1
|
Ito Y, Tanaka H, Murakami A, Fuchi Y, Hari Y. Synthesis of fluorescent 5-heteroarylpyrimidine-containing oligonucleotides via post-synthetic trifluoromethyl conversion. Org Biomol Chem 2024; 22:3510-3517. [PMID: 38619422 DOI: 10.1039/d4ob00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Post-synthetic conversion of the trifluoromethyl group to a heteroaryl group at the C5 position of the pyrimidine base in DNA oligonucleotides was achieved. Specifically, the oligonucleotides containing 5-trifluoromethylpyrimidine bases were treated with o-phenylenediamines and o-aminothiophenols as nucleophiles to afford the corresponding 5-(benzimidazol-2-yl)- and 5-(benzothiazol-2-yl)-pyrimidine-modified bases. Furthermore, evaluation of the fluorescence properties of the obtained oligonucleotides revealed that among them the oligonucleotide containing 5-(5-methylbenzimidazol-2-yl)cytosine exhibited the highest fluorescence intensity. These results indicated that post-synthetic trifluoromethyl conversion, which is practical and operationally simple, is a powerful tool for exploring functional oligonucleotides.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Hisato Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Ayana Murakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
2
|
Das A, Ghosh A, Kundu J, Egli M, Manoharan M, Sinha S. Synthesis and Biophysical Studies of High-Affinity Morpholino Oligomers Containing G-Clamp Analogs. J Org Chem 2023; 88:15168-15175. [PMID: 37843026 DOI: 10.1021/acs.joc.3c01658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Successful syntheses of chlorophosphoramidate morpholino monomers containing tricyclic cytosine analogs phenoxazine, G-clamp, and G8AE-clamp were accomplished. These modified monomers were incorporated into 12-mer oligonucleotides using trityl-chemistry by an automated synthesizer. The resulting phosphorodiamidate morpholino oligomers, containing a single G-clamp, demonstrated notably higher affinity for complementary RNA and DNA compared to the unmodified oligomers under neutral and acidic conditions. The duplexes of RNA and DNA with G-clamp-modified oligomers adopt a B-type helical conformation, as evidenced by CD-spectra and show excellent base recognition properties. Binding affinities were sequence and position dependent.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jayanta Kundu
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Das A, Ghosh A, Sinha S. C5-pyrimidine-functionalized morpholino oligonucleotides exhibit differential binding affinity, target specificity and lipophilicity. Org Biomol Chem 2023; 21:1242-1253. [PMID: 36633261 DOI: 10.1039/d2ob01759h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
C5-substituted uridine and cytidine morpholino chlorophosphoramidate monomers were synthesized and incorporated into a 12-mer Phosphorodiamidate Morpholino Oligonucleotide (PMO) using semi-automated solid phase synthesis. PMOs with most of the tested pyrimidine C5-substitutions have significantly increased thermal stability when bound to the complementary RNA strand relative to the PMO. They exhibit higher binding with RNA than DNA. CD-spectra show B-type helical conformation of duplexes. HPLC analysis indicates their greater lipophilicity compared to regular PMOs. These chemical modifications have significant potential towards the development of better antisense technologies.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
Shang J, He L, Wang J, Tong A, Xiang Y. In Situ Visualizing Nascent RNA by Exploring DNA-Templated Oxidative Amination of 4-Thiouridine. Bioconjug Chem 2022; 33:164-171. [PMID: 34910465 DOI: 10.1021/acs.bioconjchem.1c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tracking and mapping the nascent RNA molecules in cells is essential for deciphering embryonic development and neuronal differentiation. Here, we utilized 4-thiouridine (s4U) as a metabolic tag to label nascent RNA and developed a fluorescence imaging method based on the DNA-templated oxidative amination (DTOA) reaction of s4U. The DTOA reaction occurred between amine-modified DNA and s4U-containing RNA with high sequence specificity and chemical selectivity. Target nascent mRNAs in HeLa cells, including those encoding green fluorescent proteins (GFPs) and endogenous BAG-1, were thus lit up selectively by DTOA-based fluorescence in situ hybridization (DTOA FISH). We believe the DTOA conjugation chemistry shown in this study could be generally applied to investigate the spatial distribution of nascent transcription dynamics in cellular processes.
