1
|
Gao H, Xu Q, Zhu J, Kuerban K, Chen B, Zhao J, Aimulajiang K, Teng L. Efficacy and mechanism of action of harmine derivative H-2-104 against Echinococcus granulosus infection in mice. BMC Vet Res 2025; 21:174. [PMID: 40091052 PMCID: PMC11912776 DOI: 10.1186/s12917-025-04642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the parasite Echinococcus granulosus (E. granulosus). Currently, pharmacologic treatments are limited to albendazole and mebendazole; however, these treatments are associated with significant side effects and limited therapeutic efficacy, highlighting the urgent need for the development of new drugs. Harmine (HM) has been reported to exhibit potent antiparasitic effects, although it is also accompanied by notable neurotoxicity. H-2-104, a derivative of HM obtained through structural modification of its parent nucleus, represents a promising candidate for further investigation. This study aims to assess the in vivo and in vitro efficacy of H-2-104 against E. granulosus and to elucidate the mechanism of action of H-2-104 against CE from a metabolomics perspective. METHODS In vitro pharmacodynamics experiments were conducted to assess the inhibitory activity of H-2-104 against E. granulosus protoscoleces (PSCs). Following this, a mouse model of E. granulosus infection was established to explore the inhibitory effects against E. granulosus of H-2-104 at low, medium, and high concentrations. Additionally, non-targeted metabolomic approaches were utilized to analyze the serum and liver samples from mice in the control group, model group, and H-2-104 treatment group with the aim of identifying relevant biomarkers and crucial metabolic pathways involved in the response to H-2-104 treatment. RESULTS The in vitro results demonstrated that H-2-104 exhibited significantly superior inhibitory activity against PSCs compared to harmine and albendazole. Morphological observations revealed marked alterations in the ultrastructural characteristics of PSCs treated with H-2-104. In vivo pharmacodynamic studies showed that H-2-104 at a dosage of 100 mg/kg exhibited the highest cyst inhibition rate, which was (73.60 ± 4.71)%. Metabolomics analysis revealed that 64 serum metabolites were significantly altered, primarily involving metabolic pathways such as necroptosis, linoleic acid metabolism, and phenylalanine metabolism. Additionally, 81 liver metabolites were identified with significant differences, mainly involving metabolic pathways like fructose and mannose metabolism, and glycerophospholipid metabolism. CONCLUSIONS H-2-104 exhibits significant activity both in vitro and in vivo, suggesting its potential as a promising new drug for the treatment of CE. The anti-CE effects of H-2-104 may be attributed to its regulation of multiple biological pathways, including cell apoptosis, amino acid metabolism, and glucose metabolism.
Collapse
Affiliation(s)
- Huijing Gao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
| | - Qinwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kadierya Kuerban
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 831399, China
| | - Bei Chen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jun Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
- Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Liang Teng
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
2
|
Egger K, Aicher HD, Cumming P, Scheidegger M. Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors. Cell Mol Life Sci 2024; 81:395. [PMID: 39254764 PMCID: PMC11387584 DOI: 10.1007/s00018-024-05353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
The potent hallucinogen N,N-dimethyltryptamine (DMT) has garnered significant interest in recent years due to its profound effects on consciousness and its therapeutic psychopotential. DMT is an integral (but not exclusive) psychoactive alkaloid in the Amazonian plant-based brew ayahuasca, in which admixture of several β-carboline monoamine oxidase A (MAO-A) inhibitors potentiate the activity of oral DMT, while possibly contributing in other respects to the complex psychopharmacology of ayahuasca. Irrespective of the route of administration, DMT alters perception, mood, and cognition, presumably through agonism at serotonin (5-HT) 1A/2A/2C receptors in brain, with additional actions at other receptor types possibly contributing to its overall psychoactive effects. Due to rapid first pass metabolism, DMT is nearly inactive orally, but co-administration with β-carbolines or synthetic MAO-A inhibitors (MAOIs) greatly increase its bioavailability and duration of action. The synergistic effects of DMT and MAOIs in ayahuasca or synthetic formulations may promote neuroplasticity, which presumably underlies their promising therapeutic efficacy in clinical trials for neuropsychiatric disorders, including depression, addiction, and post-traumatic stress disorder. Advances in neuroimaging techniques are elucidating the neural correlates of DMT-induced altered states of consciousness, revealing alterations in brain activity, functional connectivity, and network dynamics. In this comprehensive narrative review, we present a synthesis of current knowledge on the pharmacology and neuroscience of DMT, β-carbolines, and ayahuasca, which should inform future research aiming to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Klemens Egger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland.
| | - Helena D Aicher
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Salimizadeh Z, Enferadi ST, Majidizadeh T, Mahjoubi F. Cytotoxicity of alkaloids isolated from Peganum harmala seeds on HCT116 human colon cancer cells. Mol Biol Rep 2024; 51:732. [PMID: 38872006 DOI: 10.1007/s11033-024-09655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3β) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3β and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3β and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Zahra Salimizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sattar Tahmasebi Enferadi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Majidizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
4
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Li LN. Peganum harmala L.: A Review of Botany, Traditional Use, Phytochemistry, Pharmacology, Quality Marker, and Toxicity. Comb Chem High Throughput Screen 2024; 27:797-822. [PMID: 37350001 DOI: 10.2174/1386207326666230622164243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Peganum harmala L. is a perennial herb of Peganum in Zygophyllaceae family. It has been used as a national medicinal herb with the efficacy of strengthening muscle, warming stomach, dispelling cold, and removing dampness in Chinese folk. Clinically, it is mainly used to treat diseases such as weak muscles and veins, joint pain, cough and phlegm, dizziness, headache, and irregular menstruation. METHODS The relevant information about P. harmala L. in this review is based on online databases, including Elsevier, Willy, Web of Science, PubMed, ScienceDirect, SciFinder, SpringLink, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. The other information was acquired from ancient books and classical works about P. harmala L. RESULTS P. harmala L. is an important medicinal plant with a variety of traditional uses according to the theory of Chinese medicine. Phytochemical research revealed that P. harmala L. contained alkaloids, volatile oils, flavonoids, triterpenoids, coumarins, lignins, anthraquinones. Modern studies showed P. harmala L. possessed multiple bioactivities, including anti-cancer, neuroprotective, anti-bacterial, anti-inflammatory, hypoglycemic, anti-hypertensive, anti-asthmatic, and insecticidal activities. Furthermore, the contents of the quality marker and toxicity of P. harmala L. were summarized and analyzed in this review. CONCLUSION The botany, traditional use, phytochemistry, pharmacology, quality marker, and toxicity of P. harmala L. were reviewed in this paper. It will not only provide an important clue for further studying P. harmala L., but also supply an important theoretical basis and valuable reference for in-depth research and exploitations of this plant in the future.
Collapse
Affiliation(s)
- Ling-Na Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
6
|
Rahimian Z, Sadrian S, Shahisavandi M, Aligholi H, Zarshenas MM, Abyar A, Zeraatpisheh Z, Asadi-Pooya AA. Antiseizure Effects of Peganum harmala L. and Lavandula angustifolia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4121998. [PMID: 38089644 PMCID: PMC10715855 DOI: 10.1155/2023/4121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Peganum harmala L. and Lavandula angustifolia are two traditional herbs with probable antiseizure effects. This study evaluated the effects of these two herbal extracts on pentylenetetrazol- (PTZ-) induced seizures in mice. We prepared hydroalcoholic extracts using P. harmala seeds and the aerial parts of L. angustifolia and then randomly divided 190 mice into 19 groups. Normal saline (10 mg/kg), diazepam (2 mg/kg), P. harmala (2.5, 5, 10, 15, 30, 45, and 60 mg/kg), and L. angustifolia (200, 400, 600, and 800 mg/kg) were intraperitoneally (IP) administrated 30 min before an IP administration of PTZ (90 mg/kg). Animals were observed for behavioral changes for one hour. In addition, the effects of flumazenil and naloxone on the antiseizure activity of P. harmala and L. angustifolia were assessed. P. harmala showed antiseizure activity at the dose of 10 mg/kg; it prolonged the seizure latency and decreased the seizure duration. The mortality protection rate was 90% for this herbal extract. L. angustifolia (600 mg/kg) prolonged the seizure latency and decreased both seizure duration and mortality. Neither flumazenil nor naloxone significantly reversed the antiseizure activities of P. harmala and L. angustifolia. In mice, the hydroalcoholic extracts of P. harmala and L. angustifolia showed antiseizure activity against PTZ-induced seizures. We could not delineate the exact antiseizure mechanisms of these extracts in the current study.
