez J. N-methyl-D-aspartate blocks activation of JNK and mitochondrial apoptotic pathway induced by potassium deprivation in cerebellar granule cells. J Biol Chem 2005; 281:6801-12. [PMID: 16380382 DOI: 10.1074/jbc.m504571200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During the postnatal development of cerebellum, lack of excitatory innervation from the mossy fibers results in cerebellar granule cell (CGC) apoptosis during the migration of the cells toward the internal granule cell layer. Accordingly, CGCs die by apoptosis when cultured in physiological KCl concentrations (5 mm; K5), and they survive in the presence of depolarizing conditions such as high KCl concentration (25 mm; K25) or N-methyl-D-aspartate (NMDA). We have recently shown that NMDA is able to exert a long lasting neuroprotective effect when added to immature (2 days in vitro) CGC cultures by inhibition of caspase-3 activity. Here we show that NMDA- and K25-mediated neuroprotection is associated with an increase in the levels of Bcl-2, an inhibition of K5-mediated increase in Bax, and the inhibition of the release of apoptogenic factors from mitochondria such as Smac/DIABLO and cytochrome c. Moreover, we have shown that similar effects are observed when c-Jun N-terminal kinases (JNKs) are inhibited and that treatment of CGC cultures with NMDA blocks K5-mediated JNK activation. These results allow us to postulate that the inhibition of JNK-mediated release of apoptogenic factors from mitochondria is involved in the NMDA protection from K5-mediated apoptosis of CGCs.
Collapse
Affiliation(s)
- Xavier Xifró
- Institut de Neurociencies i Dpt. Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K. Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 2005; 25:1137-48. [PMID: 15689550 PMCID: PMC6725976 DOI: 10.1523/jneurosci.4288-04.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dual nature of the NMDA receptor as a mediator of excitotoxic cell death and activity-dependent cell survival likely results from divergent patterns of kinase activation, transcription factor activation, and gene expression. To begin to address this divergence, we examined cellular and molecular signaling events that couple excitotoxic and nontoxic levels of NMDA receptor stimulation to activation of the cAMP response element-binding protein (CREB)/cAMP response element (CRE) pathway in cultured cortical neurons. Pulses (10 min) of NMDA receptor-mediated synaptic activity (nontoxic) triggered sustained (up to 3 h) CREB phosphorylation (pCREB) at serine 133. In contrast, brief stimulation with an excitotoxic concentration of NMDA (50 microm) triggered transient pCREB. The duration of pCREB was dependent on calcineurin activity. Excitotoxic levels of NMDA stimulated calcineurin activity, whereas synaptic activity did not. Calcineurin inhibition reduced NMDA toxicity and converted the transient increase in pCREB into a sustained increase. In accordance with these observations, sustained pCREB (up to 3 h) did not require persistent kinase pathway activity. The sequence of stimulation with excitotoxic levels of NMDA and neuroprotective synaptic activity determined which stimulus exerted control over pCREB duration. Constitutively active and dominant-negative CREB constructs were used to implicate CREB in synaptic activity-dependent neuroprotection against NMDA-induced excitotoxicity. Together these data provide a framework to begin to understand how the neuroprotective and excitotoxic effects of NMDA receptor activity function in an antagonistic manner at the level of the CREB/CRE transcriptional pathway.
Collapse
Affiliation(s)
- Boyoung Lee
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
14
|
Xifro X, Malagelada C, Miñano A, Rodríguez-Alvarez J. Brief exposure to NMDA produces long-term protection of cerebellar granule cells from apoptosis. Eur J Neurosci 2005; 21:827-40. [PMID: 15787690 DOI: 10.1111/j.1460-9568.2005.03935.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cerebellar granule cells (CGCs) require excitatory inputs to survive during their postnatal migration from the external to the internal granule cell layers. The lack of innervation of mossy fibres induces CGC death by apoptosis. In vitro, CGCs die by apoptosis in the presence of physiological concentrations of KCl (5 mm or K5) but they survive in the presence of depolarizing concentrations of KCl (25 mm or K25) or N-methyl-d-aspartate (NMDA) by a mechanism dependent on calcium influx. The addition of NMDA or K25, for only 24 h, to immature CGCs cultures [2 days in vitro (DIV)] was able to produce a remarkable and long-term protection until 8 DIV. Moreover, our data show that NMDA and K25-mediated long-lasting protection was related to an inhibition of caspase-3 activity. By using different protein kinase inhibitors, we have shown that the inhibition of caspase-3 activation by NMDA was dependent on the activation of tyrosine kinases and phosphatidylinositol 3-kinase (PI3-kinase). Moreover, an impairment in NMDA-mediated neuroprotection and caspase-3 inhibition was observed when the action of brain-derived neurotrophic factor (BDNF) was blocked. By contrast, K25-mediated neuroprotection was BDNF-independent and was mediated by a mitogen-activated protein kinase- and PI3-kinase-dependent inhibition of caspase-3.