Collapse
Affiliation(s)
- Jiachen Shang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Luo He
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jingyi Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Aro-Heinilä A, Lepistö A, Äärelä A, Lönnberg TA, Virta P. 2-Trifluoromethyl-6-mercurianiline Nucleotide, a Sensitive 19F NMR Probe for Hg(II)-mediated Base Pairing. J Org Chem 2022; 87:137-146. [PMID: 34905374 PMCID: PMC8749955 DOI: 10.1021/acs.joc.1c02056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/02/2023]
Abstract
A 2-trifluoromethylaniline C-nucleoside was synthesized, incorporated in the middle of an oligonucleotide, and mercurated. The affinity of the mercurated oligonucleotide toward complementary strands placing each of the canonical nucleobases opposite to the organomercury nucleobase analogue was examined by ultraviolet (UV), circular dichroism (CD), and 19F NMR spectroscopy analyses. According to the UV melting profile analysis, the organomercury nucleobase analogue showed increased affinities in the order T > G > C > A. The CD profiles indicated the typical B-type helix in each case. The 19F resonance signal proved sensitive for the local environmental changes, showing clearly distinct signals for the duplexes with different opposing nucleobases. Furthermore, valuable information on the mercurated oligonucleotide and its binding to complementary strands at varying temperature could be obtained by 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Assi Lepistö
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Antti Äärelä
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | | | - Pasi Virta
- Department of Chemistry, University
of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
6
|
Affiliation(s)
- Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Science Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Science Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
7
|
He H, Xu L, Sun R, Zhang Y, Huang Y, Chen Z, Li P, Yang R, Xiao G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG-chitotriomycin, lipochitooligosaccharides and capuramycin. Chem Sci 2021; 12:5143-5151. [PMID: 34163751 PMCID: PMC8179548 DOI: 10.1039/d0sc06815b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward β-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.
Collapse
Affiliation(s)
- Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
8
|
Hari Y, Ito Y, Hama C, Osawa T. The Effect of the Base Triplets Adjacent to a T•CG or 5-MethylC•CG Triplet in the Triplex DNA. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ito Y, Hayashi H, Fuchi Y, Hari Y. Post-synthetic modification of oligonucleotides containing 5-mono- and 5-di-fluoromethyluridines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Li P, He H, Xu L, Huang Y, Chen Z, Zhang Y, Yang R, Xiao G. Ortho-(1-phenylvinyl)benzyl glycosides: Ether-type glycosyl donors for the efficient synthesis of both O-glycosides and nucleosides. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
12
|
Modulation of the stereoselectivity and reactivity of glycosylation via ( p -Tol) 2 SO/Tf 2 O preactivation strategy: From O -, C -sialylation to general O -, N -glycosylation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Disubstituted cobalt bis(1,2-dicarbollide)(-I) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-I) nucleoside conjugates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Ito Y, Matsuo M, Osawa T, Hari Y. Triplex- and Duplex-Forming Abilities of Oligonucleotides Containing 2'-Deoxy-5-trifluoromethyluridine and 2'-Deoxy-5-trifluoromethylcytidine. Chem Pharm Bull (Tokyo) 2017; 65:982-988. [PMID: 28966282 DOI: 10.1248/cpb.c17-00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A facile synthesis of 2'-deoxy-5-trifluoromethyluridine and 2'-deoxy-5-trifluoromethylcytidine phosphoramidites from commercially available 2'-deoxyuridine and 2'-deoxycytidine was achieved, respectively. The obtained phosphoramidites were incorporated into oligonucleotides, and their binding affinity to double-stranded DNA (dsDNA) and single-stranded RNA (ssRNA) was evaluated by UV-melting experiments. The triplex-forming abilities of oligonucleotides including 5-trifluoromethylpyrimidine nucleobases with dsDNA were decreased. Especially, the stability of the triplex containing a trifluoromethylcytosine (CF3C)-GC base triplet was low, likely due to the low pKa of protonated CF3C by the electron-withdrawing trifluoromethyl group. A slight decrease in stability of the duplex formed with ssRNA by oligonucleotides including 5-trifluoromethylpyrimidine nucleobases was only observed, suggesting that they might be applicable to various ssRNA-targeted technologies using features of fluorine atoms.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Misaki Matsuo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Takashi Osawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
15
|
Kong D, Yeung W, Hili R. Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates. ACS COMBINATORIAL SCIENCE 2016; 18:355-70. [PMID: 27275512 DOI: 10.1021/acscombsci.6b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| | - Wayland Yeung
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| | - Ryan Hili
- Department of Chemistry, University of Georgia, 140 Cedar
Street, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Svensen N, Jaffrey SR. Fluorescent RNA Aptamers as a Tool to Study RNA-Modifying Enzymes. Cell Chem Biol 2016; 23:415-25. [PMID: 26877022 DOI: 10.1016/j.chembiol.2015.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
RNA-modifying enzymes are difficult to assay due to the absence of fluorometric substrates. Here we show that the Broccoli, a previously reported fluorescent RNA-dye complex, can be modified to contain N(6)-methyladenosine, a prevalent mRNA base modification. Methylated Broccoli is nonfluorescent but, upon demethylation by the RNA demethylases fat mass and obesity-associated protein (FTO) or ALKBH5, it binds and activates the fluorescence of its cognate fluorophore. We describe a high-throughput screen (HTS) for FTO inhibitors using the fluorogenic methylated Broccoli substrate HTS assay, which performs robustly with a Z' factor >0.8 in the LOPAC1280 library. This allowed the identification of novel high-affinity FTO inhibitors. Several of these compounds were selective for FTO over the related demethylase, ALKBH5, and increase methylation of endogenous FTO target mRNAs in cells. Lastly, we show that Broccoli can be modified to contain other base modifications, suggesting that this approach could be generally applicable for assaying diverse RNA-modifying enzymes.