Collapse
Affiliation(s)
- Zahra Rahimian
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedHassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abyar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A. Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Bibi M, Batool SA, Iqbal S, Zaidi SB, Hussain R, Akhtar M, Khan A, Alqahtani MS, Abbas M, Ur Rehman MA. Synthesis and characterization of mesoporous bioactive glass nanoparticles loaded with peganum harmala for bone tissue engineering. Heliyon 2023; 9:e21636. [PMID: 38027746 PMCID: PMC10665746 DOI: 10.1016/j.heliyon.2023.e21636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Sajid Iqbal
- Department of Nuclear and Quantum Engineering Korea Advanced Institute of Science and Technology (KAIST) 34141, Daejeon, Republic of Korea
| | - Shaher Bano Zaidi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Memoona Akhtar
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Paes AS, Koga RDCR, Sales PF, Santos Almeida HK, Teixeira TACC, Carvalho JCT. Phytocompounds from Amazonian Plant Species against Acute Kidney Injury: Potential Nephroprotective Effects. Molecules 2023; 28:6411. [PMID: 37687240 PMCID: PMC10490259 DOI: 10.3390/molecules28176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
There are several Amazonian plant species with potential pharmacological validation for the treatment of acute kidney injury, a condition in which the kidneys are unable to adequately filter the blood, resulting in the accumulation of toxins and waste in the body. Scientific production on plant compounds capable of preventing or attenuating acute kidney injury-caused by several factors, including ischemia, toxins, and inflammation-has shown promising results in animal models of acute kidney injury and some preliminary studies in humans. Despite the popular use of Amazonian plant species for kidney disorders, further pharmacological studies are needed to identify active compounds and subsequently conduct more complex preclinical trials. This article is a brief review of phytocompounds with potential nephroprotective effects against acute kidney injury (AKI). The classes of Amazonian plant compounds with significant biological activity most evident in the consulted literature were alkaloids, flavonoids, tannins, steroids, and terpenoids. An expressive phytochemical and pharmacological relevance of the studied species was identified, although with insufficiently explored potential, mainly in the face of AKI, a clinical condition with high morbidity and mortality.
Collapse
Affiliation(s)
- Alberto Souza Paes
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Rosemary de Carvalho Rocha Koga
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Priscila Faimann Sales
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
| | - Hellen Karine Santos Almeida
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Thiago Afonso Carvalho Celestino Teixeira
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - José Carlos Tavares Carvalho
- Pharmaceutical Innovation Program, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil; (A.S.P.); (R.d.C.R.K.); (P.F.S.); (T.A.C.C.T.)
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil;
- University Hospital, Federal University of Amapá, Rodovia Josmar Chaves Pinto, km 02, Macapá CEP 68903-419, Amapá, Brazil
| |
Collapse
|
9
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
10
|
Jiang N, Chen L, Li J, Li W, Jiang S. Lethal and Sublethal Toxicity of Beta-Carboline Alkaloids from Peganum harmala (L.) against Aedes albopictus Larvae (Diptera: Culicidae). TOXICS 2023; 11:341. [PMID: 37112568 PMCID: PMC10143510 DOI: 10.3390/toxics11040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and beta-carboline alkaloids (harmaline, harmine, harmalol, and harman) from Peganum harmala seeds were isolated and tested in this bioassay. All alkaloids were tested either individually or as binary mixtures, using the co-toxicity coefficient (CTC) and Abbott's formula analysis. The results revealed considerable toxicity of the tested alkaloids against A. albopictus larvae. When all larval instars were exposed to the TAEs at 48 h post-treatment, the mortality of all larval instars varied in a concentration-dependent manner. The second-instar larvae were the most susceptible to different concentrations of TAEs, and the fourth-instar larvae were more tolerant to TAEs than the second-instar larvae. Especially, the third-instar larvae exposed to all alkaloids also showed that all doses resulted in an increased mortality of the third-instar larvae at 48 h post-treatment, and the toxicities of the tested alkaloids in a descending order were TAEs > harmaline > harmine > harmalol, with the LC50 values of 44.54 ± 2.56, 55.51 ± 3.01, 93.67 ± 4.53, and 117.87 ± 5.61 μg/mL at 48 h post-treatment, respectively. In addition, all compounds were also tested individually or in a 1:1 ratio (dose LC25/LC25) as binary mixtures to assess the synergistic toxicity of these binary combinations against the third-instar larvae at 24 and 48 h post-treatment, respectively. The results demonstrated that when tested as a binary mixture, all compounds (especially TAEs, harmaline, and harmine) showed their synergistic effects, exceeding the toxicity of each compound alone. Interestingly, the obtained data further revealed that the TAEs at sublethal doses (LC10 and LC25) could significantly delay the larval development and decrease the pupation and emergence rates of A. albopictus. This phenomenon could be helpful in order to develop more effective control strategies for different notorious vector mosquitoes.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Chen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jinmei Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
11
|
Mahnam K, Rajaee SM. A theoretical survey to find potential natural compound for inhibition of binding the RBD domain to ACE2 receptor based on plant antivirals. J Biomol Struct Dyn 2023; 41:14540-14565. [PMID: 36974837 DOI: 10.1080/07391102.2023.2183033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
The spike protein of coronavirus is crucial in binding and arrival of the virus to the human cell via binding to the human ACE2 receptor. In this study, at first 25 antiviral phytochemicals were docked into the RBD domain of spike protein, and then all complexes and free RBD domains were separately subjected to molecular dynamics simulation for 100 ns and MM/PBSA binding free energy calculation. In this phase, four ligands were chosen as hit compounds and a natural compound database (NPASS) was screened based on high similarity with these ligands, and 367 ligands were found. Then the same previous procedure was repeated for these ligands and ADME properties were investigated. Finally, virtual screening and 4400 ns MD simulation and MM/PBSA calculation revealed that new ligands including NPC67959, NPC157855, NPC248793, and NPC216361 can inhibit the RBD domain of spike protein and we propose them as potential drugs for experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
12
|
Rashid S, Sameti M, Alqarni MH, Abdel Bar FM. In vivo investigation of the inhibitory effect of Peganum harmala L. and its major alkaloids on ethylene glycol-induced urolithiasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115752. [PMID: 36174807 DOI: 10.1016/j.jep.2022.115752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis. AIM OF THE STUDY In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major β-carboline alkaloids of P. harmala were investigated. MATERIALS AND METHODS Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output). RESULTS Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group. CONCLUSION The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.
Collapse
Affiliation(s)
- Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Maryam Sameti
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Tiwari R, Tiwari G, Mishra S, Ramachandran V. Preventive and Therapeutic Aspects of Migraine for Patient Care: An Insight. Curr Mol Pharmacol 2023; 16:147-160. [PMID: 35152874 DOI: 10.2174/1874467215666220211100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Migraine is a common neurological condition marked by frequent mild to extreme headaches that last 4 to 72 hours. A migraine headache may cause a pulsing or concentrated throbbing pain in one part of the brain. Nausea, vomiting, excessive sensitivity to light and sound, smell, feeling sick, vomiting, painful headache, and blurred vision are all symptoms of migraine disorder. Females are more affected by migraines in comparison to males. OBJECTIVE The present review article summarizes preventive and therapeutic measures, including allopathic and herbal remedies for the treatment of migraine. RESULTS This review highlights the current aspects of migraine pathophysiology and covers an understanding of the complex workings of the migraine state. Therapeutic agents that could provide an effective treatment have also been discussed. CONCLUSION It can be concluded that different migraines could be treated based on their type and severity.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Gaurav Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Sonam Mishra
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi Road, Bhauti, Kanpur-208020, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
14
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
15
|
In Vivo Therapeutic Effect of Some Medicinal Plants' Methanolic Extracts on the Growth and Development of Secondary Hydatid Cyst Infection. Acta Parasitol 2022; 67:1521-1534. [PMID: 35960491 DOI: 10.1007/s11686-022-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The current study aimed to explore the in vivo therapeutic effects of the methanolic extracts of Citrullus colocynthis, Ruta graveolens, and Peganum harmala against hydatid cyst secondary infection. METHODS Aerial parts of P. harmala and R. graveolens, including leaves and stems, and seeds of C. colocynthis were collected and extracted using absolute methanol. Rats that are infected with secondary infection of hydatid cysts were treated orally and intraperitoneally according to the determined lethal doses for 30 days. Histological, hematological, and biochemical investigations were done 8 months after the infection. RESULTS Compared to Albendazole drug, C. colocynthis, and P. harmala, the methanol extract of R. graveolens showed higher and significant (P < 0.05) therapeutic effects on the secondary hydatid cysts growth. Those effects were represented by the reduction in the cysts' number, size, and weight; as well as the significant changes (P < 0.05) in values of hematological and biochemical parameters, the elevation of IFN-γ levels, and the decline of IL-10 and IL-4 cytokines, compared to the negative control group in both routes of treatment (oral and IP). Moreover, the histological sections showed that R. graveolens has a clear damaging effect on the hydatid cysts GL in the infected rats represented by the detachment of GL from LL and AL. CONCLUSION This study can open an avenue to find new therapeutics for secondary hydatid cyst infections using the studied plant extracts, especially the extract of R. graveolens.
