1
|
Wang Z, Zhong R, Curran GL, Min P, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Reduces Toxic Amyloid-Beta Exposure to the Blood-Brain Barrier Endothelium in Alzheimer's Disease Transgenic Mice. Mol Pharm 2024. [PMID: 39394037 DOI: 10.1021/acs.molpharmaceut.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Aβ accumulation in the blood-brain barrier (BBB) endothelium, which lines the cerebrovascular lumen, is a significant contributor to cerebrovascular dysfunction in Alzheimer's disease (AD). Reduced high-density lipoprotein (HDL) levels are associated with increased AD risk, and the HDL mimetic peptide 4F has been developed as a promising therapeutic agent to improve cerebrovascular health in AD. In this study, we evaluated the impact of 4F on 125I-Aβ42 blood-to-brain distribution using dynamic SPECT/CT imaging in both wild-type and APP/PS1 transgenic mice. Graphical analysis of the imaging data demonstrated that 4F significantly reduced the blood-to-brain influx rate in wild-type mice and the distribution of 125I-Aβ42 in the BBB endothelium in APP/PS1 mice. To elucidate the molecular mechanisms underlying the effect of 4F, we evaluated its impact on the p38 pathway and its role in mediating Aβ42 trafficking in human BBB endothelial cell monolayers. Treatment with 4F significantly decreased Aβ42 induced p38 activation in BBB endothelial cells. Furthermore, inhibition of p38 kinase significantly reduced endothelial accumulation of fluorescence-labeled Aβ42 and luminal-to-abluminal permeability across the cell monolayer. While our previous publication has hinted at the potential of 4F to reduce Aβ accumulation in the brain parenchyma, the current findings demonstrated the protective effect of 4F in reducing Aβ42 accumulation in the BBB endothelium of AD transgenic mice. These findings revealed the impact of a clinically tested agent, the HDL mimetic peptide 4F, on Aβ exposure to the BBB endothelium and offer novel mechanistic insights into potential therapeutic strategies to treat cerebrovascular dysfunction in AD.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffry L Curran
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Paul Min
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Val J Lowe
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Staniek M, Kapelski P, Zakowicz P, Rajewska-Rager A, Wasicka-Przewozna K, Skibinska M. High-Density Lipoprotein Correlates with Cognitive Functioning in Schizophrenic Women. Brain Sci 2024; 14:699. [PMID: 39061439 PMCID: PMC11275118 DOI: 10.3390/brainsci14070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Schizophrenia is a chronic and progressive neuropsychiatric illness. Apart from positive and negative symptoms, 98% of the population diagnosed with schizophrenia have impaired cognitive functioning, which significantly influences the quality of life. The correlation between lipids and cognitive functioning has been well established. Our study aimed to investigate correlations between cognitive functions, the severity of schizophrenia symptoms, and lipid profiles. (2) Methods: Fifty-two women diagnosed with schizophrenia participated in this study. Cognitive functioning was measured using the Wisconsin Card Sorting Test (WCST). The Positive and Negative Symptom Scale (PANSS) was used. The serum lipid profile, including low-density lipoproteins (LDLs), high-density lipoproteins (HDLs), and triglycerides was measured. (3) Results: Better cognitive functions were associated with normal HDL levels, while low HDL levels correlated with worse WSCT scores. Only the PANSS negative subscale showed a correlation with HDL levels. Correlations with chronicity of schizophrenia and the patient's age with poorer cognitive functions, but not with symptom severity, were detected. Early/late age at onset did not influence WSCT scores. (4) Conclusions: Our results suggest high HDL levels might be a protective factor against cognitive impairment. The influences of age and illness duration also play a vital role in cognitive performance.
Collapse
Affiliation(s)
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | | | | | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
3
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
4
|
Wang J, Xu L, Chen X, Wu J, Chen Y, Feng Z, Dong L, Yao D, Cai Q, Jian W, Li H, Duan M, Wang Z. Correlation Analysis of ApoB, ApoA1, and ApoB/ApoA1 with Cortical Morphology in Patients with Memory Complaints. J Alzheimers Dis 2024; 101:1137-1150. [PMID: 39302359 DOI: 10.3233/jad-230863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Apolipoproteins and cortical morphology are closely associated with memory complaints, and both may contribute to the development of Alzheimer's disease. Objective To examine whether apolipoprotein B (ApoB), apolipoprotein A-1 (ApoA1), and their ratio (ApoB/ApoA1) are associated with cortical morphology in patients with memory complaints. Methods Ninety-seven patients underwent neuropsychological testing, measurements of ApoB, ApoA1, ApoB/ApoA1, plasma Alzheimer's biomarker, apolipoprotein E (ApoE) genotyping, and 3T structural magnetic resonance imaging (sMRI) scans. Based on sMRI scanning locations, patients were categorized into the University of Electronic Science and Technology (UESTC) and the Fourth People's Hospital of Chengdu (FPHC). The Computational Anatomy Toolbox within Statistical Parametric Mapping was used to calculate each patient's cortical morphology index based on sMRI data. The cortical morphology index and apolipoproteins were also analyzed. Results Significant positive correlations were found between ApoB and sulcal depth in the lateral occipital cortex among the UESTC, the FPHC, and the total sample groups, and negative correlations were observed between sulcal depth in the lateral occipital cortex and the scores of the Shape Trails Test Part A and B. In the FPHC group, the scores of the Montreal Cognitive Assessment Basic, delayed recall of the Auditory Verbal Learning Test, Animal Fluency Test and Boston Naming Test were positively correlated with the sulcal depth. Conclusions ApoB is associated with the sulcal depth in the lateral occipital cortex, potentially relating to speed/executive function in individuals with memory complaints.
Collapse
Affiliation(s)
- Jiayu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Lisi Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xuemei Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Jiajing Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Yu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Ziqian Feng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Zunyi, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
- Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Qingyan Cai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Jian
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Hongyi Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - MingJun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Ziqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, the Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
5
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Frankel R, Sparr E, Linse S. Retardation of Aβ42 fibril formation by apolipoprotein A-I and recombinant HDL particles. J Biol Chem 2023; 299:105273. [PMID: 37739034 PMCID: PMC10616404 DOI: 10.1016/j.jbc.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The double nucleation mechanism of amyloid β (Aβ) peptide aggregation is retained from buffer to cerebrospinal fluid (CSF) but with reduced rate of all microscopic processes. Here, we used a bottom-up approach to identify retarding factors in CSF. We investigated the Aβ42 fibril formation as a function of time in the absence and presence of apolipoprotein A-I (ApoA-I), recombinant high-density lipoprotein (rHDL) particles, or lipid vesicles. A retardation was observed in the presence of ApoA-I or rHDL particles, most pronounced with ApoA-I, but not with lipid vesicles. Global kinetic analysis implies that rHDL interferes with secondary nucleation. The effect of ApoA-I could best be described as an interference with secondary and to a smaller extent primary nucleation. Using surface plasmon resonance and microfluidics diffusional sizing analyses, we find that both rHDL and ApoA-I interact with Aβ42 fibrils but not Aβ42 monomer, thus the effect on kinetics seems to involve interference with the catalytic surface for secondary nucleation. The Aβ42 fibrils were imaged using cryogenic-electron microscopy and found to be longer when formed in the presence of ApoA-I or rHDL, compared to formation in buffer. A retarding effect, as observed in CSF, could be replicated using a simpler system, from key components present in CSF but purified from a CSF-free host. However, the effect of CSF is stronger implying the presence of additional retarding factors.
Collapse
Affiliation(s)
- Rebecca Frankel
- Biochemistry and Structural Biology, Lund University, Lund, Sweden; Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Nääs A, Li P, Ahlm C, Aurelius E, Järhult JD, Schliamser S, Studahl M, Xiao W, Bergquist J, Westman G. Temporal pathway analysis of cerebrospinal fluid proteome in herpes simplex encephalitis. Infect Dis (Lond) 2023; 55:694-705. [PMID: 37395107 DOI: 10.1080/23744235.2023.2230281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES We examined the temporal changes of the CSF proteome in patients with herpes simplex encephalitis (HSE) during the course of the disease, in relation to anti-N-methyl-D-aspartate receptor (NMDAR) serostatus, corticosteroid treatment, brain MRI and neurocognitive performance. METHODS Patients were retrospectively included from a previous prospective trial with a pre-specified CSF sampling protocol. Mass spectrometry data of the CSF proteome were processed using pathway analysis. RESULTS We included 48 patients (110 CSF samples). Samples were grouped based on time of collection relative to hospital admission - T1: ≤ 9 d, T2: 13-28 d, T3: ≥ 68 d. At T1, a strong multi-pathway response was seen including acute phase response, antimicrobial pattern recognition, glycolysis and gluconeogenesis. At T2, most pathways activated at T1 were no longer significantly different from T3. After correction for multiplicity and considering the effect size threshold, 6 proteins were significantly less abundant in anti-NMDAR seropositive patients compared to seronegative: procathepsin H, heparin cofactor 2, complement factor I, protein AMBP, apolipoprotein A1 and polymeric immunoglobulin receptor. No significant differences in individual protein levels were found in relation to corticosteroid treatment, size of brain MRI lesion or neurocognitive performance. CONCLUSIONS We show a temporal change in the CSF proteome in HSE patients during the course of the disease. This study provides insight into quantitative and qualitative aspects of the dynamic pathophysiology and pathway activation patterns in HSE and prompts for future studies on the role of apolipoprotein A1 in HSE, which has previously been associated with NMDAR encephalitis.
