1
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
3
|
Gresita A, Mihai R, Hermann DM, Amandei FS, Capitanescu B, Popa-Wagner A. Effect of environmental enrichment and isolation on behavioral and histological indices following focal ischemia in old rats. GeroScience 2021; 44:211-228. [PMID: 34382128 PMCID: PMC8811116 DOI: 10.1007/s11357-021-00432-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 01/27/2024] Open
Abstract
Stroke is a disease of aging. In stroke patients, the enriched group that received stimulating physical, eating, socializing, and group activities resulted in higher activity levels including spending more time on upper limb, communal socializing, listening and iPad activities. While environmental enrichment has been shown to improve the behavioral outcome of stroke in young animals, the effect of an enriched environment on behavioral recuperation and histological markers of cellular proliferation, neuroinflammation, and neurogenesis in old subjects is not known. We used behavioral testing and immunohistochemistry to assess the effect of environment on post-stroke recovery of young and aged rats kept either in isolation or stimulating social, motor, and sensory environment (( +)Env). We provide evidence that post-stroke animals environmental enrichment ( +)Env had a significant positive effect on recovery on the rotating pole, the inclined plane, and the labyrinth test. Old age exerted a small but significant effect on lesion size, which was independent of the environment. Further, a smaller infarct volume positively correlated with better recovery of spatial learning based on positive reinforcement, working and reference memory of young, and to a lesser extent, old animals kept in ( +)Env. Histologically, isolation/impoverishment was associated with an increased number of proliferating inflammatory cells expressing ED1 cells in the peri-infarcted area of old but not young rats. Further, ( +)Env and young age were associated with an increased number of neuroepithelial cells expressing nestin/BrdU as well as beta III tubulin cells in the damaged brain area which correlated with an increased performance on the inclined plane and rotating pole. Finally, ( +)Env and an increased number of neurons expressing doublecortin/BrdU cells exerted a significant effect on performance for working memory and performance on the rotating pole in both age groups. A stimulating social, motor and sensory environment had a limited beneficial effect on behavioral recovery (working memory and rotating pole) after stroke in old rats by reducing neuroinflammation and increasing the number of neuronal precursors expressing doublecortin. Old age however, exerted a small but significant effect on lesion size, which was independent of the environment.
Collapse
Affiliation(s)
- Andrei Gresita
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Ruscu Mihai
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Dirk M Hermann
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany
| | | | | | - Aurel Popa-Wagner
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany. .,Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Southport, QLD, 4222, Australia. .,Doctoral School, University of Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
4
|
Abstract
Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on dis-ease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and re-build the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fun-damental questions regarding adult neurogenesis, cell source, and mecha-nisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| |
Collapse
|
5
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
7
|
Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190:111312. [PMID: 32663480 DOI: 10.1016/j.mad.2020.111312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Age is the only one non-modifiable risk of cerebral ischemia. Advances in stroke medicine and behavioral adaptation to stroke risk factors and comorbidities was successful in decreasing stroke incidence and increasing the number of stroke survivors in western societies. Comorbidities aggravates the outcome after cerebral ischemia. However, due to the increased in number of elderly, the incidence of stroke has increased again paralleled by an increase in the number of stroke survivors, many with severe disabilities, that has led to an increased economic and social burden in society. Animal models of stroke often ignore age and comorbidities frequently associated with senescence. This might explain why drugs working nicely in animal models fail to show efficacy in stroke survivors. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of stroke therapies in an appropriate animal stroke model. Therefore, in this review, we make parallels between animal models of stroke und clinical data and summarize the impact of ageing and age-related comorbidities on stroke outcome.
Collapse
|
8
|
Karthikeyan S, Jeffers MS, Carter A, Corbett D. Characterizing Spontaneous Motor Recovery Following Cortical and Subcortical Stroke in the Rat. Neurorehabil Neural Repair 2018; 33:27-37. [PMID: 30526316 DOI: 10.1177/1545968318817823] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stroke is a leading cause of neurological disability, often resulting in long-term motor impairments due to damage to cortical or subcortical motor areas. Despite the high prevalence of subcortical strokes in the clinical population, preclinical research has primarily focused on investigating and treating cortical strokes. Moreover, while both humans and animals show spontaneous recovery following stroke, little is known about how injury location affects this process. OBJECTIVE To capture the heterogeneity of human stroke and examine how stroke location affects spontaneous motor recovery following damage to cortical, subcortical, or a combination of both areas. METHODS Endothelin-1 (ET-1), a potent vasoconstrictor, was used to produce focal infarcts in the forelimb motor cortex (FMC), the dorsolateral striatum (DLS) or both the FMC and DLS in male Sprague-Dawley rats. The spontaneous recovery profile of animals was followed over an 8-week period using a battery of behavioral tasks assessing motor function and limb preference. RESULTS All 3 groups showed significant impairments on the Montoya staircase, beam, and cylinder tests following stroke, with the combined group (FMC + DLS) having the largest and most persistent impairments. Importantly, spontaneous recovery was not simply dependent on lesion volume, but on location, and the behavioral test employed. CONCLUSIONS Stroke location markedly and differentially influences the level of spontaneous functional recovery, which is only captured by using multiple outcome measures. These results illustrate the need for preclinical stroke models to align with the heterogeneity of human stroke, especially with respect to lesion location, size, and outcome measures.