Collapse
|
16
|
Rashidi M, Mahmoudian E, Mirzaei S, Mazloomi SN, Bazi A, Azadeh H, Mozaffari M. Harmaline downregulates angiogenesis markers and suppresses the growth of 4T1 breast cancer cells in vivo and in vitro. Chem Biol Interact 2022; 365:110087. [PMID: 35963316 DOI: 10.1016/j.cbi.2022.110087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
The anti-angiogenic effects of harmaline, an alkaloid with emerging anti-tumor properties, are under investigation. In the present study, the effects of different doses of harmaline, either alone or in combination with doxorubicin (DOX), were assessed in mice models of breast tumor. Breast tumors were created by the subcutaneous injection of 4T1 cells into Balb/c mice. The mice received either normal saline, harmaline alone (10, 20, or 30 mg/kg), or harmaline (20 mg/kg) + DOX (10 mg/kg). Immunohistochemistry, ELISA, and real-time PCR were conducted to measure target parameters. Harmaline significantly increased tumor cells' sensitivity to DOX as confirmed by a significantly reduced tumor volume in the harmaline + DOX group after 24 days (P < 0.05). Also, the levels of Ki-67 (P < 0.001), MMP-2 (P < 0.001), and VEGF (P < 0.001) significantly decreased while the level of E-cadherin increased (P < 0.001) in the tumor tissues of the mice treated with 20 or 30 mg/kg harmaline or harmaline (20 mg/kg) + DOX (10 mg/kg) compared to the control group. There was a significant reduction in the serum level of IL-4 in tumor-bearing mice treated with harmaline (P < 0.05), and IFN-γ serum level was significantly augmented in all experimental groups compared to the control group (P < 0.05). The genes encoding VEGF, VEGF receptor 2, CD105, and COX2 were significantly down-regulated (P < 0.05 for all) in harmaline-treated (either alone or in combination with DOX) mice. In conclusion, harmaline seems to have the potential to be used as an anticancer agent for treating breast cancer.
Collapse
Affiliation(s)
- Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center,Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Mahmoudian
- Cellular & Molecular Medicine Department, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Rd., Roger Guindon Hall, Ottawa, ON, K1H 8M5, Canada
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyadeh Narges Mazloomi
- The Health of Plant and LivestockProducts Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Bazi
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, Rheumatology Division, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mobina Mozaffari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Bar FMA, Sameti M, Foudah AI, Haque A, Elsbaey M. In vitro and in silico inhibition of COX-2 and 5-LOX by beta-carboline alkaloids from the seeds of Peganum harmala L. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 147:926-936. [DOI: 10.1016/j.sajb.2022.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
|
18
|
Zhu Z, Zhao S, Wang C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules 2022; 27:molecules27134161. [PMID: 35807407 PMCID: PMC9268262 DOI: 10.3390/molecules27134161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases have always been the number one enemy threatening health and well-being. With increasing numbers of infectious diseases, growing resistance of pathogens, and declining roles of antibiotics in the treatment of infectious diseases, it is becoming increasingly difficult to treat new infectious diseases, and there is an urgent need to develop new antibiotics to change the situation. Natural products tend to exhibit many special biological properties. The genus Peganum (Zygophyllaceae) has been used, for a long time, to treat cough, asthma, lumbago, hypertension, diabetes, and Alzheimer’s disease. Over the past two decades, a growing number of studies have shown that components from Peganum harmala Linn and its derivatives can inhibit a variety of microorganisms by inducing the accumulation of ROS in microorganisms, damaging cell membranes, thickening cell walls, disturbing cytoplasm, and interfering with DNA synthesis. In this paper, we provide a review on the antibacterial, antifungal, antiviral, and antiparasitic activities of P. harmala, with a view to contribute to research on utilizing P. harmala for medicinal applicaitons and to provide a reference in the field of antimicrobial and a basis for the development of natural antimicrobial agents for the treatment of infectious diseases.
Collapse
|
19
|
Arif M, Wang X, Kazi MSK, Ullah Khan S, Saeed S, Khan AM, Khan RA, Afzal M, Nawaz AF, Zia MA, O. Elansary H, Shokralla S, Alhalabi A, Gul A, Fiaz S. Antimicrobial activities of different solvent extracts from stem and seeds of Peganum Harmala L. PLoS One 2022; 17:e0265206. [PMID: 35482722 PMCID: PMC9049364 DOI: 10.1371/journal.pone.0265206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Wild medicinal herbs have been used as folk and traditional medicines all across the world since well before recorded history. This present study was designed to test the antimicrobial activities of five different solvent extracted samples (n-hexane, n-butanol, ethyl acetate, methanol, and water) of Peganum harmala using stems and seeds. Two different strains of Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), two Gram-positive bacteria (Bacillus subtilus and Staphylococcus aureus), and one fungal strain (Candida albicans) were used. The antimicrobial activities were measured using a disc diffusion assay. Two concentrations of the extracts (1 and 2mgDisc-1) were used. Ethyl acetate fraction was found more affective among the tested solvents and showed maximum activity (zone of inhibition) against S. aureus (65.53 and 81.10%), E. coli (46.22 and 61.29%) while n-butanol and water fractions gave maximum activity against S. aureus (78.86 and 70.00%) and K. pneumonia (57.00 and 61.39%) respectively. Water fraction showed maximum activity against C. albicans (60.00 and 81.88%). In the case of the stem, Ethyl acetate again showed more activity against B. subtilus (38.57 and 42.10%) and S. aureus (36.66 and 46.66%) while n-butanol showed maximum activity against K. pneumonia (24.55 and 32.44%) and E. coli (27.93 and 37.61%). Methanol was found more effective against C. albicans (25.71 and 43.80%). Seed extracted samples were found more effective compared to the stem. Ethyl acetate, butanol, and aqueous extracted samples showed good activity against the tested microbes, so these fractions are recommended for study their mechanism of actions and isolation of bioactive metabolites responsible for antimicrobial activities. The P. harmala should be evaluated for their bioactive compounds to be used in future studies. Our objective is to provide the framework for future study on the roles of P. harmala as traditional medicines.
Collapse
Affiliation(s)
- Muhammad Arif
- Faculty of crop production sciences, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Department of Biotechnology, University of Mianwali, Mianwali, Punjab, Pakistan
- Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (MA); (SF)
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Mohammad Sayyar Khan Kazi
- Faculty of crop production sciences, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Abbottabad, KPK, Pakistan
| | - Sumbul Saeed
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Rahmat Ali Khan
- Department of Biotechnology, University of Science and Technology, Bannu, KP, Pakistan
| | - Masood Afzal
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, Pakistan
| | - Ayesha Fazal Nawaz
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Council, Islamabad, Pakistan
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Council, Islamabad, Pakistan
| | - Hosam O. Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shadi Shokralla
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Abdullah Alhalabi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Alia Gul
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
- * E-mail: (MA); (SF)
| |
Collapse
|
20
|
Al Qaisi YT, Khleifat KM, Oran SA, Al Tarawneh AA, Qaralleh H, Al-Qaisi TS, Farah HS. Ruta graveolens, Peganum harmala, and Citrullus colocynthis methanolic extracts have in vitro protoscolocidal effects and act against bacteria isolated from echinococcal hydatid cyst fluid. Arch Microbiol 2022; 204:228. [PMID: 35353289 DOI: 10.1007/s00203-022-02844-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Echinococcosis is a common and endemic disease that affects both humans and animals. In this study, the in vitro activities of methanolic extracts of Ruta graveolens, Peganum harmala aerial parts, and Citrullus colocynthis seeds against protoscolosis and isolated bacterial strains from hydatid cysts were assessed using disc diffusion methods and Minimum Inhibitory Concentration (MIC). The chemical composition of three methanolic extracts was studied using LC-MS. After 3 h of exposure to 40 mg/mL R. graveolens extract, a tenfold protoscolocidal effect was seen when compared to the convintional medication (ABZ) for the same duration (P < 0.05). The bacteria listed below were isolated from hydatid cyst fluid collected from a variety of sick locations, including the lung and liver. Micrococcus spp., E. coli, Klebsiella oxytoca, Enterobacter aerogenes, Enterobacter amnigenus, Pseudomonas aeruginosa, Staphylococcus xylosus, and Achromobacter xylosoxidans are among the bacteria that have been identified. The most effective extract was R. graveolens, followed by P. harmala and C. colocynthis, according to the results of antibacterial activity using the disc diffusion method. R. graveolens extract had the lowest MIC values (less than 2 mg/mL) against all microorganisms tested. This shows that the R. graveolens extract has additional properties, such as the ability to be both scolocidal and bactericidal. Because these bacteria are among the most prevalent pathogenic bacteria that increase the risk of secondary infection during hydatid cysts, the results of inhibitory zones and MICs of the R. graveolens methanol extract are considered highly promising.