Collapse
Affiliation(s)
- Anja Nääs
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Peng Li
- ME/CFS Collaborative Research Center at Harvard, Massachusetts General Hospital, Boston, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Elisabeth Aurelius
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Solna, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Silvia Schliamser
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Region Västra Götaland, Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Wenzhong Xiao
- ME/CFS Collaborative Research Center at Harvard, Massachusetts General Hospital, Boston, USA
| | - Jonas Bergquist
- Department of Chemistry, Analytical Chemistry and Neurochemistry, Biomedical Center and The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| | - Gabriel Westman
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Nakamura Y, Kabayama M, Godai K, Tseng W, Akasaka H, Yamamoto K, Takami Y, Takeya Y, Gondo Y, Yasumoto S, Ogawa M, Kasuga A, Masui Y, Ikebe K, Arai Y, Ishizaki T, Rakugi H, Kamide K. Longitudinal association of hypertension and dyslipidemia with cognitive function in community-dwelling older adults: the SONIC study. Hypertens Res 2023; 46:1829-1839. [PMID: 37095338 PMCID: PMC10404512 DOI: 10.1038/s41440-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
The associations among cognitive function, hypertension, and dyslipidemia in older adults are controversial. Therefore, we investigated the associations among cognitive decline, hypertension, dyslipidemia, and their combination in community-dwelling older people in their 70s, 80s, and 90s in the long-term observational Septuagenarians, Octogenarians, Nonagenarians, Investigation with Centenarians (SONIC) study. We administered the Montreal Cognitive Assessment Japanese version (MoCA-J) by trained geriatricians and psychologists, and conducted blood testing and blood pressure (BP) measuring by medical staff involving 1186 participants. We performed multiple regression analysis to assess the relationships among hypertension, dyslipidemia, their combination, and lipid and BP levels with cognitive function at the 3-year follow-up after adjusting for covariate factors. At the baseline, the percentage of the combination of hypertension and dyslipidemia was 46.6% (n = 553), hypertension was 25.6% (n = 304), dyslipidemia was 15.0% (n = 178), and that without hypertension or dyslipidemia was 12.7% (n = 151). Conducting multiple regression analysis, no significant correlation was found between the combination of hypertension and dyslipidemia and MoCA-J score. In the group with the combination, high high-density lipoprotein cholesterol (HDL) levels resulted in higher MoCA-J scores at the follow-up (β = 0.06; P < 0.05) and high diastolic BP (DBP) also resulted in higher MoCA-J scores (β = 0.08; P < 0.05). The results suggest that high HDL and DBP levels of individuals with HT & DL and high SBP levels of individuals with HT were associated with cognitive function in community-dwelling older adults. In the SONIC study, which is an epidemiological study of Japanese older persons aged 70 years or older, a disease-specific examination suggested that high HDL and DBP levels of individuals with hypertension & dyslipidemia and high SBP levels of individuals with hypertension were associated with maintaining cognitive function in community-dwelling older adults.
Collapse
Affiliation(s)
- Yuko Nakamura
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Mai Kabayama
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Kayo Godai
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Winston Tseng
- School of Public Health, University of California, Berkeley, 2199 Addison Street Room 50, Berkeley, CA, 94720-7358, USA
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yasushi Takeya
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yasuyuki Gondo
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Saori Yasumoto
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Madoka Ogawa
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Ayaka Kasuga
- Department of Clinical Thanatology and Geriatric Behavioral Sciences, Osaka University, Graduate School of Human Sciences, 1-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Yukie Masui
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kazunori Ikebe
- Center for Super Centenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasumichi Arai
- Center for Super Centenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuro Ishizaki
- Research Team for Human Care, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 567-0871, Japan
| | - Kei Kamide
- Division of Health Sciences, Osaka University, Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 567-0871, Japan.
| |
Collapse
|
9
|
Pillai JA, Bena J, Bekris L, Kodur N, Kasumov T, Leverenz JB, Kashyap SR. Metabolic syndrome biomarkers relate to rate of cognitive decline in MCI and dementia stages of Alzheimer's disease. Alzheimers Res Ther 2023; 15:54. [PMID: 36927447 PMCID: PMC10018847 DOI: 10.1186/s13195-023-01203-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The relationship between biomarkers of metabolic syndrome and insulin resistance, plasma triglyceride/HDL cholesterol (TG/HDL-C) ratio, on the rate of cognitive decline in mild cognitive impairment (MCI) and dementia stages of Alzheimer's disease (AD) is unknown. The role of peripheral and cerebrospinal fluid (CSF) levels of Apolipoprotein A1 (ApoA1), a key functional component of HDL, on cognitive decline also remains unclear among them. Here we evaluate baseline plasma TG/HDL-C ratio and CSF and plasma ApoA1 levels and their relation with cognitive decline in the MCI and Dementia stages of AD. PATIENTS AND METHODS A retrospective longitudinal study (156 participants; 106 MCI, 50 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative, with an average of 4.0 (SD 2.8) years follow-up. Baseline plasma TG/HDL-C, plasma, and CSF ApoA1 and their relationship to inflammation and blood-brain barrier (BBB) biomarkers and longitudinal cognitive outcomes were evaluated. Multivariable linear mixed effect models were used to assess the effect of baseline analytes with longitudinal changes in Mini-Mental State Exam (MMSE), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Logical Memory delayed recall (LM) score after controlling for well-known covariates. RESULTS A total of 156 participants included 98 women, 63%; mean age was 74.9 (SD 7.3) years. At baseline, MCI and dementia groups did not differ significantly in TG/HDL-C (Wilcoxon W statistic = 0.39, p = 0.39) and CSF ApoA1 levels (W = 3642, p = 0.29), but the dementia group had higher plasma ApoA1 than the MCI group (W = 4615, p = 0.01). Higher TG/HDL-C ratio was associated with faster decline in CDR-SB among MCI and dementia groups. Higher plasma ApoA1 was associated with faster decline in MMSE and LM among MCI, while in contrast higher CSF ApoA1 levels related to slower cognitive decline in MMSE among MCI. CSF and plasma ApoA1 also show opposite directional correlations with biomarkers of BBB integrity. CSF but not plasma levels of ApoA1 positively correlated to inflammation analytes in the AGE-RAGE signaling pathway in diabetic complications (KEGG ID:KO04933). CONCLUSIONS Biomarkers of metabolic syndrome relate to rate of cognitive decline among MCI and dementia individuals. Elevated plasma TG/HDL-C ratio and plasma ApoA1 are associated with worse cognitive outcomes in MCI and dementia participants. CSF ApoA1 and plasma ApoA1 likely have different roles in AD progression in MCI stage.
Collapse
Affiliation(s)
- Jagan A Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave/U10, Cleveland, OH, 44195, USA. .,Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA. .,Department of Neurology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.
| | - James Bena
- Quantitative Health Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Lynn Bekris
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Nandan Kodur
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave/U10, Cleveland, OH, 44195, USA.,Neurological Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Department of Neurology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Sangeeta R Kashyap
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.,Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine New York Presbyterian, New York, NY, 10021, USA
| | | |
Collapse
|
10
|
Yin C, Harms AC, Hankemeier T, Kindt A, de Lange ECM. Status of Metabolomic Measurement for Insights in Alzheimer's Disease Progression-What Is Missing? Int J Mol Sci 2023; 24:ijms24054960. [PMID: 36902391 PMCID: PMC10003384 DOI: 10.3390/ijms24054960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, leading to the progressive loss of memory and other cognitive functions. As there is still no cure for AD, the growth in the number of susceptible individuals represents a major emerging threat to public health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study of biochemical alterations in pathological processes which may be involved in AD progression and to discover new therapeutic targets. In this review, we summarized and analyzed the results from studies on metabolomics analysis performed in biological samples of AD subjects and AD animal models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways among different sample types in human and animal models at different disease stages. We discuss the underlying biochemical mechanisms involved, and the extent to which they could impact the specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for future metabolomics approaches to better understand AD pathogenesis.
Collapse
Affiliation(s)
- Chunyuan Yin
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Elizabeth C. M. de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
11
|
Martinez AE, Weissberger G, Kuklenyik Z, He X, Meuret C, Parekh T, Rees JC, Parks BA, Gardner MS, King SM, Collier TS, Harrington MG, Sweeney MD, Wang X, Zlokovic BV, Joe E, Nation DA, Schneider LS, Chui HC, Barr JR, Han SD, Krauss RM, Yassine HN. The small HDL particle hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:391-404. [PMID: 35416404 PMCID: PMC10563117 DOI: 10.1002/alz.12649] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/03/2023]
Abstract
We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.