Collapse
Affiliation(s)
- Nina Svensen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Lei Y, Kong D, Hili R. A High-Fidelity Codon Set for the T4 DNA Ligase-Catalyzed Polymerization of Modified Oligonucleotides. ACS COMBINATORIAL SCIENCE 2015; 17:716-21. [PMID: 26513677 DOI: 10.1021/acscombsci.5b00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vitro selection of nucleic acid polymers can readily deliver highly specific receptors and catalysts for a variety of applications; however, it is suspected that the functional group deficit of nucleic acids has limited their potential with respect to proteinogenic polymers. This has stimulated research toward expanding their chemical diversity to bridge the functional gap between nucleic acids and proteins to develop a superior biopolymer. In this study, we investigate the effect of codon library size and composition on the sequence specificity of T4 DNA ligase in the DNA-templated polymerization of both unmodified and modified oligonucleotides. Using high-throughput DNA sequencing of duplex pairs, we have uncovered a 256-membered codon set that yields sequence-defined modified ssDNA polymers in high yield and with high fidelity.
Collapse
Affiliation(s)
- Yi Lei
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Dehui Kong
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Ryan Hili
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
18
|
Sugimura H, Endo S, Ishizuka K. Stereocontrolled approach for the syntheses of 3-isopurine nucleosides: 3-(2-deoxy-β-d-ribofuranosyl)xanthine and isoguanine by intramolecular glycosylation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Hornum M, Kumar P, Podsiadly P, Nielsen P. Increasing the Stability of DNA:RNA Duplexes by Introducing Stacking Phenyl-Substituted Pyrazole, Furan, and Triazole Moieties in the Major Groove. J Org Chem 2015; 80:9592-602. [PMID: 26334359 DOI: 10.1021/acs.joc.5b01577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Consecutive incorporations of our previously published thymidine analogue, 5-(1-phenyl-1H-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W in oligonucleotides, has demonstrated significant duplex-stabilizing properties due to its efficient staking properties in the major groove of DNA:RNA duplexes. The corresponding 2'-deoxycytidine analogue is not as well-accommodated in duplexes, however, due to its clear preference for the ring-flipped coplanar conformation. In our present work, we have used ab initio calculations to design two new building blocks, 5-(5-phenylfuran-2-yl)-2'-deoxycytidine monomer Y and 5-(1-phenyl-1H-pyrazol-3-yl)-2'-deoxycytidine monomer Z, that emulate the conformation of W. These monomers were synthesized by Suzuki-Miyaura couplings, and the pyrazole moiety was obtained in a cycloaddition from N-phenylsydnone. We show that the novel analogues Y and Z engage in efficient stacking either with themselves or with W due to a better overlap of the aromatic moieties. Importantly, we demonstrate that this translates into very thermally stable DNA:RNA duplexes, thus making Y and especially Z good candidates for improving the binding affinities of oligonucleotide-based therapeutics. Since we now have both efficiently stacking T and C analogues in hand, any purine rich stretch can be effectively targeted using these simple analogues. Notably, we show that the introduction of the aromatic rings in the major groove does not significantly change the helical geometry.
Collapse
Affiliation(s)
- Mick Hornum
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Pawan Kumar
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Patricia Podsiadly
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Nucleic Acid Center, Department of Physics, Chemistry & Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
20
|
Tähtinen V, Granqvist L, Virta P. Synthesis of C-5, C-2' and C-4'-neomycin-conjugated triplex forming oligonucleotides and their affinity to DNA-duplexes. Bioorg Med Chem 2015; 23:4472-4480. [PMID: 26118338 DOI: 10.1016/j.bmc.2015.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Neomycin-conjugated homopyrimidine oligo 2'-deoxyribonucleotides have been synthesized on a solid phase and their potential as triplex forming oligonucleotides (TFOs) with DNA-duplexes has been studied. For the synthesis of the conjugates, C-5, C-2' and C-4'-tethered alkyne-modified nucleoside derivatives were used as an integral part of the standard automated oligonucleotide chain elongation. An azide-derived neomycin was then conjugated to the incorporated terminal alkynes by Cu(I)-catalyzed 1,3-dipolar cycloaddition (the click chemistry). Concentrated ammonia released the desired conjugates in acceptable purity and yields. The site of conjugation was expectedly important for the Hoogsteen-face recognition: C-5-conjugation showed a notable positive effect, whereas the influence of the C-2' and C-4'-modification remained marginal. In addition to conventional characterization methods (UV- and CD-spectroscopy), (19)F NMR spectroscopy was applied for the monitoring of triplex/duplex/single strand-conversions.
Collapse
Affiliation(s)
- Ville Tähtinen
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Lotta Granqvist
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
21
|
Guenther DC, Kumar P, Anderson BA, Hrdlicka PJ. C5-amino acid functionalized LNA: positively poised for antisense applications. Chem Commun (Camb) 2015; 50:9007-9. [PMID: 24983883 DOI: 10.1039/c4cc03623a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Incorporation of positively charged C5-amino acid functionalized LNA uridines into oligodeoxyribonucleotides (ONs) results in extraordinary RNA affinity, binding specificity and stability towards 3'-exonucleases.