Collapse
Affiliation(s)
- Yaseen T Al Qaisi
- Department of Biological Sciences, Mutah University, Mutah, 61710, Karak, Jordan.
| | - Khaled M Khleifat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Sawsan A Oran
- Departmentof Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan
| | - Amjad A Al Tarawneh
- Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Mutah, 61710, Karak, Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Mutah, 61710, Karak, Jordan
| | - Talal S Al-Qaisi
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Husni S Farah
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
21
|
Medicinal Plants with Abortifacient or Emmenagogue Activity: A Narrative Review Based on Traditional Persian Medicine. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Traditional Persian medicine (TPM) has a rich background and has introduced various plants with abortive or emmenagogue activity since ancient times. However, many of them are unknown in modern medicine, and a few trials have been conducted describing their efficacy and safety. These plants may be helpful for the management of incomplete abortion, with potentially lower side effects than chemical agents. Objectives: This review introduced these plants and their potential efficiency to link traditional and modern medicine and suggested further studies. Methods: The search strategy for citations in this narrative review was performed in two steps. At first, medicinal plants used as abortifacient or emmenagogue to manage incomplete abortions or retained products of conception were searched and extracted in the most famous TPM literature, including Al-Qanun Fi at-Tibb, Tuhfat-al-Momenin, and Makhzan-ul-advia. The next step was searching electronic databases including PubMed, Scopus, Web of Science, and Google Scholar with the same keywords and herbal plants between 1970 and 2021. The overlapped plants between the manual and electronic search were found and briefly described. Results: In TPM literature, 88 plants with abortifacient activity were found, of which 47 were used to manage incomplete abortions or retained products of conception. Also, in the electronic database search, 14 plants were found to have abortifacient or emmenagogue activity. Among them, six plants, including Sesamum indicum L. (Sesame), Commiphora myrrha (myrrh), Lawsonia inermis L. (Henna), Opopanax chironium L. (Jooshir), Plumbago rosea (Shitraj or Stumbag), and Juniperus sabina (Abhal), overlapped with the manual search results. The abortifacient or emmenagogue activity and properties of all these 14 plants were described. Conclusions: The properties of many traditional plants with abortifacient activity are unknown in modern medicine; however, they should not be used in pregnant women. Nonetheless, they may have the power to be entered into modern medicine. Identifying their pharmacology and action mechanisms may be helpful to introduce them as a potential alternative to chemical agents in the management of induced or incomplete abortion with possibly lower side effects.
Collapse
|
22
|
Kamyab R, Namdar H, Torbati M, Ghojazadeh M, Araj-Khodaei M, Fazljou SMB. Medicinal Plants in the Treatment of Hypertension: A Review. Adv Pharm Bull 2021; 11:601-617. [PMID: 34888207 PMCID: PMC8642800 DOI: 10.34172/apb.2021.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/09/2022] Open
Abstract
Traditional medicine is a comprehensive term for ancient, culture-bound health care practices that existed before the use of science in health matters and has been used for centuries. Medicinal plants are used to treat patients with cardiovascular diseases, which may occur due to ailments of the heart and blood vessels and comprise heart attacks, cerebrovascular diseases, hypertension, and heart failure. Hypertension causes difficulty in the functioning of the heart and is involved in atherosclerosis, raising the risk of heart attack and stroke. Many drugs are available for managing these diseases, though common antihypertensive drugs are generally accompanied by many side effects. Medicinal herbs have several active substances with pharmacological and prophylactic properties that can be used in the treatment of hypertension. This review presents an overview of some medicinal plants that have been shown to have hypotensive or antihypertensive properties.
Collapse
Affiliation(s)
- Raha Kamyab
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Namdar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Filban F, Ravanbakhsh M, Poormohammadi A, Khaghani S, Sadeghi-Nejad B, Neisi A, Goudarzi G. Antimicrobial properties of Peganum harmala L. seeds' smoke in indoors: applications and prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:17. [PMID: 34888707 DOI: 10.1007/s10661-021-09665-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Peganum harmala L., known as Harmal or African, Syrian Rue, Espand (in Iranian culture), and Ozallaik (in Turkey), is a perennial herbaceous glabrous plant, which offers many antimicrobial activities in indoor air. In this regard, in the present study, we aimed at evaluating the disinfectant effects of Peganum harmala L. (PHL) seed smoke on microbial load in air. For this reason, the effects of four doses of PHL seeds (5, 10, 15, and 20 g) and various sampling times in the range of 0-30 min were examined on its antibacterial and antifungal effects. The experiments were conducted at two different areas including a classroom located at the health faculty of Ahvaz University of Medical Sciences and a residential area with a similar volume of 60 m3. Tryptic soy agar (TSA) was applied as a specific bacterial culture medium, and sabouraud dextrose agar (SDA) was used as a specific fungal culture medium. The concentration of bacteria and fungi in the indoor air of the residential area decreased by 71.4 and 94.7%, respectively. In the educational area, the concentration of bacteria and fungi decreased by 92.8 and 88.9%, respectively. In conclusion, the PHL smoke showed antibacterial and antifungal effects, which may be due to its alkaloids harmine properties, while it causes an increase in the concentration of particles in the air of indoor environments. Therefore, it can be used as an indoor air disinfectant for decreasing the load of bacteria and viruses in a closed space.
Collapse
Affiliation(s)
- Fereshteh Filban
- Department of Environmental Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Ravanbakhsh
- Department of Environmental Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Poormohammadi
- Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soheila Khaghani
- Department of Environmental Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Abdolkazem Neisi
- Department of Environmental Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Bayazeid O, Nasibova T. Chemoinformatic analysis of alkaloids isolated from Peganum genus. Mol Divers 2021; 26:2257-2267. [PMID: 34674079 DOI: 10.1007/s11030-021-10331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Peganum genus is rich with its high phytochemical and botanical variability. Peganum species have been used as a sedative, antitumor, analgesic and antidepressant. This paper aims to study the molecular diversity of Peganum genus and to shed more light on the structure-activity relationship of the alkaloids isolated from Peganum genus. All Peganum alkaloids were grouped according to their structural properties. A chemoinformatic approach (SwissTargetPrediction) was used to determine the molecular targets of these alkaloids. To analyze and visualize the results, R software was used to generate hierarchical clustering heatmaps. The results of this study can help researchers to better understand the structure-activity relationship of Peganum alkaloids and how substitution can affect the biological activity of those alkaloids.
Collapse
Affiliation(s)
- Omer Bayazeid
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| | - Tohfa Nasibova
- Department of General and Toxicological Chemistry, Azerbaijan Medical University, A. Gasimzade 14, AZ1022, Baku, Azerbaijan
| |
Collapse
|
25
|
Meijboom KE, Volpato V, Monzón-Sandoval J, Hoolachan JM, Hammond SM, Abendroth F, de Jong OG, Hazell G, Ahlskog N, Wood MJ, Webber C, Bowerman M. Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy. JCI Insight 2021; 6:e149446. [PMID: 34236053 PMCID: PMC8410072 DOI: 10.1172/jci.insight.149446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Viola Volpato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jimena Monzón-Sandoval
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Olivier G de Jong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,School of Medicine, Keele University, Staffordshire, United Kingdom.,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| |
Collapse
|
26
|
Peganum spp.: A Comprehensive Review on Bioactivities and Health-Enhancing Effects and Their Potential for the Formulation of Functional Foods and Pharmaceutical Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5900422. [PMID: 34257813 PMCID: PMC8260309 DOI: 10.1155/2021/5900422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.