Collapse
Affiliation(s)
- Sudhir Karthikeyan
- 1 University of Ottawa, Ottawa, Ontario, Canada.,2 Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Matthew Strider Jeffers
- 1 University of Ottawa, Ottawa, Ontario, Canada.,2 Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Anthony Carter
- 1 University of Ottawa, Ottawa, Ontario, Canada.,2 Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| | - Dale Corbett
- 1 University of Ottawa, Ottawa, Ontario, Canada.,2 Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
10
|
Popa-Wagner A, Glavan DG, Olaru A, Olaru DG, Margaritescu O, Tica O, Surugiu R, Sandu RE. Present Status and Future Challenges of New Therapeutic Targets in Preclinical Models of Stroke in Aged Animals with/without Comorbidities. Int J Mol Sci 2018; 19:ijms19020356. [PMID: 29370078 PMCID: PMC5855578 DOI: 10.3390/ijms19020356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
The aging process, comorbidities, and age-associated diseases are closely dependent on each other. Cerebral ischemia impacts a wide range of systems in an age-dependent manner. However, the aging process has many facets which are influenced by the genetic background and epigenetic or environmental factors, which can explain why some people age differently than others. Therefore, there is an urgent need to identify age-related changes in body functions or structures that increase the risk for stroke and which are associated with a poor outcome. Multimodal imaging, electrophysiology, cell biology, proteomics, and transcriptomics, offer a useful approach to link structural and functional changes in the aging brain, with or without comorbidities, to post-stroke rehabilitation. This can help us to improve our knowledge about senescence firstly, and in this context, aids in elucidating the pathophysiology of age-related diseases that allows us to develop therapeutic strategies or prevent diseases. These processes, including potential therapeutical interventions, need to be studied first in relevant preclinical models using aged animals, with and without comorbidities. Therefore, preclinical research on ischemic stroke should consider age as the most important risk factor for cerebral ischemia. Furthermore, the identification of effective therapeutic strategies, corroborated with successful translational studies, will have a dramatic impact on the lives of millions of people with cerebrovascular diseases.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Griffith University School of Medicine, Gold Coast Campus, QLD, Queensland Eye Institute, Brisbane, QLD 4101, Australia.
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela-Gabriela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349 Craiova, Romania.
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | | | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Oana Tica
- Department of "Mother and Child", University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| |
Collapse
|
11
|
Avivi-Arber L, Sessle BJ. Jaw sensorimotor control in healthy adults and effects of ageing. J Oral Rehabil 2017; 45:50-80. [DOI: 10.1111/joor.12554] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Affiliation(s)
- L. Avivi-Arber
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| | - B. J. Sessle
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| |
Collapse
|
12
|
Jackson SJ, Andrews N, Ball D, Bellantuono I, Gray J, Hachoumi L, Holmes A, Latcham J, Petrie A, Potter P, Rice A, Ritchie A, Stewart M, Strepka C, Yeoman M, Chapman K. Does age matter? The impact of rodent age on study outcomes. Lab Anim 2017; 51:160-169. [PMID: 27307423 PMCID: PMC5367550 DOI: 10.1177/0023677216653984] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rodent models produce data which underpin biomedical research and non-clinical drug trials, but translation from rodents into successful clinical outcomes is often lacking. There is a growing body of evidence showing that improving experimental design is key to improving the predictive nature of rodent studies and reducing the number of animals used in research. Age, one important factor in experimental design, is often poorly reported and can be overlooked. The authors conducted a survey to assess the age used for a range of models, and the reasoning for age choice. From 297 respondents providing 611 responses, researchers reported using rodents most often in the 6-20 week age range regardless of the biology being studied. The age referred to as 'adult' by respondents varied between six and 20 weeks. Practical reasons for the choice of rodent age were frequently given, with increased cost associated with using older animals and maintenance of historical data comparability being two important limiting factors. These results highlight that choice of age is inconsistent across the research community and often not based on the development or cellular ageing of the system being studied. This could potentially result in decreased scientific validity and increased experimental variability. In some cases the use of older animals may be beneficial. Increased scientific rigour in the choice of the age of rodent may increase the translation of rodent models to humans.
Collapse
Affiliation(s)
- Samuel J Jackson
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK
| | - Nick Andrews
- Division of Neurology, Kirby Center for Neurobiology, Boston Children’s Hospital, Boston, US
| | - Doug Ball
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, UK
| | - Ilaria Bellantuono
- Centre for Integrated Research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
| | - James Gray
- Immunoinflammation TAU, GlaxoSmithKline, Stevenage, UK
| | - Lamia Hachoumi
- Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Alan Holmes
- Centre for Rheumatology, UCL Division of Medicine, Royal Free Campus, London, UK
| | - Judy Latcham
- Laboratory Animal Science, GlaxoSmithKline, Stevenage, UK
| | - Anja Petrie
- Rowett Institute of Nutrition & Health, University of Aberdeen, Aberdeen, UK
| | - Paul Potter
- Disease Models and Translation, Mammalian Genetics Unit, MRC Harwell, Harwell, UK
| | - Andrew Rice
- Pain Research, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Alison Ritchie
- Division of Cancer & Stem Cells, University of Nottingham, Nottingham, UK
| | | | | | - Mark Yeoman
- Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Kathryn Chapman
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK
| |
Collapse
|
13
|
Livingston-Thomas J, Nelson P, Karthikeyan S, Antonescu S, Jeffers MS, Marzolini S, Corbett D. Exercise and Environmental Enrichment as Enablers of Task-Specific Neuroplasticity and Stroke Recovery. Neurotherapeutics 2016; 13:395-402. [PMID: 26868018 PMCID: PMC4824016 DOI: 10.1007/s13311-016-0423-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Improved stroke care has resulted in greater survival, but >50% of patients have chronic disabilities and 33% are institutionalized. While stroke rehabilitation is helpful, recovery is limited and the most significant gains occur in the first 2-3 months. Stroke triggers an early wave of gene and protein changes, many of which are potentially beneficial for recovery. It is likely that these molecular changes are what subserve spontaneous recovery. Two interventions, aerobic exercise and environmental enrichment, have pleiotropic actions that influence many of the same molecular changes associated with stroke injury and subsequent spontaneous recovery. Enrichment paradigms have been used for decades in adult and neonatal animal models of brain injury and are now being adapted for use in the clinic. Aerobic exercise enhances motor recovery and helps reduce depression after stroke. While exercise attenuates many of the signs associated with normal aging (e.g., hippocampal atrophy), its ability to reverse cognitive impairments subsequent to stroke is less evident. It may be that stroke, like other diseases such as cancer, needs to use multimodal treatments that augment complimentary neurorestorative processes.