Collapse
Affiliation(s)
- Dale C Guenther
- Department of Chemistry, University of Idaho, 875 Perimeter Drive MS2343, Moscow, ID 83844-2343, USA.
| | | | | | | |
Collapse
|
22
|
Liu GJ, Zhang XT, Xing GW. A general method for N-glycosylation of nucleobases promoted by (p-Tol)2SO/Tf2O with thioglycoside as donor. Chem Commun (Camb) 2015; 51:12803-6. [DOI: 10.1039/c5cc03617h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
35 nucleosides were synthesized by coupling thioglycosides with pyrimidines and purines under the preactivation of (p-Tol)2SO/Tf2O in high yields and with β-stereoselectivities.
Collapse
Affiliation(s)
- Guang-jian Liu
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xiao-tai Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guo-wen Xing
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
23
|
Ilinova A, Semioshkin A, Lobanova I, Bregadze VI, Mironov AF, Paradowska E, Studzińska M, Jabłońska A, Białek-Pietras M, Leśnikowski ZJ. Synthesis, cytotoxicity and antiviral activity studies of the conjugates of cobalt bis(1,2-dicarbollide)(-I) with 5-ethynyl-2′-deoxyuridine and its cyclic derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Pezo V, Schepers G, Lambertucci C, Marlière P, Herdewijn P. Probing ambiguous base-pairs by genetic transformation with XNA templates. Chembiochem 2014; 15:2255-8. [PMID: 25158283 DOI: 10.1002/cbic.201402226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Indexed: 11/11/2022]
Abstract
The templating potential of anhydrohexitol oligonucleotides bearing ambiguous bases was studied in vivo, by using a selection screen for mosaic heteroduplex plasmids in Escherichia coli. 1,5-Anhydro-2,3-dideoxy-2-(5-nitroindazol-1-yl)-D-arabino-hexitol showed the greatest ambiguity among the three nucleosides tested. At most two successive ambiguous bases could be tolerated on hexitol templates read in bacterial cells. Hexitol nucleosides bearing simplified heterocycles thus stand as promising monomers for generating random DNA sequences in vivo from defined synthetic oligonucleotides.
Collapse
Affiliation(s)
- Valérie Pezo
- CEA, DSV, IG, Genoscope, 2 rue Gaston Crémieux 91057 Evry Cedex (France); ISSB, Génopole genavenir6, Equipe Xénome, 5 rue Henri Desbruères 91030 Evry Cedex (France)
| | | | | | | | | |
Collapse
|
25
|
Kaura M, Kumar P, Hrdlicka PJ. Synthesis, hybridization characteristics, and fluorescence properties of oligonucleotides modified with nucleobase-functionalized locked nucleic acid adenosine and cytidine monomers. J Org Chem 2014; 79:6256-68. [PMID: 24933409 DOI: 10.1021/jo500994c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Conformationally restricted nucleotides such as locked nucleic acid (LNA) are very popular as affinity-, specificity-, and stability-enhancing modifications in oligonucleotide chemistry to produce probes for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. Considerable efforts have been devoted in recent years to optimize the biophysical properties of LNA through additional modification of the sugar skeleton. We recently introduced C5-functionalization of LNA uridines as an alternative and synthetically more straightforward approach to improve the biophysical properties of LNA. In the present work, we set out to test the generality of this concept by studying the characteristics of oligonucleotides modified with four different C5-functionalized LNA cytidine and C8-functionalized LNA adenosine monomers. The results strongly suggest that C5-functionalization of LNA pyrimidines is indeed a viable approach for improving the binding affinity, target specificity, and/or enzymatic stability of LNA-modified ONs, whereas C8-functionalization of LNA adenosines is detrimental to binding affinity and specificity. These insights will impact the future design of conformationally restricted nucleotides for nucleic acid targeting applications.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States
| | | | | |
Collapse
|
26
|
Kumar P, Østergaard ME, Baral B, Anderson BA, Guenther DC, Kaura M, Raible DJ, Sharma PK, Hrdlicka PJ. Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid). J Org Chem 2014; 79:5047-61. [PMID: 24825249 PMCID: PMC4049237 DOI: 10.1021/jo500614a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 01/07/2023]
Abstract
Oligonucleotides modified with conformationally restricted nucleotides such as locked nucleic acid (LNA) monomers are used extensively in molecular biology and medicinal chemistry to modulate gene expression at the RNA level. Major efforts have been devoted to the design of LNA derivatives that induce even higher binding affinity and specificity, greater enzymatic stability, and more desirable pharmacokinetic profiles. Most of this work has focused on modifications of LNA's oxymethylene bridge. Here, we describe an alternative approach for modulation of the properties of LNA: i.e., through functionalization of LNA nucleobases. Twelve structurally diverse C5-functionalized LNA uridine (U) phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides (ONs), which were then characterized with respect to thermal denaturation, enzymatic stability, and fluorescence properties. ONs modified with monomers that are conjugated to small alkynes display significantly improved target affinity, binding specificity, and protection against 3'-exonucleases relative to regular LNA. In contrast, ONs modified with monomers that are conjugated to bulky hydrophobic alkynes display lower target affinity yet much greater 3'-exonuclease resistance. ONs modified with C5-fluorophore-functionalized LNA-U monomers enable fluorescent discrimination of targets with single nucleotide polymorphisms (SNPs). In concert, these properties render C5-functionalized LNA as a promising class of building blocks for RNA-targeting applications and nucleic acid diagnostics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Michael E. Østergaard