Collapse
|
27
|
Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Curr Pharm Des 2021; 27:185-196. [PMID: 33238864 DOI: 10.2174/1381612826666201125103941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious and growing global health issue worldwide. In the cancerous cells, the normal cell cycle has been disrupted via a series of irreversible changes. Recently, the investigations on herbal medicine and clarifying the phytochemicals potential in treat cancer has been increased. The combination of phytochemicals with conventional cancer treatment approaches can improve outcomes via advancing cell death, restraining cell proliferation and invasion, sensitizing cancerous cells, and promoting the immune system. Therefore, phytochemicals can be introduced as relevant complementary medicaments in cancer therapy. Peganum harmala L. (Zygophyllaceae) as a valuable medicinal herb, possesses various alkaloid ingredient. OBJECTIVE Pointing to the importance of new avenues for cancer management and P. harmala convincing effect in this field, this review strived to collect a frame to epitome possible scopes to develop novel medicines in cancer treatment. METHODS Keywords "Peganum harmala" and cancer, or chemotherapy, or anti-neoplasm were searched through the "Scopus" database up to 29th of February 2020. Papers linking to agriculture, chemistry, environmental, and genetics sciences were omitted and, papers centered on cancer were selected. RESULTS AND DISCUSSION In the current study, 42 related papers to cancer treatment and 22 papers on alkaloid bioactive components are collected from 72 papers. The β-carboline alkaloids derived from P. harmala, especially harmine, demonstrate notable anticancer properties by targeting apoptosis, autophagy, abnormal cell proliferation, angiogenesis, metastasis, and cytotoxicity. Based on the collected information, P. harmala holds significant anticancer activity. Considering the mechanism of the various anticancer drugs and their acting similarity to P. harmala, the alkaloids derived from this herb, particularly harmine, can introduce as a novel anticancer medicine solely or in adjuvant cancer therapy.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Nazer S, Andleeb S, Ali S, Gulzar N, Raza A, Khan H, Akhtar K, Ahmed MN. Cytotoxicity, Anti-diabetic, and hepato-protective potential of Ajuga bracteosa-conjugated silver nanoparticles in Balb/c mice. Curr Pharm Biotechnol 2021; 23:318-336. [PMID: 33882804 DOI: 10.2174/1389201022666210421101837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ajuga bracteosa is a traditional herb used against various diseases. OBJECTIVE Current research aimed to investigate the anti-diabetic and hepato-protective effect of green synthesized silver nanoparticles (ABAgNPs) using Ajuga bracteosa aqueous extract (ABaqu). METHODS In vitro anti-diabetic and cytotoxic effects were carried out via α- glucosidase inhibition, brine shrimp lethality, and protein kinase inhibition assays. For in vivo screening of 200 mg/kg and 400 mg/kg of both ABAgNPs and ABaqu in alloxan-induced and CCl4-induced Swiss albino mice were used. Liver and kidney functional markers, hematology, and histopathological studies were carried out after 14 days of administration. RESULTS In vivo antidiabetic and anti-cancerous effects showed valuable anti-hyperglycemic and hepato-protective potential when mice were treated with ABaqu and ABAgNPs. A significant reduction in the blood glucose level was recorded when ABaqu and ABAgNPs were administrated orally compared to Glibenclamide treated group. Significant reduction in ALT, AST, ALP, urea, uric acid, and creatinine was recorded in ABaqu and ABAgNPs treated diabetic mice. The hepato-protective findings indicated that ALT, ALP, AST were elevated in CCl4-induced mice while declined in both ABAgNPs and ABaqu treated CCl4-induced mice. Histopathological examination revealed that ABAgNPs have hepato-protective activity. CONCLUSION It was concluded that ABAgNPs and ABaqu possessed strong anti-diabetic and hepato-protective phytoconstituents which could be used in the prevention of diseases.
Collapse
Affiliation(s)
- Sadia Nazer
- Microbial Biotechnology laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Nazia Gulzar
- Microbial Biotechnology laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Abida Raza
- National Institute for Lasers and Optronics (NILOP), Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Habib Khan
- Microbial Biotechnology laboratory, Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Kalsoom Akhtar
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
29
|
Alotaibi SS, Alshoaibi D, Alamari H, Albogami S, Khan E, Alshanbari A, Darwish H, Alshanqiti B, Alghamdi H, Almalki W. Potential significance of medicinal plants in forensic analysis: A review. Saudi J Biol Sci 2021; 28:3929-3935. [PMID: 34220249 PMCID: PMC8241623 DOI: 10.1016/j.sjbs.2021.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
Medicinal plants are a two-edged sword that might be exploited as a treatment specific dosage, and as deadly poisonous substances to commit murder or suicide when administered in high doses. Forensic experts can collect traces and residual materials from these toxic medicinal plants at a crime scene as forensic evidence. Further, more investigations need to be deeply implemented to in the future to understand the significance of medicinal plants in forensic investigations to detect these criminal offenses. Additionally, to provides a deep understanding of chemical substances that can impact human life positively or negatively with different doses as well as identifying the optimal or overdose concentrations for either treatments or poisonous effects using recent biotechnological approaches. This review aims to illustrate different contributions and the significance of medicinal plants in the field and further employment in the context of forensic science, especially in the Kingdom of Saudi Arabia.
Collapse
Affiliation(s)
- Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Doaa Alshoaibi
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Hala Alamari
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia.,Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Eman Khan
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Areej Alshanbari
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Bashaer Alshanqiti
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Hanan Alghamdi
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Wafa Almalki
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
30
|
Jiao PP, Si W, Qu WR, Zhang SH, Yang TG, Wu ZH. Complete chloroplast genome sequence of Peganum harmala (Zygophyllaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1360-1362. [PMID: 33889749 PMCID: PMC8032332 DOI: 10.1080/23802359.2021.1909441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peganum harmala L. is a perennial herbaceous plant belonging to the family of Zygophyllaceae, and is grows in semi-arid climates, such as Xinjiang, Gansu, Ningxia, Qinghai, and Inner Mongolia in China, and also Middle East and North Africa. This species is of high medicinal value. The complete chloroplast genome was reported in this study. The chloroplast genome with a total size of 159,957 bp consists of two inverted repeats (IR, 26,550 bp) separated by a large single-copy region (LSC, 88,098 bp) and a small single-copy region (SSC, 18,759 bp). Further annotation revealed the chloroplast genome contains 113 genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. A total of 90 simple sequence repeats (SSRs) were identified in the chloroplast genome. This information will be useful for study on the evolution and genetic diversity of Peganum harmala in the future.
Collapse
Affiliation(s)
- Pei-Pei Jiao
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, PR China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wei Si
- Security Department, Tarim University, Alar, PR China
| | - Wen-Rui Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, PR China
| | - Shan-He Zhang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar, PR China
| | - Tian-Ge Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, PR China
| | - Zhi-Hua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, PR China
| |
Collapse
|
31
|
Shahrajabian MH, Sun W, Cheng Q. Improving health benefits with considering traditional and modern health benefits of Peganum harmala. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00255-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Medicinal plants are potential source of natural products that play an important role in preventing different human diseases. P. harmala is used traditionally as emmenagogue and an abortifacient agent in the Middle East, North of Africa and West of China. It belongs to the family of Zygophyllaceae and it is a wild growing flowering plant. Its seeds are main medicinal part of the plant.
Methods
The current searching was done by the keywords in main indexing systems including PubMed/MEDLINE, Scopus, and Institute for Scientific Information Web of Science as well as the search engine of Google Scholar. The keywords were wild rue, traditional medicine, Harman, health benefits, and pharmaceutical science.
Results
The most important uses of P. harmala in traditional pharmaceutical sciences are in cardiovascular, gasterointestinal, nervous, endocrine, neoplasm and tumors, pain relieving, organisms, diabetes, respiratory, disinfectant, anti-pyretic, skin and hair, rheumatism, arthritis and inflammation, and ulcers. Pharmacological effects of P. harmala are in cardiovascular system, nervous system, antimicrobial effects, antineoplasm, nervous system, endocrine, gastrointestinal effects, osteocytes, endocrine and respiratory system. Phenolic compounds are the main reason of antioxidant capacity.
Conclusions
Due to its pharmacological activities, P. harmala is a high potential medicinal herb and the suggestion is to increases by doing research in efficacy and safety.
Collapse
|
32
|
Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020; 30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
A novel series of deoxyvasicinone-tetrahydro-beta-carboline hybrids were synthesized and evaluated as acetylcholinesterase (AChE) and β-amyloid peptide (Aβ) aggregation inhibitors for the treatment of Alzheimer's disease. The results revealed that the derivatives had multifunctional profiles, including AChE inhibition, Aβ1-42 aggregation inhibition, and neuroprotective properties. Inspiringly, hybrids 8b and 8d displayed excellent inhibitory activities against hAChE (IC50 = 0.93 and 1.08 nM, respectively) and Aβ1-42 self-aggregation (IC50 = 19.71 and 2.05 μM, respectively). In addition, 8b and 8d showed low cytotoxicity and good neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; College of Science, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xinyu Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Meng Ma
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Huili Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
33
|
Ferraz CAA, de Oliveira Júnior RG, de Oliveira AP, Groult H, Beaugeard L, Picot L, de Alencar Filho EB, Almeida JRGDS, Nunes XP. Complexation with β-cyclodextrin enhances apoptosis-mediated cytotoxic effect of harman in chemoresistant BRAF-mutated melanoma cells. Eur J Pharm Sci 2020; 150:105353. [PMID: 32334103 DOI: 10.1016/j.ejps.2020.105353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Harman, a natural β-carboline alkaloid, has recently gained considerable interest due to its anticancer properties. However, its physicochemical characteristics and poor oral bioavailability have been limiting factors for its pharmaceutical development. In this paper, we described the complexation of harman (HAR) with β-cyclodextrin (βCD) as a promising alternative to improve its solubility and consequently its cytotoxic effect in chemoresistant melanoma cells (A2058 cell line). Inclusion complexes (βCD-HAR) were prepared using a simple method and then characterized by FTIR, NMR and SEM techniques. Through in silico studies, the mechanism of complexation of HAR with βCD was elucidated in detail. Both HAR and βCD-HAR promoted cytotoxicity, apoptosis, cell cycle arrest and inhibition of cell migration in melanoma cells. Interestingly, complexation of HAR with βCD enhanced its pro-apoptotic effect by increasing of caspase-3 activity (p < 0.05), probably due to an improvement in HAR solubility. In addition, HAR and βCD-HAR sensitized A2058 cells to vemurafenib, dacarbazine and 5FU treatments, potentializing their cytotoxic activity. These findings suggest that complexation of HAR with natural polymers such as βCD can be useful to improve its bioavailability and antimelanoma activity.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil; RENORBIO, Universidade Federal Rural de Pernambuco, Recife-PE, 52171-900, Brazil
| | | | - Ana Paula de Oliveira
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil
| | - Hugo Groult
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laureen Beaugeard
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, 17042, France
| | | | | | - Xirley Pereira Nunes
- NEPLAME, Universidade Federal do Vale do São Francisco, Petrolina-PE, 56306-000, Brazil.