Collapse
Affiliation(s)
- Ashley E. Martinez
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gali Weissberger
- The Interdisciplinary Department of Social Sciences, Bar Ilan University, Israel
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristiana Meuret
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trusha Parekh
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah M. King
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | | | - Michael G. Harrington
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Joe
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Nation
- Irvine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lon S. Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Duke Han
- Department of Family Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Kasyanov ED, Pinakhina DV, Rakitko AS, Vergasova EO, Yermakovich DP, Rukavishnikov GV, Malyshko LV, Popov YV, Kovalenko EV, Ilinskaya AY, Kim AA, Plotnikov NA, Neznanov NG, Ilinsky VV, Kibitov AO, Mazo GE. [Anhedonia in mood disorders and somatic diseases: results of exploratory Mendelian randomization analysis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:65-73. [PMID: 37141131 DOI: 10.17116/jnevro202312304265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVE To conduct an exploratory Mendelian randomization analysis of the causal relationships of anhedonia with a wide range of psychiatric and somatic phenotypes based on the genetic data of participants in a population study. MATERIAL AND METHODS This cross-sectional study included 4520 participants, of which 50.4% (n=2280) were female. The mean age was 36.8 (S.D.=9.8) years. Participants were pheno-nailed based on the DSM-5 criteria for anhedonia in the framework of depression. An episode of anhedonia exceeding 2 weeks during life was reported by 57.6% (n=2604) of participants. A genome-wide association study (GWAS) of the anhedonia phenotype was performed, as well as a Mendelian randomization analysis using summary statistics of large-scale GWASs on psychiatric and somatic phenotypes. RESULTS The GWAS on anhedonia did not reveal the variants with genome-wide significant association (p<10-8). The most significant (p=9.71×10-7) was the variant rs296009 (chr5:168513184) in an intron of the slit guidance ligand 3 (SLIT3) gene. Using Mendelian randomization, nominally significant (p<0.05) causal associations of anhedonia with 24 phenotypes were identified, which can be divided into 5 main groups: psychiatric/neurological diseases, inflammatory diseases of the digestive system, respiratory diseases, oncological diseases and metabolic disorders. The most significant causal effects of anhedonia were found for breast cancer (p=0.0004, OR=0.9986, 95% confidence interval (CI) (0.9978-0.999)), minimal depression phenotype (p=0.009, OR=1.004, 95% CI (1.001-1.007)), as well as for apolipoprotein A (p=0.01, OR=0.973, 95% CI (0.952-0.993)) and respiratory diseases (p=0.01, OR=0.9988, 95% CI (0.9980-0.9997)). CONCLUSION The polygenic nature of anhedonia may cause the risks of comorbidity of this phenotype with a wide range of somatic diseases, as well as may be associated with mood disorders.
Collapse
Affiliation(s)
- E D Kasyanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - D V Pinakhina
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- ITMO University, St. Petersburg, Russia
| | - A S Rakitko
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Genotek Ltd., Moscow, Russia
| | | | | | - G V Rukavishnikov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - L V Malyshko
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | | | | | | | - A A Kim
- Genotek Ltd., Moscow, Russia
| | | | - N G Neznanov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| | - V V Ilinsky
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
- Genotek Ltd., Moscow, Russia
| | - A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
13
|
Ko YA, Billheimer JT, Lyssenko NN, Kueider-Paisley A, Wolk DA, Arnold SE, Leung YY, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF, Kling MA, Rader DJ. ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer's disease. Alzheimers Res Ther 2022; 14:194. [PMID: 36572909 PMCID: PMC9791777 DOI: 10.1186/s13195-022-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) shares risk factors with cardiovascular disease (CVD) and dysregulated cholesterol metabolism is a mechanism common to both diseases. Cholesterol efflux capacity (CEC) is an ex vivo metric of plasma high-density lipoprotein (HDL) function and inversely predicts incident CVD independently of other risk factors. Cholesterol pools in the central nervous system (CNS) are largely separate from those in blood, and CNS cholesterol excess may promote neurodegeneration. CEC of cerebrospinal fluid (CSF) may be a useful measure of CNS cholesterol trafficking. We hypothesized that subjects with AD and mild cognitive impairment (MCI) would have reduced CSF CEC compared with Cognitively Normal (CN) and that CSF apolipoproteins apoA-I, apoJ, and apoE might have associations with CSF CEC. METHODS We retrieved CSF and same-day ethylenediaminetetraacetic acid (EDTA) plasma from 108 subjects (40 AD; 18 MCI; and 50 CN) from the Center for Neurodegenerative Disease Research biobank at the Perelman School of Medicine, University of Pennsylvania. For CSF CEC assays, we used N9 mouse microglial cells and SH-SY5Y human neuroblastoma cells, and the corresponding plasma assay used J774 cells. Cells were labeled with [3H]-cholesterol for 24 h, had ABCA1 expression upregulated for 6 h, were exposed to 33 μl of CSF, and then were incubated for 2.5 h. CEC was quantified as percent [3H]-cholesterol counts in medium of total counts medium+cells, normalized to a pool sample. ApoA-I, ApoJ, ApoE, and cholesterol were also measured in CSF. RESULTS We found that CSF CEC was significantly lower in MCI compared with controls and was poorly correlated with plasma CEC. CSF levels of ApoJ/Clusterin were also significantly lower in MCI and were significantly associated with CSF CEC. While CSF ApoA-I was also associated with CSF CEC, CSF ApoE had no association with CSF CEC. CSF CEC is significantly and positively associated with CSF Aβ. Taken together, ApoJ/Clusterin may be an important determinant of CSF CEC, which in turn could mitigate risk of MCI and AD risk by promoting cellular efflux of cholesterol or other lipids. In contrast, CSF ApoE does not appear to play a role in determining CSF CEC.
Collapse
Affiliation(s)
- Yi-An Ko
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Jeffrey T. Billheimer
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Nicholas N. Lyssenko
- grid.264727.20000 0001 2248 3398Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| | - Alexandra Kueider-Paisley
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27708 USA
| | - David A. Wolk
- grid.25879.310000 0004 1936 8972Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Steven E. Arnold
- grid.38142.3c000000041936754XDepartment of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Yuk Yee Leung
- grid.25879.310000 0004 1936 8972Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Leslie M. Shaw
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| | - Rima F. Kaddurah-Daouk
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27708 USA ,grid.26009.3d0000 0004 1936 7961Duke Institute for Brain Sciences, Duke University, Durham, NC 27708 USA ,grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, Durham, NC 27708 USA
| | - Mitchel A. Kling
- grid.262671.60000 0000 8828 4546Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, 42 E. Laurel Rd., Suite 1800, Stratford, NJ 08084 USA ,grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
| | - Daniel J. Rader
- grid.25879.310000 0004 1936 8972Division of Translational Medicine and Human Research, Perelman School of Medicine, University of Pennsylvania, 11-125 Smilow Center for Translational Research, 3400 Civic Center Blvd, Philadelphia, PA 19104-5158 USA
| |
Collapse
|
14
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
15
|
Pedrini S, Doecke JD, Hone E, Wang P, Thota R, Bush AI, Rowe CC, Dore V, Villemagne VL, Ames D, Rainey‐Smith S, Verdile G, Sohrabi HR, Raida MR, Taddei K, Gandy S, Masters CL, Chatterjee P, Martins R. Plasma high-density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume. J Neurochem 2022; 163:53-67. [PMID: 36000528 PMCID: PMC9804612 DOI: 10.1111/jnc.15681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROBrisbaneQueenslandAustralia
| | - Eugene Hone
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Penghao Wang
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rohith Thota
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ashley I. Bush
- CRC for Mental HealthMelbourneVictoriaAustralia,The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | - Vincent Dore
- Department of Nuclear Medicine and Centre for PETAustin HealthHeidelbergVictoriaAustralia
| | | | - David Ames
- National Ageing Research InstituteParkvilleVictoriaAustralia,University of Melbourne Academic unit for Psychiatry of Old AgeSt George's HospitalKewVictoriaAustralia
| | - Stephanie Rainey‐Smith
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Giuseppe Verdile
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Curtin Health Innovation Research InstituteCurtin UniversityBentleyWestern AustraliaAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manfred R. Raida
- Life Science Institute, Singapore Lipidomics IncubatorNational University of SingaporeSingapore CitySingapore
| | - Kevin Taddei
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Colin L. Masters
- The Florey Institute, The University of MelbourneParkvilleVictoriaAustralia
| | - Pratishtha Chatterjee
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ralph N. Martins
- School of Medical SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia,CRC for Mental HealthMelbourneVictoriaAustralia,Faculty of Medicine, Health and Human Sciences, Department of Biomedical SciencesMacquarie UniversitySydneyNew South WalesAustralia,School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | | |
Collapse
|
16
|
Lam SM, Huang X, Shui G. Neurological aspects of SARS-CoV-2 infection: lipoproteins and exosomes as Trojan horses. Trends Endocrinol Metab 2022; 33:554-568. [PMID: 35613979 PMCID: PMC9058057 DOI: 10.1016/j.tem.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets lipid-producing cells for viral tropism. In this review, we connect systemic lipid couriers, particularly high-density lipoproteins (HDLs) and exosomes, with the neurological facets of SARS-CoV-2 infection. We discuss how SARS-CoV-2 preferentially targets lipid-secreting cells and usurps host cell lipid metabolism for efficient replication and systemic spreading. Besides providing natural veils for viral materials against host immunity, the inherent properties of some of these endogenous lipid particles to traverse the blood-brain barrier (BBB) also offer alternative routes for SARS-CoV-2 neurotropism. Importantly, virus-driven neurological aberrations mediated by HDLs and exosomes are fueled by lipid rafts, which are implicated in the production and transmigration of these lipid particles across the BBB. Finally, we discuss how repurposing existing drugs targeting lipid rafts and cholesterol homeostasis may be beneficial toward alleviating the global coronavirus disease 2019 (COVID-19) disease burden.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Noveir SD, Kerman BE, Xian H, Meuret C, Smadi S, Martinez AE, Johansson J, Zetterberg H, Parks BA, Kuklenyik Z, Mack WJ, Johansson JO, Yassine HN. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res Ther 2022; 14:87. [PMID: 35751102 PMCID: PMC9229758 DOI: 10.1186/s13195-022-01028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer's disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-β peptides (Aβ) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. METHODS CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aβ were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. RESULTS Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aβ42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aβ42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. CONCLUSIONS Treatment with the ABCA1 agonist CS-6253 appears to favor Aβ clearance from the brain.