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Bharat Baral
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Brooke A. Anderson
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Dale C. Guenther
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Mamta Kaura
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Daniel J. Raible
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Pawan K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Patrick J. Hrdlicka
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|
27
|
Hari Y, Ijitsu S, Akabane-Nakata M, Yoshida T, Obika S. Kinetic study of the binding of triplex-forming oligonucleotides containing partial cationic modifications to double-stranded DNA. Bioorg Med Chem Lett 2014; 24:3046-9. [PMID: 24865415 DOI: 10.1016/j.bmcl.2014.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 01/21/2023]
Abstract
Several triplex-forming oligonucleotides (TFOs) partially modified with 2'-O-(2-aminoethyl)- or 2'-O-(2-guanidinoethyl)-nucleotides were synthesized and their association rate constants (kon) with double-stranded DNA were estimated by UV spectrophotometry. Introduction of cationic modifications in the 5'-region of the TFOs significantly increased the kon values compared to that of natural TFO, while no enhancement in the rate of triplex DNA formation was observed when the modifications were in the middle and at the 3'-region. The kon value of a TFO with three adjacent cationic modifications at the 5'-region was found to be 3.4 times larger than that of a natural one. These results provide useful information for overcoming the inherent sluggishness of triplex DNA formation.
Collapse
Affiliation(s)
- Yoshiyuki Hari
- Graduate School of Phamaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan.
| | - Shin Ijitsu
- Graduate School of Phamaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Masaaki Akabane-Nakata
- Graduate School of Phamaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Takuya Yoshida
- Graduate School of Phamaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Phamaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
28
|
Hari Y, Obika S, Nakahara M, Ijitsu S. The Ability of 1-Aryltriazole-Containing Nucleobases to Recognize a TA Base Pair in Triplex DNA. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Semioshkin A, Ilinova A, Lobanova I, Bregadze V, Paradowska E, Studzińska M, Jabłońska A, Lesnikowski ZJ. Synthesis of the first conjugates of 5-ethynyl-2′-deoxyuridine with closo-dodecaborate and cobalt-bis-dicarbollide boron clusters. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer. Bioorg Med Chem 2013; 21:5583-8. [PMID: 23830701 DOI: 10.1016/j.bmc.2013.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/22/2022]
Abstract
Phosphoramidites containing 2-propynyloxy or 1-butyn-4-yl as nucleobase precursors were synthesized and introduced into oligonucleotides using an automated DNA synthesizer. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of the oligonucleotides with various azides gave the corresponding triazolylated oligonucleotides, triplex-forming ability of these synthetic oligonucleotides with double-stranded DNA targets was evaluated by UV melting experiments. It was found that nucleobases containing 2-(1-m-carbonylaminophenyl-1,2,3-triazol-4-yl)ethyl units likely interacted with A of a TA base pair in a parallel triplex DNA.
Collapse
|
31
|
Krishnamurthy R. Role of pK(a) of nucleobases in the origins of chemical evolution. Acc Chem Res 2012; 45:2035-44. [PMID: 22533519 PMCID: PMC3525050 DOI: 10.1021/ar200262x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Indexed: 11/30/2022]
Abstract
The formation of canonical base pairs through Watson-Crick hydrogen bonding sits at the heart of the genetic apparatus. The specificity of the base pairing of adenine with thymine/uracil and guanine with cytosine preserves accurate information for the biochemical blueprint and replicates the instructions necessary for carrying out biological function. The chemical evolution question of how these five canonical nucleobases were selected over various other possibilities remains intriguing. Since these and alternative nucleobases would have been available for chemical evolution, the reasons for the emergence of this system appear to be primarily functional. While investigating the base-pairing properties of structural nucleic acid analogs, we encountered a relationship between the pK(a) of a series of nonstandard (and canonical) nucleobases and the pH of the aqueous medium. This relationship appeared to correspond with the propensity of these molecules to self-assemble via Watson-Crick-type base-pairing interactions. A simple correlation of the "magnitude of the difference between the pK(a) and pH" (pK(a)-pH correlation) enables a general prediction of which types of heterocyclic recognition elements form hydrogen-bonded base pairs in aqueous