Collapse
Affiliation(s)
- Jessica Livingston-Thomas
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Paul Nelson
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sudhir Karthikeyan
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sabina Antonescu
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew Strider Jeffers
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Susan Marzolini
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Dale Corbett
- Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Ueda R, Yamada N, Kakuda W, Abo M, Senoo A. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study. Brain Res 2016; 1635:61-70. [PMID: 26783693 DOI: 10.1016/j.brainres.2015.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022]
Abstract
Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (P<0.05), the white matter of the lesioned side was severely affected by stroke. A weak negative correlation between GFA and time since stroke onset was found in Brodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand.
Collapse
Affiliation(s)
- Ryo Ueda
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Naoki Yamada
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Wataru Kakuda
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Masahiro Abo
- Department of Rehabilitation Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan.
| | - Atsushi Senoo
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan.
| |
Collapse
|
15
|
Matias CM, Silva D, Machado AG, Cooper SE. “Rescue” of bilateral subthalamic stimulation by bilateral pallidal stimulation: case report. J Neurosurg 2016; 124:417-21. [DOI: 10.3171/2015.1.jns141604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) orglobus pallidus pars interna (GPi) is well established as a treatment for advanced Parkinson’s disease. In general, one of the 2 targets is chosen based on the clinical features of each patient. Stimulation of both targets could be viewed as redundant, given that the 2 targets are directly connected. However, it is possible that each target has different mechanisms, with clinical effects mediated by orthodromic or antidromic stimulation.
The authors report the case of a patient with severe Parkinson’s disease who had previously undergone bilateral subthalamic stimulation with excellent benefits. However, he presented with significant worsening associated with disease progression and pharmacological treatment, and then underwent bilateral GPi DBS. Follow-up assessment was conducted clinically as well as through blinded ratings of video recordings.
Pallidal DBS may be a safe and useful strategy to manage dystonic features and behavioral complications of subthalamic stimulation and pharmacological management. While combined stimulation was quite successful in the reported patient, further studies with larger samples and longer follow-up periods will be necessary before recommending the addition of pallidal DBS as a routine strategy for patients previously implanted with STN DBS.
Collapse
Affiliation(s)
- Caio M. Matias
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
- 2Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danilo Silva
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| | - Andre G. Machado
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| | - Scott E. Cooper
- 1Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio; and
| |
Collapse
|
16
|
Sun X, Zhou Z, Liu T, Zhao M, Zhao S, Xiao T, Jolkkonen J, Zhao C. Fluoxetine Enhances Neurogenesis in Aged Rats with Cortical Infarcts, but This is not Reflected in a Behavioral Recovery. J Mol Neurosci 2015; 58:233-42. [PMID: 26474565 DOI: 10.1007/s12031-015-0662-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Age is associated with poor outcome and impaired functional recovery after stroke. Fluoxetine, which is widely used in clinical practice, can regulate hippocampal neurogenesis in young rodents. As the rate of neurogenesis is dramatically reduced during aging, we studied the effect of post-stroke fluoxetine treatment on neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of dentate gyrus (DG) and whether this would be associated with any behavioral recovery after the cortical infarct in aged rats. Aged rats were randomly assigned to four groups: sham-operated rats, sham-operated rats treated with fluoxetine, rats subjected to cerebral ischemia, and rats with ischemia treated with fluoxetine. Focal cortical ischemia was induced by intracranial injection of vasoconstrictive peptide, endothelin-1 (ET-1). Fluoxetine was administered in the drinking water for 3 weeks starting 1 week after ischemia at a dose of 18 mg/kg/day. Behavioral recovery was evaluated on post-stroke days 29 to 31 after which the survival rate and fate of proliferating cells in the SVZ and DG were assessed by immunohistochemistry. Apoptosis was measured with the TUNEL assay. The results indicated that chronic fluoxetine treatment after stroke enhanced the proliferation of newborn neurons in the SVZ, but not in SGZ, and it suppressed perilesional apoptosis. Fluoxetine treatment did not affect the survival or differentiation of newly generated cells in the SVZ i.e., the enhanced neurogenesis was not translated into a behavioral outcome.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Zhike Zhou
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Tingting Liu
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Mei Zhao
- Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
17
|
Qu H, Zhao M, Zhao S, Xiao T, Song C, Cao Y, Jolkkonen J, Zhao C. Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats. Neuroscience 2015; 286:316-24. [DOI: 10.1016/j.neuroscience.2014.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
18
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Moyanova SG, Mitreva RG, Kortenska LV, Nicoletti F, Ngomba RT. Age-dependence of sensorimotor and cerebral electroencephalographic asymmetry in rats subjected to unilateral cerebrovascular stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2013; 5:13. [PMID: 24245542 PMCID: PMC4176494 DOI: 10.1186/2040-7378-5-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND The human population mostly affected by stroke is more than 65 years old. This study was designed to meet the recommendation that models of cerebral ischemia in aged animals are more relevant to the clinical setting than young animal models. Until now the majority of the pre-clinical studies examining age effects on stroke outcomes have used rats of old age. Considering the increasing incidence of stroke among younger than old human population, new translational approaches in animal models are needed to match the rejuvenation of stroke. A better knowledge of alterations in stroke outcomes in middle-aged rats has important preventive and management implications providing clues for future investigations on effects of various neuroprotective and neurorestorative drugs against cerebrovascular accidents that may occur before late senescence. METHODS We evaluated the impact of transient focal ischemia, induced by intracerebral unilateral infusion of endothelin-1 (Et-1) near the middle cerebral artery of conscious rats, on volume of brain damage and asymmetry in behavioral and electroencephalographic (EEG) output measures in middle-aged (11-12 month-old) rats. RESULTS We did not find any age-dependent difference in the volume of ischemic brain damage three days after Et-1 infusion. However, age was an important determinant of neurological and EEG outcomes after stroke. Middle-aged ischemic rats had more impaired somatosensory functions of the contralateral part of the body than young ischemic rats and thus, had greater left-right reflex/sensorimotor asymmetry. Interhemispheric EEG asymmetry was more evident in middle-aged than in young ischemic rats, and this could tentatively explain the behavioral asymmetry. CONCLUSIONS With a multiparametric approach, we have validated the endothelin model of ischemia in middle-aged rats. The results provide clues for future studies on mechanisms underlying plasticity after brain damage and motivate investigations of novel neuroprotective strategies against cerebrovascular accidents that may occur before late senescence.