Collapse
Affiliation(s)
- Sasan D Noveir
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bilal E Kerman
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haotian Xian
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cristiana Meuret
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sabrina Smadi
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ashley E Martinez
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Bryan A Parks
- Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | | | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Hussein N Yassine
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
18
|
Hong BV, Zheng J, Agus JK, Tang X, Lebrilla CB, Jin LW, Maezawa I, Erickson K, Harvey DJ, DeCarli CS, Mungas DM, Olichney JM, Farias ST, Zivkovic AM. High-Density Lipoprotein Changes in Alzheimer's Disease Are APOE Genotype-Specific. Biomedicines 2022; 10:1495. [PMID: 35884800 PMCID: PMC9312991 DOI: 10.3390/biomedicines10071495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
High-density lipoproteins (HDL) play a critical role in cholesterol homeostasis. Apolipoprotein E (APOE), particularly the E4 allele, is a significant risk factor for Alzheimer's disease but is also a key HDL-associated protein involved in lipid transport in both the periphery and central nervous systems. The objective was to determine the influence of the APOE genotype on HDL function and size in the context of Alzheimer's disease. HDL from 194 participants (non-demented controls, mild cognitive impairment, and Alzheimer's disease dementia) were isolated from the plasma. The HDL cholesterol efflux capacity (CEC), lecithin-cholesterol acyltransferase (LCAT) activity, and particle diameter were measured. Neuropsychological test scores, clinical dementia rating, and magnetic resonance imaging scores were used to determine if cognition is associated with HDL function and size. HDL CEC and LCAT activity were reduced in APOE3E4 carriers compared to APOE3E3 carriers, regardless of diagnosis. In APOE3E3 carriers, CEC and LCAT activity were lower in patients. In APOE3E4 patients, the average particle size was lower. HDL LCAT activity and particle size were positively correlated with the neuropsychological scores and negatively correlated with the clinical dementia rating. We provide evidence for the first time of APOE genotype-specific alterations in HDL particles in Alzheimer's disease and an association between HDL function, size, and cognitive function.
Collapse
Affiliation(s)
- Brian V. Hong
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Jingyuan Zheng
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Joanne K. Agus
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Xinyu Tang
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA;
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Kelsey Erickson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA 95616, USA;
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Dan M. Mungas
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - John M. Olichney
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Sarah T. Farias
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| |
Collapse
|
19
|
Fu J, Huang Y, Bao T, Ou R, Wei Q, Chen Y, Yang J, Chen X, Shang H. Effects of Sex on the Relationship Between Apolipoprotein E Gene and Serum Lipid Profiles in Alzheimer’s Disease. Front Aging Neurosci 2022; 14:844066. [PMID: 35707700 PMCID: PMC9190463 DOI: 10.3389/fnagi.2022.844066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sex is an important factor in studying the relationship between the APOE gene, lipid profiles, and AD. However, few studies have focused on the effect of sex on lipids in AD and normal controls with different APOE genes. Materials and Methods A total of 549 participants, including 298 AD patients and 251 body mass index (BMI)-matched healthy controls (HCs), were enrolled. Lipid profiles and APOE genes in both AD patients and HCs were determined. Results (1) TC and LDL were higher in AD patients than in HCs, only in APOEε4 carrying populations, but not in non-carrying populations. (2) TC and LDL were higher in APOEε4 allele carriers than in non-carriers, only in AD populations, but not in HCs. (3) The TC of APOEε2 carriers was lower than that of non-carriers in the male AD population, but not in the female AD population, female HCs, and male HCs. (4) The increased LDL level may increase the risk of AD in female people carrying APOEε4. Conclusion The TC and LDL levels of APOEε4 carriers were higher than those of non-carriers, and the effect was more significant in the female AD population. The TC levels in APOEε2 carriers were lower than those in non-carriers, which was more significant in the male AD population.
Collapse
Affiliation(s)
- Jiajia Fu
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Huang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Bao
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xueping Chen,
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Huifang Shang,
| |
Collapse
|
20
|
Tong JH, Gong SQ, Zhang YS, Dong JR, Zhong X, Wei MJ, Liu MY. Association of Circulating Apolipoprotein AI Levels in Patients With Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:899175. [PMID: 35663584 PMCID: PMC9157647 DOI: 10.3389/fnagi.2022.899175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
With the development of medicine, our research on Alzheimer's disease (AD) has been further deepened, but the mechanism of its occurrence and development has not been fully revealed, and there is currently no effective treatment method. Several studies have shown that apolipoprotein AI (ApoA-I) can affect the occurrence and development of Alzheimer's disease by binding to amyloid β (Aβ). However, the association between circulating levels of ApoA-I and AD remains controversial. We conducted a meta-analysis of 18 studies published between 1992 and 2017 to determine whether the ApoA-I levels in the blood and cerebrospinal fluid (CSF) are abnormal in AD. Literatures were searched in PubMed, EMBASE and Web of Science databases without language limitations. A pooled subject sample including 1,077 AD patients and 1,271 healthy controls (HCs) was available to assess circulating ApoA-I levels; 747 AD patients and 680 HCs were included for ApoA-I levels in serum; 246 AD patients and 456 HCs were included for ApoA-I levels in plasma; 201 AD patients and 447 HCs were included for ApoA-I levels in CSF. It was found that serum and plasma levels of ApoA-I were significantly reduced in AD patients compared with HCs {[standardized mean difference (SMD) = −1.16; 95% confidence interval (CI) (−1.72, −0.59); P = 0.000] and [SMD = −1.13; 95% CI (−2.05, −0.21); P = 0.016]}. Patients with AD showed a tendency toward higher CSF ApoA-I levels compared with HCs, although this difference was non-significant [SMD = 0.20; 95% CI (−0.16, 0.56); P = 0.273]. In addition, when we analyzed the ApoA-I levels of serum and plasma together, the circulating ApoA-I levels in AD patients was significantly lower [SMD = −1.15; 95% CI (−1.63, −0.66); P = 0.000]. These results indicate that ApoA-I deficiency may be a risk factor of AD, and ApoA-I has the potential to serve as a biomarker for AD and provide experimental evidence for diagnosis of AD. Systematic Review Registration: PROSPERO, identifier: 325961.