media. Using the pK(a)-pH relationship, we can rationalize why nature chose the canonical nucleobases in terms of hydrophobic and hydrophilic interactions, and further extrapolate its significance within the context of chemical evolution. The connection between the physicochemical properties of bioorganic compounds and the interactions with their aqueous environment directly affects structure and function, at both a molecular and a supramolecular level. A general structure-function pattern emerges in biomolecules and biopolymers in aqueous media near neutral pH. A pK(a) - pH < 2 generally prompts catalytic functions, central to metabolism, but a difference in pK(a) - pH > 2 seems to result in the emergence of structure, central to replication. While this general trend is observed throughout extant biology, it could have also been an important factor in chemical evolution.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Wojciechowski F, Lietard J, Leumann CJ. 2-Pyrenyl-DNA: Synthesis, Pairing, and Fluorescence Properties. Org Lett 2012; 14:5176-9. [DOI: 10.1021/ol302150a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Filip Wojciechowski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jory Lietard
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Christian J. Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
33
|
Kumar P, Chandak N, Nielsen P, Sharma PK. Sulfonamide bearing oligonucleotides: simple synthesis and efficient RNA recognition. Bioorg Med Chem 2012; 20:3843-9. [PMID: 22579616 DOI: 10.1016/j.bmc.2012.04.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/14/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
Abstract
Four pyrimidine nucleosides wherein a benzensulfonamide group is linked to the C-5 position of the uracil nucleobase through a triazolyl or an alkynyl linker were prepared by Cu(I)-assisted azide-alkyne cycloadditions (CuAAC) or Sonogashira reactions, respectively, and incorporated into oligonucleotides. Efficient π-π-stacking between two or more phenyltriazoles in the major groove was found to increase the thermal stability of a DNA:RNA duplex significantly. On the other hand, the alkynyl group was not as efficient in stacking as the triazolyl group. No effect of positional orientation of the sulfonamide group on the stacking efficiency was observed, and the most stable DNA:RNA duplex contained four consecutive sulfonamide substituted phenyltriazole moieties in the major groove.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136 119, India
| | | | | | | |
Collapse
|
34
|
Sari O, Roy V, Balzarini J, Snoeck R, Andrei G, Agrofoglio LA. Synthesis and antiviral evaluation of C5-substituted-(1,3-diyne)-2'-deoxyuridines. Eur J Med Chem 2012; 53:220-8. [PMID: 22578783 DOI: 10.1016/j.ejmech.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/19/2012] [Accepted: 04/03/2012] [Indexed: 11/17/2022]
Abstract
Starting from acetylated 5-ethynyl-2'-deoxyuridine (3), 14 hitherto unknown C5-substituted-(1,3-diyne)-2'-deoxyuridines (with cyclopropyl, hydroxymethyl, methylcyclopentane, p-(substituted)phenyl and disubstituted-phenyl substituents) have been synthesized via a nickel-copper catalyzed C-H activation between two terminal alkynes, in yields ranging from 19% to 67%. Their antiviral activities were measured against a large number of DNA and RNA viruses including herpes simplex virus type 1 and type 2, varicella-zoster virus, human cytomegalovirus and vaccinia virus. The 5-[4-(4-trifluoromethoxyphenyl)buta-1,3-diynyl]-2'-deoxyuridine (26) is the most potent inhibitor of this series against VZV with an EC(50) of ~1 μM and a CC(50) of 55 μM. Their cytostatic activities were determined against murine leukemia cells, human T-lymphocyte cells and cervix carcinoma cells. Compounds were also evaluated on a wide panel of RNA viruses, including influenza virus A (H1N1 and H3N2) and B in MDCK cell cultures, parainfluenza-3 virus, reovirus-1, Sindbis virus and Punta Toro virus in Vero cell cultures and vesicular stomatitis, coxsackie B4 and respiratory syncytial virus in HeLa cell cultures and against human immunodeficiency virus type 1 and 2 in CEM cell cultures, with no specific antiviral effect. This class of compounds could be of further interest for lead optimization as anti-infectious (i.e. herpetic) agents.
Collapse
Affiliation(s)
- Ozkan Sari
- Institut de Chimie Organique et Analytique, UMR 7311 CNRS, Université d'Orléans, UFR Science-rue de chartres, 45067 Orléans, France
| | | | | | | | | | | |
Collapse
|
35
|
Manicardi A, Accetta A, Tedeschi T, Sforza S, Marchelli R, Corradini R. PNA bearing 5-azidomethyluracil: a novel approach for solid and solution phase modification. ARTIFICIAL DNA, PNA & XNA 2012; 3:53-62. [PMID: 22772040 PMCID: PMC3429531 DOI: 10.4161/adna.20158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fmoc- and Boc-protected modified monomers bearing 5-azidomethyluracil nucleobase were synthesized. Four different solid-phase synthetic strategies were tested in order to evaluate the application of this series of monomers for the solid-phase synthesis of modified PNA. The azide was used as masked amine for the introduction of amide-linked functional groups, allowing the production of a library of compounds starting from a single modified monomer. The azide function was also exploited as reactive group for the modification of PNA in solution via azide-alkyne click cycloaddition.