Collapse
Affiliation(s)
| | | | | | | | - Richard T Ngomba
- I,R,C,C,S,, NEUROMED, Localita Camerelle, 86077, Pozzilli, (IS), Italy.
| |
Collapse
|
20
|
Buga AM, Di Napoli M, Popa-Wagner A. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology 2013; 14:651-62. [PMID: 24057280 DOI: 10.1007/s10522-013-9465-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Age is the principal nonmodifiable risk factor for stroke. Over the past 10 years, suitable models for stroke in aged rats have been established. At genetic and cellular level there are significant differences in behavioral, cytological and genomics responses to injury in old animals as compared with the young ones. Behaviorally, the aged rats have the capacity to recover after cortical infarcts albeit to a lower extent than the younger counterparts. Similarly, the increased vulnerability of the aged brain to stroke, together with a decreased interhemisphere synchrony after stroke, assessed by different experimental methods (MRI, fMRI, in vivo microscopy, EEG) leads to unfavorable recovery of physical and cognitive functions in aged people and may have a prognostic value for the recovery of stroke patients. Furthermore, in elderly, comorbidities like diabetes or arterial hypertension are associated with higher risk of stroke, increased mortality and disability, and poorer functional status and quality of life. Aging brain reacts strongly to ischemia-reperfusion injury with an early inflammatory response. The process of cellular senescence can be an important additional contributor to chronic post-stroke by creating a "primed" inflammatory environment in the brain. Overall, these pro-inflammatory reactions promote early scar formation associated with tissue fibrosis and reduce functional recovery. A better understanding of molecular factors and signaling pathways underlying the contribution of comorbidities to stroke-induced pathological sequelae, may be translated into successful treatment or prevention therapies for age-associated diseases which would improve lifespan and quality of life.
Collapse
Affiliation(s)
- A-M Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Craiova, Romania
| | | | | |
Collapse
|
21
|
Schwarzkopf TM, Koch KA, Klein J. Neurodegeneration after transient brain ischemia in aged mice: beneficial effects of bilobalide. Brain Res 2013; 1529:178-87. [PMID: 23850645 DOI: 10.1016/j.brainres.2013.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022]
Abstract
Bilobalide, an active constituent of Ginkgo biloba, has neuroprotective properties in experimental stroke models, but nearly all published studies were carried out in young animals. As ischemic strokes in humans are much more frequent in old age, we investigated bilobalide's effects in aged mice (age 18-22 month) using a model of transient ischemia induced by occlusion of the middle cerebral artery (MCAO) for 60 min. When bilobalide was administered locally into the striatum via microdialysis, a significant reduction of infarct size by almost 70% was observed. Concomitantly, the extensive, twelve-fold increase of extracellular glutamate which was observed in untreated animals was strongly reduced during the infusion of bilobalide. Glucose levels, in contrast, were not affected by bilobalide. In further experiments, bilobalide was given as an intraperitoneal injection (10/mg/kg) 1h before MCAO onset. ATP levels (measured in brain homogenates) were significantly reduced by transient MCAO but pretreatment with bilobalide prevented this loss. In ex vivo experiments with isolated mitochondria from aged mice, we found that the activity of the mitochondrial respiratory chain was only slightly impaired after 60 min of ischemia, and bilobalide showed no benefit in this experiment. However, aged mitochondria proved to be very sensitive to calcium-induced swelling which was significantly increased after ischemia. In this assay, pretreatment with bilobalide lowered the extent of swelling nearly to control levels. In behavioural tests, pretreatment of aged mice with bilobalide significantly improved the outcome in the Rotarod and the Corner test. In conclusion, aged mice show some differences in their response to transient ischemia when compared with young mice. Bilobalide has prominent neuroprotective properties in mice of all ages.
Collapse
Affiliation(s)
- Tina M Schwarzkopf
- Department of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
22
|
Lay CC, Davis MF, Chen-Bee CH, Frostig RD. Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. J Am Heart Assoc 2012; 1:e001255. [PMID: 23130160 PMCID: PMC3487352 DOI: 10.1161/jaha.112.001255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals. METHODS AND RESULTS Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into "treated" and "untreated" groups. Treated aged rats received intermittent single-whisker stimulation during a 120-minute period immediately after pMCAO, whereas untreated aged rats did not. These animals were assessed using a battery of behavioral tests 1 week before and 1 week after pMCAO, after which their brains were stained for infarct. An additional treated aged group and a treated young adult group also were imaged with functional imaging. Results demonstrated that the recovery of treated aged animals was indistinguishable from that of the treated young adult animals. Treated aged rats had fully intact sensorimotor behavior and no infarct, whereas untreated aged rats were impaired and sustained cortical infarct. CONCLUSIONS Taken together, our results confirm that single-whisker stimulation is protective in an aged rodent pMCAO model, despite age-associated stroke vulnerability. These findings further suggest potential for translation to the more clinically relevant older adult human population. (J Am Heart Assoc. 2012;1:e001255 doi: 10.1161/JAHA.112.001255.).