Collapse
|
21
|
Cho KH. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int J Mol Sci 2022; 23:3967. [PMID: 35409326 PMCID: PMC8999423 DOI: 10.3390/ijms23073967] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
The quantity of high-density lipoproteins (HDL) is represented as the serum HDL-C concentration (mg/dL), while the HDL quality manifests as the diverse features of protein and lipid content, extent of oxidation, and extent of glycation. The HDL functionality represents several performance metrics of HDL, such as antioxidant, anti-inflammatory, and cholesterol efflux activities. The quantity and quality of HDL can change during one's lifetime, depending on infection, disease, and lifestyle, such as dietary habits, exercise, and smoking. The quantity of HDL can change according to age and gender, such as puberty, middle-aged symptoms, climacteric, and the menopause. HDL-C can decrease during disease states, such as acute infection, chronic inflammation, and autoimmune disease, while it can be increased by regular aerobic exercise and healthy food consumption. Generally, high HDL-C at the normal level is associated with good HDL quality and functionality. Nevertheless, high HDL quantity is not always accompanied by good HDL quality or functionality. The HDL quality concerns the morphology of the HDL, such as particle size, shape, and number. The HDL quality also depends on the composition of the HDL, such as apolipoproteins (apoA-I, apoA-II, apoC-III, serum amyloid A, and α-synuclein), cholesterol, and triglyceride. The HDL quality is also associated with the extent of HDL modification, such as glycation and oxidation, resulting in the multimerization of apoA-I, and the aggregation leads to amyloidogenesis. The HDL quality frequently determines the HDL functionality, which depends on the attached antioxidant enzyme activity, such as the paraoxonase and cholesterol efflux activity. Conventional HDL functionality is regression, the removal of cholesterol from atherosclerotic lesions, and the removal of oxidized species in low-density lipoproteins (LDL). Recently, HDL functionality was reported to expand the removal of β-amyloid plaque and inhibit α-synuclein aggregation in the brain to attenuate Alzheimer's disease and Parkinson's disease, respectively. More recently, HDL functionality has been associated with the susceptibility and recovery ability of coronavirus disease 2019 (COVID-19) by inhibiting the activity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The appearance of dysfunctional HDL is frequently associated with many acute infectious diseases and chronic aging-related diseases. An HDL can be a suitable biomarker to diagnose many diseases and their progression by monitoring the changes in its quantity and quality in terms of the antioxidant and anti-inflammatory abilities. An HDL can be a protein drug used for the removal of plaque and as a delivery vehicle for non-soluble drugs and genes. A dysfunctional HDL has poor HDL quality, such as a lower apoA-I content, lower antioxidant ability, smaller size, and ambiguous shape. The current review analyzes the recent advances in HDL quantity, quality, and functionality, depending on the health and disease state during one's lifetime.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan 38541, Korea; ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea
| |
Collapse
|
22
|
Anusheel, Avula SN, Joseph KLTN, Onuchukwu CV, Thondamala V, Shrivastava S, Namburi AR, Mohammed L. The Role of High-Density Lipoprotein in Lowering Risk of Dementia in the Elderly: A Review. Cureus 2022; 14:e24374. [PMID: 35621297 PMCID: PMC9126470 DOI: 10.7759/cureus.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Dementia is one of the major causes of disability and hospitalization in the elderly. As far as non-invasive markers of dementia are concerned, we only have age and Apolipoprotein-E (Apo-E) gene, which can be considered as clinically relevant. Modifiable risk factors have been found to be the cause in one-third of the patients who develop dementia. The compatible data supporting the same, in particular for dyslipidemia, is limited, which in turn makes it difficult to devise prevention and interventional methods for both dementia and mild cognitive impairment. Hence, the objective of the review is to summarize the findings on the relation established between the high-density lipoprotein type C( HDL-C) levels and lower the chance of dementia in the elderly, and the possible role of HDL-C as a potential predictive biomarker for cases of dementia in elderly people. Dyslipidemia, a known risk factor for the occurrence of cardiovascular diseases, seems to be linked to Alzheimer's disease. Elevated levels of serum cholesterol in mid-adult life increases the risk of dementia in older age. But elevated high-density lipoprotein (HDL) level and its principal apolipoprotein A-I (ApoA-I ) equates with a low risk of dementia in the elderly population HDL cholesterol has been found to promote endothelial nitric oxide synthase activity which in turn reduces the neural and vascular inflammation and suppresses vascular adhesion thereby exhibiting its vasoprotective function. It has been believed that all these factors have a role to play in the pathogenesis of dementia. The relation between the higher levels of HDL cholesterol or its key protein component ApoA-I and the lower dementia prevalence in the elderly had been documented in numerous observational studies. Some studies have reported conflicting results. Yet, observational studies measuring the baseline HDL level in middle age found a significant association between HDL level and dementia risk in the elderly, whereas those studies measuring HDL cholesterol level only in old age found no association. Likewise, a significant association between HDL cholesterol and dementia risk has been reported with studies that carry through to 10 years or longer. However, the studies with follow-up of fewer than 10 years had failed to document any such association between HDL cholesterol and dementia. HDL assays may also be used as a predictive biomarker for dementia patients to target the interventions. Although statins do not target HDL directly but can be an area of interest for dementia.
Collapse
Affiliation(s)
- Anusheel
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Supraja N Avula
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ke-Li-Ta N Joseph
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chibuzor V Onuchukwu
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vishwanath Thondamala
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shashwat Shrivastava
- Vascular Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anusha R Namburi
- Public Health, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
23
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
24
|
Sierri G, Dal Magro R, Vergani B, Leone BE, Formicola B, Taiarol L, Fagioli S, Kravicz M, Tremolizzo L, Calabresi L, Re F. Reduced Levels of ABCA1 Transporter Are Responsible for the Cholesterol Efflux Impairment in β-Amyloid-Induced Reactive Astrocytes: Potential Rescue from Biomimetic HDLs. Int J Mol Sci 2021; 23:ijms23010102. [PMID: 35008528 PMCID: PMC8745016 DOI: 10.3390/ijms23010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
The cerebral synthesis of cholesterol is mainly handled by astrocytes, which are also responsible for apoproteins’ synthesis and lipoproteins’ assembly required for the cholesterol transport in the brain parenchyma. In Alzheimer disease (AD), these processes are impaired, likely because of the astrogliosis, a process characterized by morphological and functional changes in astrocytes. Several ATP-binding cassette transporters expressed by brain cells are involved in the formation of nascent discoidal lipoproteins, but the effect of beta-amyloid (Aβ) assemblies on this process is not fully understood. In this study, we investigated how of Aβ1-42-induced astrogliosis affects the metabolism of cholesterol in vitro. We detected an impairment in the cholesterol efflux of reactive astrocytes attributable to reduced levels of ABCA1 transporters that could explain the decreased lipoproteins’ levels detected in AD patients. To approach this issue, we designed biomimetic HDLs and evaluated their performance as cholesterol acceptors. The results demonstrated the ability of apoA-I nanodiscs to cross the blood–brain barrier in vitro and to promote the cholesterol efflux from astrocytes, making them suitable as a potential supportive treatment for AD to compensate the depletion of cerebral HDLs.
Collapse
Affiliation(s)
- Giulia Sierri
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Marcelo Kravicz
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (B.V.); (B.E.L.); (L.T.)
| | - Laura Calabresi
- Department of Pharmacological and Biomolecular Science, Centro Grossi Paoletti, University of Milan, 20133 Milan, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.S.); (R.D.M.); (B.F.); (L.T.); (S.F.); (M.K.)
- Correspondence:
| |
Collapse
|
25
|
Endres K. Apolipoprotein A1, the neglected relative of Apolipoprotein E and its potential role in Alzheimer's disease. Neural Regen Res 2021; 16:2141-2148. [PMID: 33818485 PMCID: PMC8354123 DOI: 10.4103/1673-5374.310669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/23/2023] Open
Abstract
Lipoproteins are multi-molecule assemblies with the primary function of transportation and processing of lipophilic substances within aqueous bodily fluids (blood, cerebrospinal fluid). Nevertheless, they also exert other physiological functions such as immune regulation. In particular, neurons are both sensitive to uncontrolled responses of the immune system and highly dependent on a controlled and sufficient supply of lipids. For this reason, the role of certain lipoproteins and their protein-component (apolipoproteins, Apo's) in neurological diseases is perceivable. ApoE, for example, is well-accepted as one of the major risk factors for sporadic Alzheimer's disease with a protective allele variant (ε2) and a risk-causing allele variant (ε4). ApoA1, the major protein component of high-density lipoproteins, is responsible for transportation of excess cholesterol from peripheral tissues to the liver. The protein is synthesized in the liver and intestine but also can enter the brain via the choroid plexus and thereby might have an impact on brain lipid homeostasis. This review focuses on the role of ApoA1 in Alzheimer's disease and discusses whether its role within this neurodegenerative disorder is specific or represents a general neuroprotective mechanism.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| |
Collapse
|
26
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
Pedrini S, Hone E, Gupta VB, James I, Teimouri E, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Rainey-Smith S, Verdile G, Sohrabi HR, Raida MR, Wenk MR, Taddei K, Chatterjee P, Martins I, Laws SM, Martins RN. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance. J Alzheimers Dis 2021; 77:733-744. [PMID: 32741823 PMCID: PMC7592676 DOI: 10.3233/jad-200291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elham Teimouri
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ashley I Bush
- CRC for Mental Health, Carlton South, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,University of Melbourne Academic unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Manfred R Raida
- Life Science Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ralph N Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
28
|
Zhu W, Xu L, Zhang H, Tian S, An K, Cao W, Shi J, Tang W, Wang S. Elevated Plasma Free Fatty Acid Susceptible to Early Cognitive Impairment in Type 2 Diabetes Mellitus. J Alzheimers Dis 2021; 82:1345-1356. [PMID: 34151809 DOI: 10.3233/jad-210403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Elevated free fatty acid (FFA) induces lipotoxicity, attributed to diabetes and cognitive decline. Sterol regulatory element-binding protein-1c (SREBP-1c) regulates lipid metabolism. OBJECTIVE We investigated the roles of FFA in mild cognitive impairment (MCI) of type 2 diabetes mellitus (T2DM) patients and determine its association with rs11868035 polymorphism. METHODS We recruited 191 Chinese T2DM patients into two groups through Montreal Cognitive Assessment. Demographic and clinical data were collected, multiple domain cognitive functions were tested, plasma FFA levels were measured through ELISA, and SREBP-1c rs11868035 genotype was detected using the Seqnome method. RESULTS In comparison with the healthy-cognition group (n = 128), the MCI group (n = 63) displayed lower glucose control (p = 0.012) and higher plasma FFA level (p = 0.021), which were independent risk factors of MCI in T2DM patients in multivariate regression analysis (OR = 1.270, p = 0.003; OR = 1.005, p = 0.036). Additionally, the plasma FFA levels of MCI patients were positively correlated with Stroop color word test-C time scores (r = 0.303, p = 0.021) and negatively related to apolipoprotein A1 levels (r = -0.311, p = 0.017), which are associated positively with verbal fluency test scores (r = 0.281, p = 0.033). Both scores reflected attention ability and executive function. Moreover, the G allele carriers of rs11868035 showed higher digit span test scores than non-carriers in T2DM patients (p = 0.019) but without correlation with plasma FFA levels. CONCLUSION In T2DM, elevated plasma level of FFA, when combined with lower apolipoprotein A1 level portends abnormal cholesterol transport, were susceptible to early cognitive impairment, especially for attention and execution deficits. The G allele of SREBP-1c rs11868035 may be a protective factor for memory.