Collapse
Affiliation(s)
- Alex Manicardi
- Dipartimento di Chimica Organica e Industriale, Università di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Hari Y, Obika S, Imanishi T. Towards the Sequence-Selective Recognition of Double-Stranded DNA Containing Pyrimidine-Purine Interruptions by Triplex-Forming Oligonucleotides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101821] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Ohkubo A, Nishino Y, Ito Y, Tsunoda H, Seio K, Sekine M. Formation of new base pairs between inosine and 5-methyl-2-thiocytidine derivatives. Org Biomol Chem 2012; 10:2008-10. [DOI: 10.1039/c2ob06641f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Prestinari C, Richert C. Intrastrand locks increase duplex stability and base pairing selectivity. Chem Commun (Camb) 2011; 47:10824-6. [PMID: 21863176 DOI: 10.1039/c1cc14008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oligodeoxynucleotide probes with disulfide locks between neighboring nucleobases show increases in melting point for duplexes with RNA target strands of up to 7.6 °C. The weakly pairing TT dimers are replaced with locked 2'-deoxy-5-(thioalkynyl)uridine residues via automated synthesis.
Collapse
Affiliation(s)
- Cora Prestinari
- Institute for Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70565 Stuttgart, Germany
| | | |
Collapse
|
39
|
Andersen NK, Døssing H, Jensen F, Vester B, Nielsen P. Duplex and triplex formation of mixed pyrimidine oligonucleotides with stacking of phenyl-triazole moieties in the major groove. J Org Chem 2011; 76:6177-87. [PMID: 21692520 DOI: 10.1021/jo200919y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
5-(1-Phenyl-1,2,3-triazol-4-yl)-2'-deoxycytidine was synthesized from a modified CuAAC protocol and incorporated into mixed pyrimidine oligonucleotide sequences together with the corresponding 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine. With consecutive incorporations of the two modified nucleosides, improved duplex formation with a complementary RNA and improved triplex formation with a complementary DNA duplex were observed. The improvement is due to π-π stacking of the phenyl-triazole moieties in the major groove. The strongest stacking and most pronounced positive influence on thermal stability was found in between the uridine analogues or with the cytidine analogue placed in the 3' direction to the uridine analogue. Modeling indicated a different orientation of the phenyl-triazole moieties in the major groove to account for the difference between the two nucleotides. The modified oligonucleotides were all found to be significantly stabilized toward nucleolytic degration.
Collapse
Affiliation(s)
- Nicolai Krog Andersen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
40
|
Moriguchi T, Azam ATMZ, Shinozuka K. Stabilizing effect of propionic acid derivative of anthraquinone--polyamine conjugate incorporated into α-β chimeric oligonucleotides on the alternate-stranded triple helix. Bioconjug Chem 2011; 22:1039-45. [PMID: 21528922 DOI: 10.1021/bc100446w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two types of anthraquinone conjugates were synthesized as non-nucleosidic oligonucleotide components. These include an anthraquinone derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid and an anthraquinone--polyamine derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid. The conjugates were successfully incorporated into the "linking-region" of the α-β chimeric oligonucleotides via phosphoramidite method as non-nucleosidic backbone units. The resultant novel α-β chimeric oligonucleotides possessed two diastereomers that were generated by the introduction of the anthraquinone conjugate with a stereogenic carbon atom. The isomers were successfully separated by a reversed-phase HPLC. UV-melting experiments revealed that both stereoisomers formed a substantially stable alternate-strand triple helix, irrespective of the stereochemistry of the incorporated non-nucleosidic backbone unit. However, the enhancing effect on thermal stability depended on the length of the alkyl linker connecting anthraquinone moiety and the propionic acid moiety. The sequence discrimination ability of the chimeric oligonucleotides toward mismatch target duplex was also examined. The T(m) values of the triplexes containing the mismatch target were substantially lower than the T(m) values of those containing the full-match target. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) required for the dissociation of the triplexes into the third strand and target duplex were also measured.
Collapse
Affiliation(s)
- Tomohisa Moriguchi
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | |
Collapse
|
41
|
Zhang Q, Sun J, Zhu Y, Zhang F, Yu B. An Efficient Approach to the Synthesis of Nucleosides: Gold(I)-Catalyzed N-Glycosylation of Pyrimidines and Purines with Glycosyl ortho-Alkynyl Benzoates. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100514] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Zhang Q, Sun J, Zhu Y, Zhang F, Yu B. An Efficient Approach to the Synthesis of Nucleosides: Gold(I)-Catalyzed N-Glycosylation of Pyrimidines and Purines with Glycosyl ortho-Alkynyl Benzoates. Angew Chem Int Ed Engl 2011; 50:4933-6. [DOI: 10.1002/anie.201100514] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Indexed: 01/08/2023]
|
43
|
Hari Y, Nakahara M, Pang J, Akabane M, Kuboyama T, Obika S. Synthesis and triplex-forming ability of oligonucleotides bearing 1-substituted 1H-1,2,3-triazole nucleobases. Bioorg Med Chem 2010; 19:1162-6. [PMID: 21256033 DOI: 10.1016/j.bmc.2010.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022]
Abstract
Using the copper(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition, a post-elongation modification of 1-ethynyl substituted nucleobases has been employed to construct 18 variations of oligonucleotides from a common oligonucleotide precursor. The triplex-forming ability of each oligonucleotide with dsDNA was evaluated by the UV melting experiment. It was found that triazole nucleobases generally tend to exhibit binding affinities in the following order: CG>TA>AT, GC base pairs. Among the triazole nucleobases examined, a 1-(4-ureidophenyl)triazole provided the best result with regard to affinity and selectivity for the CG base pair.