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for the Neurobiology of Learning and Memory, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for Hearing Research, University of California, Irvine, CA (C.C.L, R.D.F.)
| | | | | | | |
Collapse
|
23
|
Schmidt S, Bruehl C, Frahm C, Redecker C, Witte OW. Age dependence of excitatory-inhibitory balance following stroke. Neurobiol Aging 2011; 33:1356-63. [PMID: 21257232 DOI: 10.1016/j.neurobiolaging.2010.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/08/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
The mechanisms which mediate cortical map plasticity and functional recovery following stroke remain a matter of debate. Readjustment of the excitatory-inhibitory balance may support cortical map plasticity in perilesional areas. Here we studied cortical net inhibition in the vicinity of photothrombotically-induced cortical lesions in young adult (3 months) and aged (24 months) male rats. Field potentials were recorded in cortical layer II/III following application of paired-pulse stimulation at layer VI/white matter in coronal brain slices. Additionally, we analyzed the regional distribution of 5 major gamma-aminobutyric acid A (GABA(A)) receptor subunits (α1, α2, α3, α5, and γ2) by immunohistochemistry. Paired-pulse inhibition in the perilesional parietal cortex was decreased in young rats but was increased in aged rats. As a consequence of the diminished intrinsic net inhibition in aged control animals, the excitatory-inhibitory balance was readjusted to an age-independent similar level in young and aged lesioned rats in a homeostatic-like fashion. These physiological changes in neuronal activity were accompanied by age-specific laminar alterations of the gamma-aminobutyric acid A (GABA(A)) receptor subunit composition, most prominently of the subunit α5. The present study suggests that the mechanisms underlying functional reorganization in aged animals may be distinctly different from those in young animals.
Collapse
Affiliation(s)
- Silvio Schmidt
- Department of Neurology, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | |
Collapse
|
24
|
Popa-Wagner A, Buga AM, Kokaia Z. Perturbed cellular response to brain injury during aging. Ageing Res Rev 2011; 10:71-9. [PMID: 19900590 DOI: 10.1016/j.arr.2009.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 12/22/2022]
Abstract
Old age is associated with an enhanced susceptibility to stroke and poor recovery from brain injury, but the cellular processes underlying these phenomena are only partly understood. Therefore, studying the basic mechanisms underlying structural and functional recovery after brain injury in aged subjects is of considerable clinical interest. Behavioral and cytological analyses of rodents that have undergone experimental injury show that: (a) behaviorally, aged rodents are more severely impaired by ischemia than are young animals, and older rodents also show diminished functional recovery; (b) compared to young animals, aged animals develop a larger infarct area, as well as a necrotic zone characterized by a higher rate of cellular degeneration and a larger number of apoptotic cells; (c) both astrocytes and macrophages are activated strongly and early following stroke in aged rodents; (d) in older animals, the premature, intense cytoproliferative activity following brain injury leads to the precipitous formation of growth-inhibiting scar tissue, a phenomenon amplified by the persistent expression of neurotoxic factors; (e) though the timing is altered, the regenerative capability of the brain is largely preserved in rats, at least into early old age. Whether endogenous neurogenesis contributes to spontaneous recovery after stroke has not yet been established. If neurogenesis from endogenous neuronal stem cells is to be used therapeutically, an individual approach will be required to assess the possible extent of neurogenic response as well as the possibilities to alter this response for functional improvement or prevention of further loss of brain function.
Collapse
|
25
|
Merrett DL, Kirkland SW, Metz GA. Synergistic effects of age and stress in a rodent model of stroke. Behav Brain Res 2010; 214:55-9. [PMID: 20434490 PMCID: PMC5222622 DOI: 10.1016/j.bbr.2010.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Ageing and stress represent critical influences on stroke risk and outcome. These variables are intricately linked, as ageing is frequently associated with gradual dysregulation of the hypothalamic-pituitary-adrenal axis. This study determined the effects of stress on motor function in aged rats, and explored possible interactions of age and stress on motor recovery following stroke in a rat model. Young adult (4 months) and aged (18 months) male Wistar rats were tested in skilled and non-skilled movement before and after focal ischemia in motor cortex. One group of each age received restraint stress starting seven days pre-lesion until three weeks post-lesion. Aged rats were less mobile and stress further diminished their overall exploratory activity. Aged rats were also less proficient in motor skill acquisition and slower to improve after lesion. Stress diminished post-lesion improvement and prevented recovery of endpoint measures. The larger functional loss in aged rats vs. young rats was accompanied by greater damage of cortical tissue and persistent elevations in corticosterone levels. The behavioural and physiological measures suggest limited ability of aged animals to adapt to chronic stress. These findings show that age or stress alone can modulate motor performance but may have greater influence by synergistically affecting stroke recovery.
Collapse
Affiliation(s)
- Dawn L. Merrett
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Scott W. Kirkland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Gerlinde A. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
26
|
Alaverdashvili M, Whishaw IQ. Compensation aids skilled reaching in aging and in recovery from forelimb motor cortex stroke in the rat. Neuroscience 2010; 167:21-30. [PMID: 20149844 DOI: 10.1016/j.neuroscience.2010.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
Compensatory movements mediate success in skilled reaching for food after stroke to the forelimb region of motor cortex (MtCx) in the rat. The present study asks whether the neural plasticity that enables compensation after motor stroke is preserved in aging. In order to avoid potential confounding effects of age-related negative-learning, rats were trained in a single pellet reaching task during young-adulthood. Subgroups were retested before and after contralateral forelimb MtCx stroke via pial stripping given at 3, 18, or 23 months of age. Over a two-month post-stroke rehabilitation period, end point measures were made of learned nonuse, recovery, retention, and performance ratings were made of reaching movement elements. Prior to stroke, young and aged rats maintained equivalent end point performance but older rats displayed compensatory changes in limb use as measured with ratings of the elements of forelimb movement. Following stroke, the aged groups of rats were more impaired on end point, movement, and anatomical measures. Nevertheless, the aged rats displayed substantial recovery via the use of compensatory movements. Thus, this study demonstrates that the neural plasticity that mediates compensatory movements after stroke in young adults is preserved prior to and following stroke in aging.