| |
Collapse
|
34
|
Ebrahimabadi MH, Lamardi SNS, Shirbeigi L. Immunomodulatory Effects of Medicinal Plants used for Vitiligo in Traditional Persian Medicine. Curr Drug Discov Technol 2020; 18:160-178. [PMID: 32416680 DOI: 10.2174/1570163817666200517115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitiligo is a hypopigmentation disorder that affects 1% of the world's population. Vitiligo causes white spots on the skin, mucous membranes, or white hair by destroying skin melanocytes. The pathogenesis of vitiligo is unknown but autoimmune, autocytotoxic, and neural mechanisms are suggested. According to the autoimmune theory, in people with vitiligo, immune cells invade and damage melanocytes. T cells are more commonly present in vitiligo patients' skin and remain in the lesion site, which is composed of CD8 and CD4 T cells. Many studies have been conducted on the presence and role of cytokines such as interleukins and interferongamma (IFN-γ) in the vitiligo process. AIM This study aimed to introduce herbs effective against vitiligo from the perspective of Persian medicine and to investigate their possible therapeutic mechanisms with the possible effects of herbs on autoimmune mechanisms. METHODS For this purpose, keywords were used to extract data from Persian medicine textbooks, and then relevant scientific databases, including Google Scholar, PubMed, Web of Science, and Scopus were examined. RESULTS It was found that Persian medicine scholars used 50 different medicinal plants to treat and reduce the complications of vitiligo, and recent scientific studies have proven immune-regulating properties and reducing the effect of many of them on cytokines. CONCLUSION According to scientific evidence on immunomodulatory effects, new research into the effects of these plants on vitiligo can lead to the discovery of new drugs and approaches for treating this disease.
Collapse
Affiliation(s)
- Mohsen Haghir Ebrahimabadi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laila Shirbeigi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Moghaddam M, Mehdizadeh L, Sharifi Z. Macro- and microelement content and health risk assessment of heavy metals in various herbs of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12320-12331. [PMID: 31993898 DOI: 10.1007/s11356-020-07789-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
In this study, element content and health risk of the most popular herbs from Iran were evaluated. The samples of raw materials from 30 different herbs were purchased from the local markets of Iran. The concentration levels of some elements including macroelements (N, P, K, Ca, and Mg), micronutrients (Fe, Zn, Cu, Mn, and Na), and heavy metals (Cd, Ni, and Pb) of studied herbs were evaluated. The potential of health risks was calculated by Estimated Daily Intake (EDI), Target Hazard Quotient (THQ), and Hazard Index (HI). The analysis of variance (ANOVA) is used to test a hypothesis about differences between the mean values. The highest levels of Ca (20,000 ± 26.3 mg/kg), Mg (9600 ± 45.4 mg/kg), N (59,955 ± 11.55 mg/kg), P (6544 ± 20 mg/kg), and K (56,563.2 ± 18 mg/kg) were found in Zataria multiflora, Malva sylvestris, Acasia arbus, Cannabis sativa, and Amomum subulatum, respectively. In addition, the highest concentration levels of Fe (987 ± 75.27 mg/kg), Zn (1187.5 ± 10 mg/kg), Cu (64.2 ± 2 mg/kg), Mn (272.3 ± 66.62 mg/kg), and Na (2658.8 ± 20.3 mg/kg) were recorded in Bunium persicum, Peganum harmala, Papaver somniferum, Alpinia officinalis, and Cuminum cyminum, respectively. Acasia arbus, Anethum graveolens, and Malva sylvestris showed the highest concentration of Ni (6.07 ± 0.04 mg/kg), Cd (1.64 ± 0.16 mg/kg), and Pb (9.27 ± 0.25 mg/kg). Based on performed health risk assessment on the studied plants, EDI, THQ, and HI values of all of them were less than 1. This study indicated that there were several harmful elements in the herbs. The healthier plant species are those with the least concentration of Pb, Ni, and Cd, which include Vitex agnus-custus and Teucrium polium. On the other hand, the toxic plants with a higher concentration of Pb, Ni, and Cd included Malva sylvestris, Acasia arbus, and Anethum graveolens. In addition, evaluation of human risk assessment is an important factor for investigating the concentration of heavy metals harmful for human beings.
Collapse
Affiliation(s)
- Mohammad Moghaddam
- Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran.
| | - Leila Mehdizadeh
- Department of Horticulture Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Zahra Sharifi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| |
Collapse
|
36
|
da Silva Souza Campanholi K, Jaski JM, da Silva Junior RC, Zanqui AB, Lazarin-Bidóia D, da Silva CM, da Silva EA, Hioka N, Nakamura CV, Cardozo-Filho L, Caetano W. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111763. [PMID: 31931382 DOI: 10.1016/j.jphotobiol.2019.111763] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a clinical modality that allows the destruction of tumor cells and microorganisms by reactive oxygen species, formed by the combination of photosensitizer (PS), molecular oxygen and adequate wavelength light. This research, through a clean methodology that involves pressurized liquids extraction (PLE), obtained a highly antimicrobial extract of Tetragonia tetragonoides, which rich in chlorophylls as photosensitizers. The Chlorophylls-based extract (Cbe-PLE) presented pharmacological safety, through the maintenance of cellular viability. In addition, Cbe-PLE showed great efficacy against Staphylococcus aureus, with severe dose-dependent damage to the cell wall of the pathogen. The obtained product has a high potential for the development of photostimulated phytotherapic formulations for clinical applications in localized infections, as a complementary therapeutic alternative to antibiotics.
Collapse
Affiliation(s)
| | - Jonas Marcelo Jaski
- Department of Agronomy, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | - Ana Beatriz Zanqui
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | - Edson Antonio da Silva
- State University of Western Paraná, 645 Faculdade Street, 85903-000, Toledo, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Microbiology, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Lucio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
37
|
Samaha AA, Fawaz M, Salami A, Baydoun S, Eid AH. Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial. Biomolecules 2019; 9:biom9070292. [PMID: 31330767 PMCID: PMC6681041 DOI: 10.3390/biom9070292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension is highly prevalent among the Lebanese adult population and is indeed the major cause of mortality in Lebanon. Traditional use of antihypertensive medicinal plants has long been practiced. The aim of this study is to document this traditional knowledge and clinically test the antihypertensive capacity of three of the most commonly used wild plant species Mentha longifolia, Viola odorata and Urtica dioica. Ethno-pharmacological data was collected by personal interviews with herbalists and traditional healers using a semi structured survey questionnaire and assessing relative frequency of citation (RFC). The clinical study was conducted by a randomized, blind, placebo-controlled trial in 29 subjects with mild hypertension distributed in four groups, three plant extract treatments and one placebo. Systolic (SBP) and diastolic blood pressures (DBP) as well as mean arterial blood pressures (MAP) were monitored at weeks 4, 8, 12 and 16 during the treatment with 300 mL/day of plant extract. Results showed that M. longifolia, U. dioica and V. odorata exhibited the highest values of RCF (0.95) followed by Allium ampeloprasum (0.94), Apium graveolens (0.92) and Crataegus azarolus (0.90). The clinical trial revealed dose- and duration-dependent significant reductions in SBP, DBP and MAP of subjects treated with M. longifolia, U. dioica or V. odorata. Our findings indicate that extracts of these plants present an effective, safe and promising potential as a phyto-therapuetical approach for the treatment of mild hypertension. More research on the phytochemistry, pharmacological effects and the underlying mechanisms is necessary.
Collapse
Affiliation(s)
- Ali A Samaha
- Lebanese International University, Beirut, P.O. Box 146404, Lebanon
- Faculty of Health Sciences, Beirut Arab University, Beirut, P.O. Box 11-5020, Lebanon
- Lebanese University, Faculty of Public Health IV, Zahle, P.O. Box 6573/14, Lebanon
- Rayak University Hospital, Rayak, P.O. Box 1200, Lebanon
| | - Mirna Fawaz
- Faculty of Health Sciences, Beirut Arab University, Beirut, P.O. Box 11-5020, Lebanon
| | - Ali Salami
- Lebanese University, Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox) Research Group, Faculty of Sciences (V), Nabatieh, P.O. Box 6573/14, Lebanon
| | - Safaa Baydoun
- Research Center for Environment and Development, Beirut Arab University, Bekaa, P.O. Box 11-5020, Lebanon.