Collapse
Affiliation(s)
- Xavier Xifro
- Institut de Neurociències i Department Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Hans G, Malgrange B, Lallemend F, Crommen J, Wislet-Gendebien S, Belachew S, Robe P, Rogister B, Moonen G, Rigo JM. Beta-carbolines induce apoptosis in cultured cerebellar granule neurons via the mitochondrial pathway. Neuropharmacology 2005; 48:105-17. [PMID: 15617732 DOI: 10.1016/j.neuropharm.2004.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/23/2004] [Accepted: 09/02/2004] [Indexed: 11/18/2022]
Abstract
N-butyl-beta-carboline-3-carboxylate (betaCCB) is, together with 2-methyl-norharmanium and 2,9-dimethylnorharmanium ions, an endogenously occurring beta-carboline. Due to their structural similarities with the synthetic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), harman and norharman compounds have been proposed to be involved in the pathogenesis of Parkinson's disease. While also structurally related, betaCCB has received much less interest in that respect although we had previously demonstrated that it induces the apoptotic cell death of cultured cerebellar granule neurons (CGNs). Herein, we have investigated the molecular events leading to CGN apoptosis upon betaCCB treatment. We first demonstrated that betaCCB-induced apoptosis occurs in neurons only, most likely as a consequence of a specific neuronal uptake as shown using binding/uptake experiments. Then we observed that, in betaCCB-treated CGNs, caspases 9, 3 and 8 were successively activated, suggesting an activation of the mitochondrial pathway. Consistently, betaCCB also induced the release from the mitochondrial intermembrane space of two pro-apoptotic factors, i.e. cytochrome c and apotptosis inducing factor (AIF). Interestingly, no mitochondrial membrane depolarisation was associated with this release, suggesting a mitochondrial permeability transition pore-independent mechanism. The absence of any neuroprotective effect provided by two mPTP inhibitors, i.e. cyclosporine A and bongkrekic acid, further supported this hypothesis. Together, these results show that betaCCB is specifically taken up by neuronal cells where it triggers a specific permeabilization of the outer mitochondrial membrane and a subsequent apoptotic cell death.
Collapse
Affiliation(s)
- Grégory Hans
- Centre of Cellular and Molecular Neurobiology, Université de Liège, 17 Place Delcour, 4020 Liège 2, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 2005; 92:1228-1242. [PMID: 15715672 DOI: 10.1111/j.1471-4159.2004.02956.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptotic and autophagic cell death have been implicated, on the basis of morphological and biochemical criteria, in neuronal loss occurring in neurodegenerative diseases and it has been shown that they may overlap. We have studied the relationship between apoptosis and autophagic cell death in cerebellar granule cells (CGCs) undergoing apoptosis following serum and potassium deprivation. We found that apoptosis is accompanied by an early and marked proliferation of autophagosomal-lysosomal compartments as detected by electron microscopy and immunofluorescence analysis. Autophagy is blocked by hrIGF-1 and forskolin, two well-known inhibitors of CGC apoptosis, as well as by adenovirus-mediated overexpression of Bcl-2. 3-Methyladenine (3-MA) an inhibitor of autophagy, not only arrests this event but it also blocks apoptosis. The neuroprotective effect of 3-MA is accompanied by block of cytochrome c (cyt c) release in the cytosol and by inhibition of caspase-3 activation which, in turn, appears to be mediated by cathepsin B, as CA074-Me, a selective inhibitor of this enzyme, fully blocks the processing of pro-caspase-3. Immunofluorescence analysis demonstrated that cathepsin B, normally confined inside the lysosomal-endosomal compartment, is released during apoptosis into the cytosol where this enzyme may act as an execution protease. Collectively, these observations indicate that autophagy precedes and is causally connected with the subsequent onset of programmed death.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università di Tor Vergata, Roma, Italia.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
To replace a poly(2-hydroxyethyl methacrylate) (PHEMA) sponge, which has limited applications as an implant material, PHEMA and poly(2-hydroxyethyl methacrylate-co-sodium methacrylate) (P(HEMA-co-SMA)) hydrogels with enhanced biocompatibility were prepared based on the copolymerization of 2-hydroxyethyl methacrylate (HEMA) and sodium methacrylate (SMA) at
a high monomer concentration. When the cytotoxicity, cell adhesion, and in vivo tissue reaction of the resulting hydrogels were investigated, the results suggest that hydrogels prepared by the copolymerization of HEMA and SMA at a high monomer concentration have great potential as implant materials with an excellent biocompatibility.