Collapse
Affiliation(s)
- Yoshiyuki Hari
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Efficient RNA-targeting by the introduction of aromatic stacking in the duplex major groove via 5-(1-phenyl-1,2,3-triazol-4-yl)-2′-deoxyuridines. Bioorg Med Chem 2010; 18:4702-10. [DOI: 10.1016/j.bmc.2010.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
|
45
|
Synthesis of a new intercalating nucleic acid analogue with pyrenol insertions and the thermal stability of the resulting oligonucleotides towards DNA over RNA. MONATSHEFTE FUR CHEMIE 2010. [DOI: 10.1007/s00706-010-0320-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 2010; 38:5884-92. [PMID: 20457754 PMCID: PMC2943593 DOI: 10.1093/nar/gkq347] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that the translation level of in vitro transcribed messenger RNA (mRNA) is enhanced when its uridines are replaced with pseudouridines; however, the reason for this enhancement has not been identified. Here, we demonstrate that in vitro transcripts containing uridine activate RNA-dependent protein kinase (PKR), which then phosphorylates translation initiation factor 2-alpha (eIF-2α), and inhibits translation. In contrast, in vitro transcribed mRNAs containing pseudouridine activate PKR to a lesser degree, and translation of pseudouridine-containing mRNAs is not repressed. RNA pull-down assays demonstrate that mRNA containing uridine is bound by PKR more efficiently than mRNA with pseudouridine. Finally, the role of PKR is validated by showing that pseudouridine- and uridine-containing RNAs were translated equally in PKR knockout cells. These results indicate that the enhanced translation of mRNAs containing pseudouridine, compared to those containing uridine, is mediated by decreased activation of PKR.
Collapse
Affiliation(s)
- Bart R Anderson
- Department of Medicine, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang X, Krishnamurthy R. Mapping the landscape of potentially primordial informational oligomers: oligo-dipeptides tagged with orotic acid derivatives as recognition elements. Angew Chem Int Ed Engl 2010; 48:8124-8. [PMID: 19768828 DOI: 10.1002/anie.200904188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuejun Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
48
|
Zhang X, Krishnamurthy R. Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligo-dipeptides Tagged with Orotic Acid Derivatives as Recognition Elements. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Nawrot B, Sochacka E. Preparation of short interfering RNA containing the modified nucleosides 2-thiouridine, pseudouridine, or dihydrouridine. ACTA ACUST UNITED AC 2009; Chapter 16:16.2.1-16.2.16. [PMID: 19488969 DOI: 10.1002/0471142700.nc1602s37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modified uridine derivatives such as 2-thiouridine (s(2)U), pseudouridine (Psi), and dihydrouridine (D) are naturally existing nucleoside units identified in tRNA molecules. Recently, we have shown that such base-modified units introduced into functionally important sites of siRNA modulate thermodynamic stability of the duplex and its gene silencing activity. In this unit, we describe chemical synthesis of 3'-phosphoramidite derivatives of s(2)U and D units (the 3'-phosphoramidite derivative of Psi is commercially available), and their use for the synthesis of RNA oligonucleotides according to the routine phosphoramidite protocol. The only exception concerns the oxidation step with I(2)/pyridine/water which, if applied towards oligonucleotides containing s(2)U units, would lead to the loss of sulfur. Therefore, to avoid this side reaction, tert-butyl hydroperoxide is used as an oxidizing reagent. After the oligonucleotide chain assembly is completed, the resulting oligomer is deprotected under mild basic conditions (MeNH(2)/EtOH/DMSO) to avoid dihydrouracil ring opening, which is a reported side-reaction during the routine synthesis of dihydrouridine-containing RNA. Oligonucleotides modified with s(2)U, D, or Psi units are useful models for structure-function studies. Here, the procedure for preparation of siRNA duplexes is described.
Collapse
Affiliation(s)
- Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | |
Collapse
|
50
|
Bergstrom DE. Unnatural nucleosides with unusual base pairing properties. ACTA ACUST UNITED AC 2009; Chapter 1:1.4.1-1.4.32. [PMID: 19488968 DOI: 10.1002/0471142700.nc0104s37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic modified nucleosides designed to pair in unusual ways with natural nucleobases have many potential applications in biology and biotechnology. This overview lays the foundation for future protocol units on synthesis and application of unnatural bases, with particular emphasis on unnatural base analogs that mimic natural bases in size, shape, and biochemical processing. Topics covered include base pairs with alternative H-bonding schemes, dimensionally expanded base pairs, hydrophobic base pairs, metal-ligated bases, degenerate bases, universal nucleosides, and triplex constituents.
Collapse
|