Collapse
Affiliation(s)
- Wenwen Zhu
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lan Xu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Xuzhou, China
| | - Haoqiang Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Wuyou Cao
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jijing Shi
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
29
|
Structural and Functional Impairments of Reconstituted High-Density Lipoprotein by Incorporation of Recombinant β-Amyloid42. Molecules 2021; 26:molecules26144317. [PMID: 34299592 PMCID: PMC8303321 DOI: 10.3390/molecules26144317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Beta (β)-amyloid (Aβ) is a causative protein of Alzheimer’s disease (AD). In the pathogenesis of AD, the apolipoprotein (apo) A-I and high-density lipoprotein (HDL) metabolism is essential for the clearance of Aβ. In this study, recombinant Aβ42 was expressed and purified via the pET-30a expression vector and E.coli production system to elucidate the physiological effects of Aβ on HDL metabolism. The recombinant human Aβ protein (51 aa) was purified to at least 95% purity and characterized in either the lipid-free and lipid-bound states with apoA-I. Aβ was incorporated into the reconstituted HDL (rHDL) (molar ratio 95:5:1, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I) with various apoA-I:Aβ ratios from 1:0 to 1:0.5, 1:1 and 1:2. With an increasing molar ratio of Aβ, the α-helicity of apoA-I was decreased from 62% to 36% with a red shift of the Trp wavelength maximum fluorescence from 337 to 340 nm in apoA-I. The glycation reaction of apoA-I was accelerated further by the addition of Aβ. The treatment of fructose and Aβ caused more multimerization of apoA-I in the lipid-free state and in HDL. The phospholipid-binding ability of apoA-I was impaired severely by the addition of Aβ in a dose-dependent manner. The phagocytosis of LDL into macrophages was accelerated more by the presence of Aβ with the production of more oxidized species. Aβ severely impaired tissue regeneration, and a microinjection of Aβ enhanced embryotoxicity. In conclusion, the beneficial functions of apoA-I and HDL were severely impaired by the addition of Aβ via its detrimental effect on secondary structure. The impairment of HDL functionality occurred more synergistically by means of the co-addition of fructose and Aβ.
Collapse
|
30
|
Romagnoli T, Ortolani B, Sanz JM, Trentini A, Seripa D, Nora ED, Capatti E, Cervellati C, Passaro A, Zuliani G, Brombo G. Serum Apo J as a potential marker of conversion from mild cognitive impairment to dementia. J Neurol Sci 2021; 427:117537. [PMID: 34147956 DOI: 10.1016/j.jns.2021.117537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Apolipoprotein J (ApoJ) is present in both plasma and tissues, including brain. Growing evidence suggest that this protein may play an early role on the development of the two most common forms of dementia, Alzheimer's disease (AD) and vascular dementia (VD). OBJECTIVE To evaluate whether serum ApoJ levels might be able to predict the progression to AD, VD, or mixed dementia (AD&VD) in individuals with mild cognitive impairment (MCI). METHODS Serum ApoJ was measured in 196 MCI subjects (aged ≥60 years) with a median follow up of 2.9 years. RESULTS One hundred thirty-two of the enrolled MCI subjects converted to dementia. Among these, 45% developed AD, 33% mixed dementia, 13% VD (VD), and 9% other forms of dementia. A significant trend toward a progressive reduction in the incidence of dementia, regardless of the type, from tertile I (83.1%), to tertile II (63.1%), to tertile III (56.1%) was observed (p = 0.003). After adjustment for potential confounders, a twofold increase in the risk of conversion to dementia was found in subjects belonging to tertile I of Apo J compared with tertile III; the risk increased after two years of follow up, while no differences emerged within the first 2 years. CONCLUSIONS Our results suggest that in MCI subjects, low APOJ levels may be associated with increased risk of developing dementia.
Collapse
Affiliation(s)
- Tommaso Romagnoli
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Beatrice Ortolani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy.
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Edoardo Dalla Nora
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Eleonora Capatti
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Gloria Brombo
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
31
|
Wu SE, Chen WL. Longitudinal trajectories of metabolic syndrome on different neurocognitive domains: a cohort study from the Taiwan biobank. Aging (Albany NY) 2021; 13:15400-15412. [PMID: 34114969 PMCID: PMC8221342 DOI: 10.18632/aging.203099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
Metabolic syndrome (MetS) brings considerable effects on cognitive function, but trajectories within remain unclear. We investigated the interactions between distinct MetS components and cognitive domains. A total of 5693 participants from the Taiwan biobank during 2008–2018 were enrolled. Participants were classified as either normal or as having MetS at two time points; i.e., study entry and follow-up. At both the time points, cognitive evaluations using the Mini-Mental State Examination (MMSE) were conducted. The hazard ratios (HRs) of mild cognitive impairment (MCI) and dementia were higher in participants meeting more diagnostic components of MetS. Of the five criteria of MetS, three were significantly associated with MCI and dementia: high blood pressure (MCI: HR = 1.203, p < 0.001; dementia: HR = 1.345, p < 0.001), abdominal obesity (MCI: HR = 1.137, p = 0.006; dementia: HR = 1.442, p < 0.001), and low high-density lipoprotein (HDL) level (MCI: HR = 1.149, p = 0.007; dementia: HR = 1.364, p < 0.001). Of the cognitive domains measured, three were significantly associated with MetS; namely, orientation, language, and visuospatial abilities. Participants who were initially diagnosed with MetS but were normal at follow-up had an HR of 1.374 for dementia (p = 0.019), which was beyond our expectations. The undiminished risk of cognitive decline in subjects returning to normal status illustrated that neural injury caused by MetS takes a long time to get repaired. Consequently, earlier detection and management of adjustable risk factors of MetS should be encouraged to minimize the damage.
Collapse
Affiliation(s)
- Shou-En Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
32
|
Sanjana F, Delgorio PL, Hiscox LV, DeConne TM, Hobson JC, Cohen ML, Johnson CL, Martens CR. Blood lipid markers are associated with hippocampal viscoelastic properties and memory in humans. J Cereb Blood Flow Metab 2021; 41:1417-1427. [PMID: 33103936 PMCID: PMC8142125 DOI: 10.1177/0271678x20968032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Age-related memory loss shares similar risk factors as cardiometabolic diseases including elevated serum triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C). The mechanisms linking these aberrant blood lipids to memory loss are not completely understood but may be partially mediated by reduced integrity of the hippocampus (HC), the primary brain structure for encoding and recalling memories. In this study, we tested the hypothesis that blood lipid markers are independently associated with memory performance and HC viscoelasticity-a noninvasive measure of brain tissue microstructural integrity assessed by high-resolution magnetic resonance elastography (MRE). Twenty-six individuals across the adult lifespan were recruited (14 M/12 F; mean age: 42 ± 15 y; age range: 22-78 y) and serum lipid profiles were related to episodic memory and HC viscoelasticity. All subjects were generally healthy without clinically abnormal blood lipids or memory loss. Episodic memory was negatively associated with the TG/HDL-C ratio. HC viscoelasticity was negatively associated with serum TGs and the TG/HDL-C ratio, independent of age and in the absence of associations with HC volume. These data, although cross-sectional, suggest that subtle differences in blood lipid profiles in healthy adults may contribute to a reduction in memory function and HC tissue integrity.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
33
|
Kim HJ, Park JC, Jung KS, Kim J, Jang JS, Kwon S, Byun MS, Yi D, Byeon G, Jung G, Kim YK, Lee DY, Han SH, Mook-Jung I. The clinical use of blood-test factors for Alzheimer's disease: improving the prediction of cerebral amyloid deposition by the QPLEX TM Alz plus assay kit. Exp Mol Med 2021; 53:1046-1054. [PMID: 34108650 PMCID: PMC8257730 DOI: 10.1038/s12276-021-00638-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, and many studies have focused on finding effective blood biomarkers for the accurate diagnosis of this disease. Predicting cerebral amyloid deposition is considered the key for AD diagnosis because a cerebral amyloid deposition is the hallmark of AD pathogenesis. Previously, blood biomarkers were discovered to predict cerebral amyloid deposition, and further efforts have been made to increase their sensitivity and specificity. In this study, we analyzed blood-test factors (BTFs) that can be commonly measured in medical health check-ups from 149 participants with cognitively normal, 87 patients with mild cognitive impairment, and 64 patients with clinically diagnosed AD dementia with brain amyloid imaging data available. We demonstrated that four factors among regular health check-up blood tests, cortisol, triglyceride/high-density lipoprotein cholesterol ratio, alanine aminotransferase, and free triiodothyronine, showed either a significant difference by or correlation with cerebral amyloid deposition. Furthermore, we made a prediction model for Pittsburgh compound B-positron emission tomography positivity, using BTFs and the previously discovered blood biomarkers, the QPLEXTM Alz plus assay kit biomarker panel, and the area under the curve was significantly increased up to 0.845% with 69.4% sensitivity and 90.6% specificity. These results show that BTFs could be used as co-biomarkers and that a highly advanced prediction model for amyloid plaque deposition could be achieved by the combinational use of diverse biomarkers.