Collapse
|
18
|
Kisby GE, Lesselroth H, Olivas A, Samson L, Gold B, Tanaka K, Turker MS. Role of nucleotide- and base-excision repair in genotoxin-induced neuronal cell death. DNA Repair (Amst) 2004; 3:617-27. [PMID: 15135729 DOI: 10.1016/j.dnarep.2004.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 12/29/2022]
Abstract
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Caballero-Benítez A, Alavez S, Uribe RM, Morán J. Regulation of glutamate-synthesizing enzymes by NMDA and potassium in cerebellar granule cells. Eur J Neurosci 2004; 19:2030-8. [PMID: 15090030 DOI: 10.1111/j.0953-816x.2004.03321.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The presence of 25 mm potassium (KCl) or N-methyl-d-aspartate (NMDA) in cultured cerebellar granule neurons (CGN) induces a trophic effect, including a specific regulation of the enzymes involved in the glutamate neurotransmitter synthesis. In this study we explored the effect of these conditions on the cytosolic and mitochondrial isoenzymes of aspartate aminotransferase (AAT), and phosphate-activated glutaminase (PAG) in CGN. We found that NMDA and KCl increased the AAT total activity by 40% and 70%, respectively. This effect was mediated by an augmentation in the protein levels (68% by NMDA, 58% by KCl). NMDA raised the Vmax and KCl raised both the maximol velocity (Vmax) and Michaelis constant (Km) of AAT. NMDA increased cytosolic AAT activity by 30% and mitochondrial activity by 70%; KCl increased cytosolic and mitochondrial AAT activity by 60% and 100%, respectively. This activation was also related to an increase in the protein levels. The effect of both conditions on the activity and protein levels were more pronounced in mitochondrial than cytosolic AAT and the increment elicited by KCl was higher in both isoforms than that produced by NMDA. The PAG and AAT mRNA levels were also regulated by incubation with NMDA and KCl similarly to the observed changes in the protein levels. These results suggest that NMDA receptor stimulation during CGN development differentially regulates the two AAT isoenzymes involved in the maturation of CGN and that the regulation of both AAT and PAG occurs also at the mRNA expression level, suggesting the involvement of a mechanism of gene expression regulation.
Collapse
|
20
|
Lau FC, Frank TC, Nahm SS, Stoica G, Abbott LC. Postnatal apoptosis in cerebellar granule cells of homozygous leaner (tg1a/tg1a) mice. Neurotox Res 2004; 6:267-80. [PMID: 15545010 DOI: 10.1007/bf03033437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leaner mice carry a homozygous, autosomal recessive mutation in the mouse CACNA1A gene encoding the Alpha1A subunit of P/Q-type calcium channels, which results in an out-of-frame splicing event in the carboxy terminus of the Alpha1A protein. Leaner mice exhibit severe ataxia, paroxysmal dyskinesia and absence seizures. Functional studies have revealed a marked decrease in calcium currents through leaner P/Q-type channels and altered neuronal calcium ion homeostasis in cerebellar Purkinje cells. Histopathological studies of leaner mice have revealed extensive postnatal cerebellar Purkinje and granule cell loss. We examined the temporospatial pattern of cerebellar granule cell death in the leaner mouse between postnatal days (P) 10 and 40. Our observations clearly indicate that leaner cerebellar granule cells die via an apoptotic process and that the peak time of neuronal death is P20. We did not observe a significant increase in microglial and astrocytic responses at P20, suggesting that glial responses are not a cause of neuronal cell death. We propose that the leaner cerebellar granule cell represents an in vivo animal model for low intracellular [Ca2+]-induced apoptosis. Since intracellular [Ca2+] is critical in the control of gene expression, it is quite likely that reduced intracellular [Ca2+] could activate a lethal cascade of altered gene expression leading to the apoptotic granule cell death in the leaner cerebellum.
Collapse
Affiliation(s)
- Francis C Lau
- USDA, HNRCA, Tufts University, 711 Washington St., Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|