Collapse
Affiliation(s)
- M Alaverdashvili
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | | |
Collapse
|
27
|
Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res 2009; 87:2484-97. [PMID: 19326443 DOI: 10.1002/jnr.22074] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Distinct pattern of microglial response, cyclooxygenase-2, and inducible nitric oxide synthase expression in the aged rat brain after excitotoxic damage. J Neurosci Res 2009; 86:3170-83. [PMID: 18543338 DOI: 10.1002/jnr.21751] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglial and inflammatory responses to acute damage in aging are still poorly understood, although the aged brain responds differently to injury, showing poor lesion outcome. In this study, excitotoxicity was induced by intrastriatal injection of N-methyl-D-aspartate in adult (3-4 months) and aged (22-24 months) rats. Cryostat brain sections were processed for the analysis of microglial response by lectin histochemistry and cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) expression by immunohistochemistry and confocal analysis. Aged injured animals showed more widespread area of microglial response at 12 hr postlesion (hpl) and greater microglia/macrophage density at 3 days postlesion (dpl). However, aged reactive microglia showed prevalence of ramified morphologies and fewer amoeboid/round forms. Aged injured animals presented a diminished area of COX2 expression, but a significantly larger density of COX2(+) cells, with higher numbers of COX2(+) neurons during the first 24 hpl and COX2(+) microglia/macrophages later. In contrast, the amount of COX2(+) neutrophils was diminished in the aged. iNOS was more rapidly induced in the aged injured striatum, with higher cell density at 12 hpl, when expression was mainly neuronal. From 1 dpl, both the iNOS(+) area and the density of iNOS(+) cells were reduced in the aged, with lower numbers of iNOS(+) neurons, microglia/macrophages, neutrophils, and astrocytes. In conclusion, excitotoxic damage in aging induces a distinct pattern of microglia/macrophage response and expression of inflammatory enzymes, which may account for the changes in lesion outcome in the aged, and highlight the importance of using aged animals for the study of acute age-related insults.
Collapse
Affiliation(s)
- O Campuzano
- Department of Cell Biology, Physiology and Immunology, Unit of Medical Histology, School of Medicine, and Institute of Neurosciences, Autonomous University Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
29
|
Modo M. Long-term survival and serial assessment of stroke damage and recovery - practical and methodological considerations. ACTA ACUST UNITED AC 2009; 2:52-68. [PMID: 22389748 DOI: 10.6030/1939-067x-2.2.52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impairments caused by stroke remain the main cause for adult disability. Despite a vigorous research effort, only 1 thrombolytic treatment has been approved in acute stroke (<3h). The limitations of preclinical studies and how these can be overcome have been the subject of various guidelines. However, often these guidelines focus on the acute stroke setting and omit long-term outcome measures, such as behaviour and neuroimaging. The considerations and practicalities of including the serial assessment of these approaches and their significance to establish therapeutic efficacy are discussed here.
Collapse
Affiliation(s)
- Michel Modo
- King's College London, Institute of Psychiatry, Department of Neuroscience, London, UK
| |
Collapse
|
30
|
Alaverdashvili M, Moon SK, Beckman CD, Virag A, Whishaw IQ. Acute but not chronic differences in skilled reaching for food following motor cortex devascularization vs. photothrombotic stroke in the rat. Neuroscience 2008; 157:297-308. [PMID: 18848605 DOI: 10.1016/j.neuroscience.2008.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/27/2008] [Accepted: 09/09/2008] [Indexed: 11/28/2022]
Abstract
The variability in the behavioral outcome of human and nonhuman animals after stroke raises the question whether the way that a stroke occurs is a contributing factor. Photothrombotic stroke in rats has been reported to produce especially variable results, with some animals showing either slight to no impairment to other animals displaying severe impairments. The present study investigated this variability. Rats received three different-sized photothrombotic treatments and were contrasted to rats receiving a "standard" motor cortex stroke produced by pial stripping. Rats were assessed acutely and chronically on a skilled reaching for food task using end-point measures and movement assessment in a constraint-induced rehabilitation paradigm. The results indicated that as the size of the photothrombotic infarct approached the size of the pial strip infarct so did chronic behavioral deficits. Nevertheless there were differences in the time course of recovery. Rats with photothrombotic lesions of all sizes were less impaired in the acute period of recovery both on measures of learned nonuse and constrained-induced recovery. The findings are discussed in relation to the idea that whereas the course of recovery might be altered as a function of the type of stroke, chronic deficits are more closely related to the ensuing damage.
Collapse
Affiliation(s)
- M Alaverdashvili
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.
| | | | | | | | | |
Collapse
|
31
|
Buga AM, Sascau M, Pisoschi C, Herndon JG, Kessler C, Popa-Wagner A. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J Cell Mol Med 2008; 12:2731-53. [PMID: 18266980 PMCID: PMC3828887 DOI: 10.1111/j.1582-4934.2008.00252.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aged rats recover poorly after unilateral stroke, whereas young rats recover readily possibly with the help from the contralateral, healthy hemisphere. In this study we asked whether anomalous, age-related changes in the transcriptional activity in the brains of aged rats could be one underlying factor contributing to reduced functional recovery. We analysed gene expression in the periinfarct and contralateral areas of 3-month- and 18-month-old Sprague Dawley rats. Our experimental end-points were cDNA arrays containing genes related to hypoxia signalling, DNA damage and apoptosis, cellular response to injury, axonal damage and re-growth, cell lineage differentiation, dendritogenesis and neurogenesis. The major transcriptional events observed were: (i) Early up-regulation of DNA damage and down-regulation of anti-apoptosis-related genes in the periinfarct region of aged rats after stroke; (ii) Impaired neurogenesis in the periinfarct area, especially in aged rats; (iii) Impaired neurogenesis in the contralateral (unlesioned) hemisphere of both young and aged rats at all times after stroke and (iv) Marked up-regulation, in aged rats, of genes associated with inflammation and scar formation. These results were confirmed with quantitative real-time PCR. We conclude that reduced transcriptional activity in the healthy, contralateral hemisphere of aged rats in conjunction with an early up-regulation of DNA damage-related genes and pro-apoptotic genes and down-regulation of axono- and neurogenesis in the periinfarct area are likely to account for poor neurorehabilitation after stroke in old rats.