Collapse
Affiliation(s)
- Haeng Jun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1E 6BT, UK
| | | | - Jiyeong Kim
- QuantaMatrix Inc, Seoul, 03080, Republic of Korea
| | - Ji Sung Jang
- QuantaMatrix Inc, Seoul, 03080, Republic of Korea
| | | | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Dahyun Yi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gihwan Byeon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul, 03080, Korea.
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
34
|
Zuin M, Cervellati C, Trentini A, Passaro A, Rosta V, Zimetti F, Zuliani G. Association between Serum Concentrations of Apolipoprotein A-I (ApoA-I) and Alzheimer's Disease: Systematic Review and Meta-Analysis. Diagnostics (Basel) 2021; 11:984. [PMID: 34071695 PMCID: PMC8229134 DOI: 10.3390/diagnostics11060984] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A wealth of experimental and epidemiological evidence suggest that Apolipoprotein A-I (ApoA-I), the main protein constituent of high-density lipoprotein (HDL), may protect against Alzheimer disease (AD). To investigate this potential role, we conducted a meta-analysis of the published studies on the relationship between serum ApoA-I and AD occurrence. METHODS We screened MEDLINE, EMBASE, Web of Science, and Scopus, for cross-sectional studies published from inception to 1 March 2021, comparing the ApoA-I serum levels between patients with AD and cognitively normal controls. RESULTS From an initial screening of 245 articles, 5 studies, including 397 AD patients (mean age 75.0 years, 234 females) and 367 controls (mean age 69.2 years, 182 females), met the inclusion criteria. Compared to healthy controls, AD subjects had a lower ApoA-I serum level. The pooled weighted mean difference from a random-effects model was -0.31 g/L (p < 0.0001) (95% Confidence Interval: [-0.62-0.01], with high heterogeneity (I2 = 100%). The Egger's test confirmed an absence of publication bias (t = 0.62, p = 0.576). CONCLUSIONS Our study showed that AD patients present lower serum levels of ApoA-I compared to cognitively normal individuals. Further studies on large population samples are required to support this finding.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
35
|
Soares Martins T, Marçalo R, Ferreira M, Vaz M, Silva RM, Martins Rosa I, Vogelgsang J, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Exosomal Aβ-Binding Proteins Identified by "In Silico" Analysis Represent Putative Blood-Derived Biomarker Candidates for Alzheimer´s Disease. Int J Mol Sci 2021; 22:ijms22083933. [PMID: 33920336 PMCID: PMC8070602 DOI: 10.3390/ijms22083933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access it offers. In the study presented here, emphasis was given to the bioinformatic identification of putative exosomal candidates for AD. The exosomal proteomes of cerebrospinal fluid (CSF), serum and plasma, were obtained from three databases (ExoCarta, EVpedia and Vesiclepedia), and complemented with additional exosomal proteins already associated with AD but not found in the databases. The final biofluids’ proteomes were submitted to gene ontology (GO) enrichment analysis and the exosomal Aβ-binding proteins that can constitute putative candidates were identified. Among these candidates, gelsolin, a protein known to be involved in inhibiting Abeta fibril formation, was identified, and it was tested in human samples. The levels of this Aβ-binding protein, with anti-amyloidogenic properties, were assessed in serum-derived exosomes isolated from controls and individuals with dementia, including AD cases, and revealed altered expression patterns. Identification of potential peripheral biomarker candidates for AD may be useful, not only for early disease diagnosis but also in drug trials and to monitor disease progression, allowing for a timely therapeutic intervention, which will positively impact the patient’s quality of life.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Rui Marçalo
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Maria Ferreira
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Margarida Vaz
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Raquel M. Silva
- Center for Interdisciplinary Research in Health (CIIS), Faculdade de Medicina Dentária, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal;
| | - Ilka Martins Rosa
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Jens Wiltfang
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Correspondence:
| |
Collapse
|
36
|
Azizidoost SH, Babaahmadi-Rezaei H, Nazeri Z, Cheraghzadeh M, Kheirollah A. Impact of Methyl-β-Cyclodextrin and Apolipoprotein A-I on The Expression of ATP-Binding Cassette Transporter A1 and Cholesterol Depletion in C57BL/6 Mice Astrocytes. CELL JOURNAL 2021; 23:93-98. [PMID: 33650825 PMCID: PMC7944131 DOI: 10.22074/cellj.2021.7061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 11/04/2022]
Abstract
Objective Dysregulation of cholesterol metabolism in the brain is responsible for many lipid storage disorders, including
Niemann-Pick disease type C (NPC). Here, we have investigated whether cyclodextrin (CD) and apolipoprotein A-I
(apoA-I) induce the same signal to inhibit cell cholesterol accumulation by focusing on the main proteins involved in
cholesterol homeostasis in response to CD and apoA-I treatment.
Materials and Methods In this experimental study, astrocytes were treated with apoA-I or CD and then lysed in RIPA
buffer. We used Western blot to detect protein levels of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR)
and ATP-binding cassette transporter A1 (ABCA1). Cell cholesterol content and cholesterol release in the medium were
also measured.
Results ApoA-I induced a significant increase in ABCA1 and a mild increase in HMGCR protein level, whereas
CD caused a significant increase in HMGCR with a significant decrease in ABCA1. Both apoA-I and CD increased
cholesterol release in the medium. A mild, but not significant increase, in cell cholesterol content was seen by apoA-I;
however, a significant increase in cell cholesterol was detected when the astrocytes were treated with CD.
Conclusion CD, like apoA-I, depletes cellular cholesterol. This depletion occurs in a different way from apoA-I that
is through cholesterol efflux. Depletion of cell cholesterol with CDs led to reduced protein levels of ABCA1 along with
increased HMGCR and accumulation of cell cholesterol. This suggested that CDs, unlike apoA-I, could impair the
balance between cholesterol synthesis and release, and interfere with cellular function that depends on ABCA1.
Collapse
Affiliation(s)
- S Hirin Azizidoost
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Cellular and Molecular Research Center, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
37
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
38
|
Tóth ME, Dukay B, Hoyk Z, Sántha M. Cerebrovascular Changes and Neurodegeneration Related to Hyperlipidemia: Characteristics of the Human ApoB-100 Transgenic Mice. Curr Pharm Des 2020; 26:1486-1494. [PMID: 32067608 PMCID: PMC7403644 DOI: 10.2174/1381612826666200218101818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023]
Abstract
Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against diet-induced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This mini-review focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.
Collapse
Affiliation(s)
- Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| | - Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Sezeged, Hungary
| |
Collapse
|
39
|
Jääskeläinen O, Solje E, Hall A, Katisko K, Korhonen V, Tiainen M, Kangas AJ, Helisalmi S, Pikkarainen M, Koivisto A, Hartikainen P, Hiltunen M, Ala-Korpela M, Soininen H, Soininen P, Haapasalo A, Remes AM, Herukka SK. Low Serum High-Density Lipoprotein Cholesterol Levels Associate with the C9orf72 Repeat Expansion in Frontotemporal Lobar Degeneration Patients. J Alzheimers Dis 2020; 72:127-137. [PMID: 31561355 PMCID: PMC6839456 DOI: 10.3233/jad-190132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decreased levels of serum high-density lipoprotein (HDL) cholesterol have previously been linked to systemic inflammation and neurodegenerative diseases, such as Alzheimer’s disease. Here, we aimed to analyze the lipoprotein profile and inflammatory indicators, the high-sensitivity C-reactive peptide (hs-CRP) and glycoprotein acetyls (GlycA), in sporadic and C9orf72 repeat expansion-associated frontotemporal lobar degeneration (FTLD) patients. The C9orf72 hexanucleotide repeat expansion is the most frequent genetic etiology underlying FTLD. The concentrations of different lipid measures in the sera of 67 FTLD patients (15 C9orf72 repeat expansion carriers), including GlycA, were analyzed by nuclear magnetic resonance spectroscopy. To verify the state of systemic inflammation, hs-CRP was also quantified from patient sera. We found that the total serum HDL concentration was decreased in C9orf72 repeat expansion carriers when compared to non-carriers. Moreover, decreased concentrations of HDL particles of different sizes and subclass were consistently observed. No differences were detected in the very low- and low-density lipoprotein subclasses between the C9orf72 repeat expansion carriers and non-carriers. Furthermore, hs-CRP and GlycA levels did not differ between the C9orf72 repeat expansion carriers and non-carriers. In conclusion, the HDL-related changes were linked with C9orf72 repeat expansion associated FTLD but were not seen to associate with systemic inflammation. The underlying reason for the HDL changes remains unclear.