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
- Department of Biomedical Sciences, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
38
|
Wang Y, Wang H, Zhang L, Zhang Y, Sheng Y, Deng G, Li S, Cao N, Guan H, Cheng X, Wang C. Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111866. [PMID: 30970283 DOI: 10.1016/j.jep.2019.111866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Peganum harmala Linn, in which the most abundant active compounds are harmaline and harmine, have been widely used as a traditional medicine in various countries to treat a broad spectrum of diseases including asthma, cough, depression, Parkinson's and Alzheimer's diseases. However, few studies on long-term or subchronic toxicity of seeds of P. harmala were reported after overdose. AIM OF THE STUDY To investigate the subchronic toxicity and concomitant toxicokinetics of total alkaloid extracts from seeds of P. harmala (TAEP) after oral administration for four weeks in rats. MATERIALS AND METHODS The subchronic toxicity and concomitant toxicokinetics of TAEP were evaluated after 28-day oral administration in rats at daily dose levels of 15, 45, and 150 mg/kg. The signs of toxicity and mortality were monitored and recorded daily. The body weight and average food consumption were measured weekly. The analyses of hematology, biochemistry, urine, relative organ weights and histopathology were conducted at the termination of treatment and recovery phase. For concomitant toxicokinetics study, the plasma toxicokinetic parameters, tissue distribution, and excretion of predominant ingredients harmaline and harmine in TAEP and metabolites harmalol and harmol were tested. RESULTS Following initial repeated exposure to high-dose (150 mg/kg/day) of TAEP excitotoxic reaction, such as tremor, was observed, but tolerated on the fourth day after multiple dosing. The significant alterations in blood glucose and lipid metabolism in liver were observed, but recovered after four weeks of drug withdrawal. The no-observed-adverse-effect level (NOAEL) of TAEP was considered to be 45 mg/kg/day under the present study conditions. There were no significant gender differences in most indexes of subchronic toxicity throughout the experimental period with the exception of food consumption and body weight. In concomitant toxicokinetics study, the alterations of dynamic characteristic for harmaline, harmine and metabolite harmol after multiple oral administration at three doses had been observed. Harmaline, harmine and metabolites harmalol and harmol were widely distributed in organs and there was no accumulation in the tissues examined. The reduction of harmaline and metabolite harmalol in brain after multiple dosing at dose of 150 mg/kg might be closely related to the tremor tolerance. The main excretory pathway for metabolites harmalol and harmol was urinary excretion via kidney. CONCLUSIONS The results revealed that TAEP at doses of 15 and 45 mg/kg/day in rats might be safe. Excitotoxic reaction such as tremor occurred initially at dose of 150 mg/kg/day, however, the toxicity was tolerant and reversible. In addition, harmaline and harmine in TAEP had a quick absorption into blood and metabolized to harmalol and harmol, and there was no drug accumulation in the detected tissues. Further studies should be investigated to clarify the mechanisms of tremor tolerance and neurotoxicity of TAEP.
Collapse
Affiliation(s)
- Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Liuhong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuchen Sheng
- Drug Safety Evaluation and Research Center of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Ning Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
39
|
Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia 2019; 137:104196. [PMID: 31175948 DOI: 10.1016/j.fitote.2019.104196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Depressive disorders remain a current public health problem whose prevalence has increased in the past decades. In the constant search for new therapeutic alternatives, β-carboline alkaloids have been identified as good candidates for new antidepressant drugs. In this systematic review, we summarized all pre-clinical investigations involving the use of natural or semisynthetic β-carboline in depression models. A literature search was conducted in August 2018, using PubMed, Scopus and Science Direct databases. All reports were carefully analyzed, and data extraction was conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed. The entire systematic review was performed according to PRISMA statement. From a total of 373 articles, 26 met all inclusion criteria. In vitro and in vivo studies have evaluated a wide variety of β-carbolines through enzymatic and binding assays, and acute or chronic animal models. Most of the in vivo and in vitro studies is concentrated on two molecules: harman and harmine. They have been investigated in several animal models and some mechanisms of action have been proposed for their antidepressant activity. In general, β-carbolines modulate 5-HT and GABA systems, promote neurogenesis, induce neuroendocrine response and restore astrocytic function, being effective when administrated acutely or chronically in different animal models, including chronic mild stress protocols. In short, β-carbolines are multi-target antidepressant compounds and may be useful in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Laurent Picot
- Littoral Environnement et Sociétés (LIENSs), Université de La Rochelle, UMRi CNRS 7266, La Rochelle 17042, France
| | | | - Xirley Pereira Nunes
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil.
| |
Collapse
|
40
|
Azadniya E, Morlock GE. Automated piezoelectric spraying of biological and enzymatic assays for effect-directed analysis of planar chromatograms. J Chromatogr A 2019; 1602:458-466. [PMID: 31153601 DOI: 10.1016/j.chroma.2019.05.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Bioanalytical questions are more and more solved by bioassays directly in situ the planar separation. If compared to chemical derivatization in situ, several reagent applications on the same chromatogram make the workflow for enzymatic and biological assays more complex. Hence, if compared to piezoelectric spraying of chemical derivatization reagents, an assay transfer to the piezoelectric spraying technique was much more challenging. Important aspects were investigated, i.e., plate pre-wetting, spraying nozzle type and applied volumes for microorganism suspension as well as enzyme and substrate-chromogenic solutions. Finally, with the newly developed piezoelectric spraying procedures for the application of biological (Aliivibrio fischeri) and enzymatic (acetyl- and butyrylcholinesterase) assays, several obstacles of the state-of-the-art automated immersion were avoided such as the (1) required high volumes of solutions, (2) tailing of highly water-soluble zones upon slow plate withdrawal, (3) zone distortion or shift observed after previous buffer salt applications or long/slow immersion times/speeds, (4) gradual inactivation of the enzyme solution along with its ongoing re-use, and (5) lack of covering the whole plate surface. The benchmarking of both techniques also showed that simplicity remains the key argument for immersion. As proof of concept, piezoelectrically sprayed autograms were compared with those of immersion, by taking the example of Peganum harmala (P. h.) seed extract. The plate background and thus homogeneity of the applied solutions were found to be almost comparable. Three bands among the pronounced fluorescent bands were responsible for the most antibacterial activity of P. h. seed extract in the A. fischeri bioassay and were also inhibiting the AChE. These AChE and three further BChE inhibitors were detected, whereby the AChE inhibition was twice as strong as the BChE inhibition. By their in situ HRMS spectra, the active zones in the P. h. seed extract were assigned to be the AChE-inhibiting β-carboline alkaloids, harmine, harmaline and ruine, as well as the BChE-inhibiting quinazoline alkaloids, vasicine and deoxyvasicine, and the β-carboline alkaloid harmol. For the first time, the found inhibitors were calculated equivalently to the well-known ChE-inhibitor physostigmine, and thus, piezoelectric spraying was proven to be suited for quantifications.
Collapse
Affiliation(s)
- Ebrahim Azadniya
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; TransMIT Center of Effect-Directed Analysis, Kerkrader Straße 3, 35394 Giessen, Germany.
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; TransMIT Center of Effect-Directed Analysis, Kerkrader Straße 3, 35394 Giessen, Germany.
| |
Collapse
|
41
|
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
42
|
Woutersen A, Jardine PE, Bogotá-Angel RG, Zhang HX, Silvestro D, Antonelli A, Gogna E, Erkens RH, Gosling WD, Dupont-Nivet G, Hoorn C. A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the halophytic taxon Nitraria L.(Nitrariaceae). PeerJ 2018; 6:e5055. [PMID: 30038851 PMCID: PMC6054868 DOI: 10.7717/peerj.5055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 11/23/2022] Open
Abstract
Nitraria is a halophytic taxon (i.e., adapted to saline environments) that belongs to the plant family Nitrariaceae and is distributed from the Mediterranean, across Asia into the south-eastern tip of Australia. This taxon is thought to have originated in Asia during the Paleogene (66-23 Ma), alongside the proto-Paratethys epicontinental sea. The evolutionary history of Nitraria might hold important clues on the links between climatic and biotic evolution but limited taxonomic documentation of this taxon has thus far hindered this line of research. Here we investigate if the pollen morphology and the chemical composition of the pollen wall are informative of the evolutionary history of Nitraria and could explain if origination along the proto-Paratethys and dispersal to the Tibetan Plateau was simultaneous or a secondary process. To answer these questions, we applied a novel approach consisting of a combination of Fourier Transform Infrared spectroscopy (FTIR), to determine the chemical composition of the pollen wall, and pollen morphological analyses using Light Microscopy (LM) and Scanning Electron Microscopy (SEM). We analysed our data using ordinations (principal components analysis and non-metric multidimensional scaling), and directly mapped it on the Nitrariaceae phylogeny to produce a phylomorphospace and a phylochemospace. Our LM, SEM and FTIR analyses show clear morphological and chemical differences between the sister groups Peganum and Nitraria. Differences in the morphological and chemical characteristics of highland species (Nitraria schoberi, N. sphaerocarpa, N. sibirica and N. tangutorum) and lowland species (Nitraria billardierei and N. retusa) are very subtle, with phylogenetic history appearing to be a more important control on Nitraria pollen than local environmental conditions. Our approach shows a compelling consistency between the chemical and morphological characteristics of the eight studied Nitrariaceae species, and these traits are in agreement with the phylogenetic tree. Taken together, this demonstrates how novel methods for studying fossil pollen can facilitate the evolutionary investigation of living and extinct taxa, and the environments they represent.