Collapse
Affiliation(s)
- A-M Buga
- Molecular Neurobiology Laboratory, Clinic of Neurology, University of Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Petcu EB, Sfredel V, Platt D, Herndon JG, Kessler C, Popa-Wagner A. Cellular and molecular events underlying the dysregulated response of the aged brain to stroke: a mini-review. Gerontology 2007; 54:6-17. [PMID: 18160818 DOI: 10.1159/000112845] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Age-related brain injuries, including stroke, are a major cause of physical and mental disabilities. OBJECTIVE Therefore, studying the basic mechanism underlying functional recovery after brain stroke in aged subjects is of considerable clinical interest. METHODS This review summarizes the effects of age on recovery after stroke in an animal model, with emphasis on the underlying cellular mechanisms. RESULTS Data from our laboratory and elsewhere indicate that, behaviorally, aged rats were more severely impaired by stroke than young rats, and they also showed diminished functional recovery. Infarct volume did not differ significantly between young and aged animals, but critical differences were apparent in the cytological response to stroke, most notably an age-related acceleration in the development of the glial scar. Early infarct in older rats is associated with premature accumulation of BrdU-positive microglia and astrocytes, persistence of activated oligodendrocytes, a high incidence of neuronal degeneration and accelerated apoptosis. In aged rats, neuroepithelial-positive cells were rapidly incorporated into the glial scar, but these neuroepithelial-like cells did not make a significant contribution to neurogenesis in the infarcted cortex in young or aged animals. The response of plasticity-associated proteins like MAP1B, was delayed in aged rats. Tissue recovery was further delayed by an age-related increase in the amount of the neurotoxic C-terminal fragment of the beta-amyloid precursor protein (A-beta) at 2 weeks poststroke. CONCLUSION The available evidence indicates that the aged brain has the capability to mount a cytoproliferative response to injury, but the timing of the cellular and genetic response to cerebral insult is dysregulated in aged animals, thereby further compromising functional recovery. Elucidating the molecular basis for this phenomenon in the aging brain could yield novel approaches to neurorestoration in the elderly.
Collapse
|
33
|
Popa-Wagner A, Badan I, Walker L, Groppa S, Patrana N, Kessler C. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 2007; 113:277-93. [PMID: 17131130 DOI: 10.1007/s00401-006-0164-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Neurology, University of Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Teasell R, Bayona N, Salter K, Hellings C, Bitensky J. Progress in clinical neurosciences: stroke recovery and rehabilitation. Can J Neurol Sci 2007; 33:357-64. [PMID: 17168160 DOI: 10.1017/s0317167100005308] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Recent literature has provided new insights into the role of rehabilitation in neurological recovery post-stroke. The present review combines results of animal and clinical research to provide a summary of published information regarding the mechanisms of neural recovery and impact of rehabilitation. METHODS Plasticity of the uninjured and post-stroke brain is examined to provide a background for the examination of brain reorganization and recovery following stroke. SUMMARY AND CONCLUSIONS Recent research has confirmed many of the basic underpinnings of rehabilitation and provided new insight into the role of rehabilitation in neurological recovery. Recovery post stroke is dependent upon cortical reorganization, and therefore, upon the presence of intact cortex, especially in areas adjacent to the infarct. Exposure to stimulating and complex environments and involvement in tasks or activities that are meaningful to the individual with stroke serves to increase cortical reorganization and enhance functional recovery. Additional factors associated with neurological recovery include size of stroke lesion, and the timing and intensity of therapy.
Collapse
Affiliation(s)
- Robert Teasell
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
35
|
Delayed neurodegeneration and early astrogliosis after excitotoxicity to the aged brain. Exp Gerontol 2006; 42:343-54. [PMID: 17126514 DOI: 10.1016/j.exger.2006.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
Excitotoxicity is well recognised as a mechanism underlying neuronal cell death in several brain injuries. To investigate age-dependent differences in neurodegeneration, edema formation and astrogliosis, intrastriatal N-methyl-d-aspartate injections were performed in young (3 months) and aged (22-24 months) male Wistar rats. Animals were sacrificed at different times between 12h and 14 days post-lesion (DPL) and cryostat sections were processed for Toluidine blue, Fluoro-Jade B staining, NeuN and GFAP immunohistochemistry. Our results show that both size of tissue injury and edema were reduced in the old subjects only up to 1DPL, correlating with a slower progression of neurodegeneration with peak numbers of degenerating neurons at 3DPL in the aged, contrasting with maximum neurodegeneration at 1DPL in the young. However, old animals showed an earlier onset of astroglial response, seen at 1DPL, and a larger area of astrogliosis at all time-points studied, including a greater glial scar. In conclusion, after excitotoxic striatal damage, progression of neurodegeneration is delayed in the aged but the astroglial response is earlier and exacerbated. Our results emphasize the importance of using aged animals and several survival times for the study of acute age-related brain insults.