Collapse
Affiliation(s)
- Olli Jääskeläinen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Ville Korhonen
- Neuro Center, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Mika Tiainen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Maria Pikkarainen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne Koivisto
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mika Ala-Korpela
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Kuopio University Hospital, Kuopio, Finland
| | - Pasi Soininen
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
40
|
Bradley D. Clusterin as a Potential Biomarker of Obesity-Related Alzheimer's Disease Risk. Biomark Insights 2020; 15:1177271920964108. [PMID: 33110346 PMCID: PMC7555556 DOI: 10.1177/1177271920964108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Over 35% of the adult US population is obese. In turn, excess adiposity increases the risk of multiple complications including type 2 diabetes (T2D), insulin resistance, and cardiovascular disease; yet, obesity also independently heightens risk of Alzheimer's Disease (AD), even after adjusting for other important confounding risk factors including blood pressure, sociodemographics, cholesterol levels, smoking status, and Apolipoprotein E (ApoE) genotype. Among patients over the age of 65 with dementia, 37% have coexisting diabetes, and an estimated 7.3% of cases of AD are directly attributable to midlife obesity. Clusterin, also known as apolipoprotein J (ApoJ), is a multifunctional glycoprotein that acts as a molecular chaperone, assisting folding of secreted proteins. Clusterin has been implicated in several physiological and pathological states, including AD, metabolic disease, and cardiovascular disease. Despite long-standing interest in elucidating clusterin's relationship with amyloid beta (Aβ) aggregation/clearance and toxicity, significant knowledge gaps still exist. Altered clusterin expression and protein levels have been linked with cognitive and memory function, disrupted central nervous system lipid flux, as well as pathogenic brain structure; and its role in cardiometabolic disease suggests that it may be a link between insulin resistance, dyslipidemia, and AD. Here, we briefly highlight clusterin's relevance to AD by presenting existing evidence linking clusterin to AD and cardiometabolic disease, and discussing its potential utility as a biomarker for AD in the presence of obesity-related metabolic disease.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
42
|
Associations between CLU polymorphisms and memory performance: The role of serum lipids in Alzheimer's disease. J Psychiatr Res 2020; 129:281-288. [PMID: 32882505 DOI: 10.1016/j.jpsychires.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
CLU encoding clusterin, has been reported to associate with Alzherimer's disease (AD) by genome-wide association studies (GWAS) based on Caucasian populations. Our previous case-control study has independently confirmed the disease association of CLU in Chinese population. Since little is known about the underlying mechanism of CLU in AD, we have conducted this study to investigate whether the genetic impact of CLU polymorphisms on cognitive functioning is via serum lipid's dysfunction. Three GWAS previously published CLU polymorphisms including rs2279590, rs11136000 and rs9331888, were genotyped in 689 subjects. Serum levels of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and tested as mediators. Delayed Word Recall Test (DWRT) was used to evaluate subjects' memory performance. Multiple mediation analysis, a nonparametric procedure to create confidence interval, was performed according to Preacher and Hayes's Bootstrapping method. Our findings suggested significant correlation between CLU polymorphism and DWRT scores for rs11136000 (p = 0.045) after adjustment for age, gender, body mass index, and APOEε4 status, with borderline significant correlation for rs2279590 (p = 0.058). Both T allele of rs11136000 and A allele of rs2279590 were negatively correlated with serum TG levels (p = 0.003; p = 0.001, separately). Moreover, A allele of rs2279590 was positively correlated with serum HDL-C levels (p = 0.015). Consistent with our hypotheses, the genetic impact of CLU polymorphisms on memory performance were partially mediated through TG (rs11136000 95% CI [-0.099,-0.003] and rs2279590 95% CI [-0.104, -0.004]), but not through HDL-C and LDL-C. Our findings indicate CLU polymorphisms may modify AD susceptibility through lipid metabolic pathway.
Collapse
|
43
|
BET bromodomains as novel epigenetic targets for brain health and disease. Neuropharmacology 2020; 181:108306. [PMID: 32946883 DOI: 10.1016/j.neuropharm.2020.108306] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic pharmacotherapy for CNS-related diseases is a burgeoning area of research. In particular, members of the bromodomain and extra-terminal domain (BET) family of proteins have emerged as intriguing therapeutic targets due to their putative involvement in an array of brain diseases. With their ability to bind to acetylated histones and act as a scaffold for chromatin modifying complexes, BET proteins were originally thought of as passive epigenetic 'reader' proteins. However, new research depicts a more complex reality where BET proteins act as key nodes in lineage-specific and signal-dependent transcriptional mechanisms to influence disease-relevant functions. Amid a recent wave of drug development efforts from basic scientists and pharmaceutical companies, BET inhibitors are currently being studied in several CNS-related disease models, but safety and tolerability remain a concern. Here we review the progress in understanding the neurobiological mechanisms of BET proteins and the therapeutic potential of targeting BET proteins for brain health and disease.
Collapse
|
44
|
Hu H, Tan L, Bi YL, Xu W, Tan L, Shen XN, Hou XH, Ma YH, Dong Q, Yu JT. Association of serum Apolipoprotein B with cerebrospinal fluid biomarkers of Alzheimer's pathology. Ann Clin Transl Neurol 2020; 7:1766-1778. [PMID: 32910550 PMCID: PMC7545610 DOI: 10.1002/acn3.51153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Objective To examine whether apolipoprotein B (ApoB), apolipoprotein A‐1 (ApoA1), or their ratio (ApoB/A1) were associated with early changes in cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) pathology in elderly adults with subjective cognitive decline (SCD). Methods This study included 507 objective cognitive normal participants from the Chinese Alzheimer’s Biomarker and LifestylE (CABLE) database including 288 cognitive normal participants (CN) and 219 SCD. Multiple linear regression models were used to examine the associations of apolipoproteins with CSF AD biomarkers. Results Compared with control group, SCD participants with significant AD biological characteristics had lower ApoB levels (P = 0.0461). In total participants, lower level of serum ApoB was associated with decreases in CSF Aβ42 (P = 0.0015) and Aβ42/40 (P = 0.0081) as well as increases in CSF p‐tau/Aβ42 (P < 0.0001) and t‐tau/Aβ42 (P = 0.0013), independent of APOEɛ4 status. In further subgroup analysis, these associations were more significant in SCD participants (ApoB × Diagnose: P < 0.05). In addition, lower levels of ApoB were also found associated with increases in p‐tau in the SCD subgroup (P = 0.0263). Furthermore, these protective associations were more significant in the overweight participants (ApoB × weight: P < 0.05). Results showed no association between ApoA1 and CSF biomarkers. Interpretation This study is the first to find protective associations of serum ApoB with CSF AD core biomarkers, especially in SCD individuals. It indicated that ApoB may be a potential biomarker for preclinical AD and may play different roles in different stages of AD.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
45
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
46
|
Ko Y, Chye SM. Lifestyle intervention to prevent Alzheimer's disease. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0072/revneuro-2020-0072.xml. [PMID: 32804681 DOI: 10.1515/revneuro-2020-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 02/28/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that leads to significant morbidities in elderly. The major pathological hallmark of AD is beta-amyloid plaques (Aβ) and intracellular neurofibrillary tangles (NFTs) deposition in hippocampus of the brain. These abnormal protein deposition damages neuronal cells resulting in neurodegeneration and cognitive decline. As a result of limited treatment options available for this disease, there is huge economic burden for patients and social health care system. Thus, alternative approaches (lifestyle intervention) to prevent this disease are extremely important. In this systemic review, we summarized epidemiological evidence of lifestyle intervention and the mechanisms involved in delaying and/or preventing AD. Lifestyle interventions include education, social engagement and cognitive stimulation, smoking, exercise, depression and psychological stress, cerebrovascular disease (CVD), hypertension (HTN), dyslipidaemia, diabetes mellitus (DM), obesity and diet. The methods are based on a literature review of available sources found on the research topic in four acknowledged databases: Web of Science, Scopus, Medline and PubMed. Results of the identified original studies revealed that lifestyle interventions have significant effects and our conclusion is that combination of early lifestyle interventions can decrease the risk of developing AD.
Collapse
Affiliation(s)
- Yi Ko
- School of Medicine, Queen's University Belfast, University Rd, Belfast, BT7 1NN,Northern Ireland, UK
| | - Soi Moi Chye
- School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur, 57000,Malaysia
| |
Collapse
|
47
|
Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020; 34:11883-11899. [PMID: 32681583 DOI: 10.1096/fj.201903128rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.
Collapse
Affiliation(s)
- Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
48
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
49
|
Gatti L, Tinelli F, Scelzo E, Arioli F, Di Fede G, Obici L, Pantoni L, Giaccone G, Caroppo P, Parati EA, Bersano A. Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21103435. [PMID: 32414028 PMCID: PMC7279405 DOI: 10.3390/ijms21103435] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aβ) protein as well as ‘the prion hypothesis’ have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.
Collapse
Affiliation(s)
- Laura Gatti
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Francesca Tinelli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Emma Scelzo
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Francesco Arioli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Leonardo Pantoni
- “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Giorgio Giaccone
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Eugenio Agostino Parati
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
- Correspondence: ; Tel.: +39-0223943310
| |
Collapse
|
50
|
Robert J, Button EB, Martin EM, McAlary L, Gidden Z, Gilmour M, Boyce G, Caffrey TM, Agbay A, Clark A, Silverman JM, Cashman NR, Wellington CL. Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegener 2020; 15:23. [PMID: 32213187 PMCID: PMC7093966 DOI: 10.1186/s13024-020-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Present address: Institute of Clinical Chemistry, University Hospital Zurich, 8000, Zurich, Switzerland.
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Emma M Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zoe Gidden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Guilaine Boyce
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tara M Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Andrew Agbay
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Amanda Clark
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Judith M Silverman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Neil R Cashman
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| |
Collapse
|