Collapse
|
36
|
Bayona NA, Bitensky J, Foley N, Teasell R. Intrinsic factors influencing post stroke brain reorganization. Top Stroke Rehabil 2005; 12:27-36. [PMID: 16110425 DOI: 10.1310/3bxl-18w0-fpj4-f1gy] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reorganization of the brain, specifically the motor cortex surrounding the stroke, accounts for much of the observed neurological recovery following stroke. Not surprisingly, size of the stroke lesion has the greatest impact on neurological recovery in both animal and clinical research studies. Spontaneous recovery of lost function is possible after a cortical lesion, particularly if the lesion is small. Age correlates negatively with recovery; older individuals generally demonstrate slower and less complete recovery. However, age by itself is a poor predictor of functional recovery.
Collapse
Affiliation(s)
- Nestor A Bayona
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Kim I, Wilson RE, Wellman CL. Aging and cholinergic deafferentation alter GluR1 expression in rat frontal cortex. Neurobiol Aging 2005; 26:1073-81. [PMID: 15748787 DOI: 10.1016/j.neurobiolaging.2004.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 08/13/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. Cholinergic afferents from the NBM modulate glutamatergic transmission in neocortex, and glutamate is known to be involved in dendritic plasticity. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed the effect of cholinergic deafferentation on expression of the AMPA receptor subunit GluR1 in frontal cortex of young adult and aging rats. Young adult, middle-aged, and aged rats received sham or 192 IgG-saporin lesions of the NBM, and an unbiased stereological technique was used to estimate the total number of intensely GluR1-immunopositive neurons in layer II-III of frontal cortex. While the number of GluR1-positive neurons was increased in both middle-aged and aged rats, lesions markedly increased the number of intensely GluR1-immunopositive neurons in frontal cortex of young adult rats only. This age-related difference in lesion-induced expression of AMPA receptor subunit protein could underlie the age-related differences in dendritic plasticity after NBM lesions.
Collapse
Affiliation(s)
- Irene Kim
- Department of Psychology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
38
|
Brown AW, Bjelke B, Fuxe K. Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp Neurol 2004; 190:102-8. [PMID: 15473984 DOI: 10.1016/j.expneurol.2004.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/22/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Despite advances in acute treatment of ischemic cerebrovascular events, the most common clinical outcome is disabling neurological impairment. Despite experimental evidence that psychostimulant treatment can positively affect recovery rate after focal brain lesions, beyond rehabilitation therapies there are no currently accepted medical treatments indicated for diminishing neurological impairment after clinically established stroke. To test the effect of amphetamine, task-specific training, limiting motor experience, and their interaction on motor recovery in a postacute animal model of stroke, animals were nonaversively trained in beam walking before a unilateral photochemical sensorimotor cortex lesion and tested for 10 days after lesion. Animals were randomized to groups receiving: a single session of motor training 24 h after lesion; a single injection of amphetamine 2 mg/kg 24 h after lesion; beam-walking experience limited to testing on days 1 and 10 after lesion; and groups that received amphetamine treatment combined with training or combined with limited experience. Motor recovery was maximally enhanced by training, delayed by amphetamine treatment, and most negatively affected by limiting beam-walking experience during the recovery period. These findings support physical training after stroke, indicating that limiting physical activity negatively affects motor recovery and raises questions about the role of stimulant treatment to enhance motor recovery in the postacute phase after stroke.
Collapse
Affiliation(s)
- Allen W Brown
- Department of Physical Medicine and Rehabilitation, Mayo Clinic and Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
39
|
Abstract
Recommendations from experts and recently established guidelines on how to improve the face and predictive validity of animal models of stroke have stressed the importance of using older animals and long-term behavioral-functional endpoints rather than relying almost exclusively on acute measures of infarct volume in young animals. The objective of the present study was to determine whether we could produce occlusions in older rats with an acceptable mortality rate and then detect reliable, long-lasting functional deficits. A reversible intraluminar suture middle cerebral artery occlusion (MCAO) procedure was used to produce small infarcts in middle-aged rats. This resulted in an acceptable mortality rate, and robust disabilities were detected in functional assays, although the degree of total tissue loss measured 90 d after MCAO was quite modest. Infarcted animals were functionally impaired relative to sham control animals even 90 d after the occlusions, and when animals were subgrouped based on amount of tissue loss, MCAO animals with only 4% tissue loss exhibited enduring neurological-behavioral impairments relative to sham-operated controls, and the functional impairments in the group with the largest infarcts (20% tissue loss) were more severe than the functional impairments in the rats with 4% tissue loss. These results suggest that this model, using reversible MCAO to produce small infarcts and long-lasting functional-behavioral deficits in older rats, may represent an advance in the relatively higher-throughput modeling of stroke and its recovery in rodents and may be useful in the development and characterization of future stroke therapies.
Collapse
|
40
|
Harmon KM, Wellman CL. Differential effects of cholinergic lesions on dendritic spines in frontal cortex of young adult and aging rats. Brain Res 2003; 992:60-8. [PMID: 14604773 DOI: 10.1016/j.brainres.2003.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: cholinergic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of middle-aged and aged rats relative to young adults. To more closely examine the interactive effects of age and cholinergic deafferentation on synaptic connectivity in frontal cortex, we assessed the effects of specific cholinergic lesions on spine density of frontal cortical neurons in young adult, middle-aged, and aged rats. Rats received unilateral sham or 192 IgG-saporin lesions of the NBM. Two weeks after surgery, brains were stained using a Golgi-Cox procedure, and spine density was quantified in second-, third-, and fourth-order basilar dendrites of pyramidal neurons in layer II-III of frontal cortex. Spine density was reduced at all branch orders in aged, sham-lesioned rats. In addition, whereas lesions produced a marked increase in spine density on second- and third-order branches in young adult rats, lesions failed to significantly alter spine density in middle-aged and aged rats. Thus, the upregulation of dendritic spines may be a compensatory response to deafferentation, which is lost with advancing age.
Collapse
Affiliation(s)
- Kelley M Harmon
- Department of Psychology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|