Collapse
Affiliation(s)
- Amber Woutersen
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| | - Phillip E. Jardine
- University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany
- University of Münster, Institute of Geology and Palaeontology, Münster, Germany
| | - Raul Giovanni Bogotá-Angel
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
- Universidad Distrital Francisco José de Caldas, Facultad del Medio Ambiente y Recursos Naturales, Bogotá, Colombia
| | - Hong-Xiang Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, China Academy of Sciences, Urumqi, China
| | | | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- University of Gothenburg, Department of Biological and Environmental Sciences, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, United States of America
| | - Elena Gogna
- Maastricht University, Maastricht Science Programme, Maastricht, The Netherlands
| | - Roy H.J. Erkens
- Maastricht University, Maastricht Science Programme, Maastricht, The Netherlands
| | - William D. Gosling
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| | - Guillaume Dupont-Nivet
- University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany
- Université de Rennes, Geosciences Rennes UMR-CNRS, Rennes, France
| | - Carina Hoorn
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), Amsterdam, The Netherlands
| |
Collapse
|
43
|
Li Y, He Q, Geng Z, Du S, Deng Z, Hasi E. NMR-based metabolomic profiling of Peganum harmala L. reveals dynamic variations between different growth stages. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171722. [PMID: 30109044 PMCID: PMC6083650 DOI: 10.1098/rsos.171722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/20/2018] [Indexed: 05/19/2023]
Abstract
Xerophytes play an active role in preventing soil denudation and desertification in arid and semi-arid areas. Peganum harmala L. (Zygophyllaceae family), a seasonally growing, poisonous and drought-tolerant plant, is widely distributed in the Xinjiang Uygur Autonomous Region and used as a traditional herbal medicine as well as, in winter, a fodder source. Previous research has focused on the pharmacological activity of isolated compounds and stress responses to growth environments. However, the metabolic profile of P. harmala and variations in its metabolites, including medicinally active and stress resistance components, have not been illustrated during different growth stages. Here, we collected plant samples in May, August, October and December. We determined the metabolic composition of methanol extracts using NMR spectroscopy, and comparisons of four growth stages were accomplished by applying statistical analysis. The results showed that vasicine, choline and sucrose were significantly elevated in samples harvested in May. Significantly higher amounts of betaine, lysine, 4-hydroxyisoleucine and proline were found in samples collected in August than in samples collected in other months, and the concentrations of phosphorylcholine, glucose, acetic acid and vasicinone were highest in December. The relationships between differential biomarkers and plant physiological states affected by diverse growth environmental factors were discussed. Our result deepened the understanding of metabolic mechanisms in plant development and confirmed the advantage of using NMR-based metabolomic treatments in quality evaluation when P. harmala is used for different purposes.
Collapse
Affiliation(s)
- Yinping Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Xinjiang 830054, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhufeng Geng
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Shushan Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Zhiwei Deng
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
- Authors for correspondence: Zhiwei Deng e-mail:
| | - Eerdun Hasi
- College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China
- Authors for correspondence: Eerdun Hasi e-mail:
| |
Collapse
|
44
|
Adeel S, Zuber M, Zia KM. Microwave-assisted extraction and dyeing of chemical and bio-mordanted cotton fabric using harmal seeds as a source of natural dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11100-11110. [PMID: 29411282 DOI: 10.1007/s11356-018-1301-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The revival of cultural heritage in a form of natural colorants for textile dyeing is gaining popularity due to their soothing nature and bright shades. The present study was conducted to explore the coloring potential of harmala (Peganum harmala) seeds and to improve color strength of dye using microwave radiations followed by a mordanting process. The results showed that harmala plant seeds could be an excellent source of natural dyes for cotton dyeing if the irradiated acidified methanolic extract (RE, 4 min) is used to dye un-irradiated fabric (NRC) at 85 °C for 45 min using a dye bath of pH 9.0 having salt concentration of 7 g/100 mL. Alum (1%) as pre-mordants and iron (7%) as post-mordants have improved the color strength in chemical mordanting more than other mordants employed. The bio-mordants employed reveal that 10% of acacia as pre-bio-mordants and 7% of acacia as post-bio-mordants are effective amounts to obtain high color strength. Suggested ISO standards for colorfastness illustrate that bio-mordanting has given more excellent rating as compared to chemical mordants. It is concluded that harmala seeds have a great potential to act as a source of natural colorant for cotton dyeing under the influence of microwave radiation.
Collapse
Affiliation(s)
- Shahid Adeel
- Department of Chemistry, Govt. College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Zuber
- Department of Applied Chemistry, Govt. College University, Faisalabad, 38000, Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Govt. College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
45
|
Li Y, He Q, Du S, Guo S, Geng Z, Deng Z. Study of Methanol Extracts from Different Parts of Peganum harmala L. Using 1H-NMR Plant Metabolomics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:6532789. [PMID: 30581649 PMCID: PMC6276451 DOI: 10.1155/2018/6532789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 05/03/2023]
Abstract
A nuclear magnetic resonance- (NMR-) based metabolomics method was used to identify differential metabolites of methanol extracts obtained from six parts of Peganum harmala L. (P. harmala), namely, the root, stem, leaf, flower, testa, and seed. Two multivariate statistical analysis methods, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), were combined to clearly distinguish among the P. harmala samples from the six different parts. Eleven differential components were screened by the PLS-DA loading plot, and the relative contents were calculated by univariate analysis of variance. Chemometric results showed significant differences in the metabolites of the different parts of P. harmala. The seeds contained large amounts of harmaline, harmine, and vasicine compared to other organs. The acetic acid, proline, lysine, and sucrose contents of the roots were significantly higher than those of the other parts. In the testa, the vasicine, asparagine, choline, and 4-hydroxyisoleucine contents were clearly dominant. The obtained data revealed the distribution characteristics of the metabolomes of the different P. harmala parts and provided fundamental knowledge for the rational development of its medicinal parts.
Collapse
Affiliation(s)
- Yinping Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shushan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shanshan Guo
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zhufeng Geng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
| | - Zhiwei Deng
- Analytic and Testing Center, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
46
|
Farzaei F, Morovati MR, Farjadmand F, Farzaei MH. A Mechanistic Review on Medicinal Plants Used for Diabetes Mellitus in Traditional Persian Medicine. J Evid Based Complementary Altern Med 2017; 22:944-955. [PMID: 29228789 PMCID: PMC5871259 DOI: 10.1177/2156587216686461] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is the most common endocrine disorder and a major cause of morbidity and mortality. Traditional medicines worldwide suggest a wide range of natural remedies for the prevention and treatment of chronic disorders, including diabetes mellitus. This mechanistic review aims to highlight the significance of medicinal plants traditionally used as dietary supplements in Persian medicine in adjunct with restricted conventional drugs for the prevention and treatment of diabetes mellitus. Mounting evidence suggests that these natural agents perform their protective and therapeutic effect on diabetes mellitus via several cellular mechanisms, including regeneration of pancreatic β cell, limitation of glycogen degradation and gluconeogenesis, anti-inflammatory, immunoregulatory, antiapoptosis, antioxidative stress, as well as modulation of intracellular signaling transduction pathways. In conclusion, traditional medicinal plants used in Persian medicine can be considered as dietary supplements with therapeutic potential for diabetes mellitus and maybe potential sources of new orally active agent(s).
Collapse
Affiliation(s)
- Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| |
Collapse
|
47
|
Farzaei MH, Bahramsoltani R, Ghobadi A, Farzaei F, Najafi F. Pharmacological activity of Mentha longifolia and its phytoconstituents. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30327-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Moradi MT, Karimi A, Rafieian-Kopaei M, Fotouhi F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb Pathog 2017. [PMID: 28629724 DOI: 10.1016/j.micpath.2017.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This research was aimed to evaluate the in vitro antiviral effect and the mechanism of the effect of Peganum. harmala seeds extract against influenza A virus infection using Madin-Darby canine kidney (MDCK) cells. In this research, ethyl alcohol extract of P. harmala seeds and its total alkaloids was prepared. The potential antiviral activity of the extract and its total alkaloids against influenza A/Puerto Rico/8/34 (H1N1; PR8) virus was assessed. The mode of action of the extract to inhibit influenza replication was investigated using virucidal activity, hemagglutination inhibition assay, time of addition assays, RNA replication, western blot analysis and RNA polymerase blocking assay. The crud extract of P. harmala seed and its total alkaloids showed the best inhibitory effect against influenza A virus replication in MDCK cells using MTT assay, TCID50 method and hemagglutination assay. Our results indicated that the extract inhibits viral RNA replication and viral polymerase activity but did not effect on hemagglutination inhibition and virucidal activity. This study showed that, in vitro antiviral activity of P. harmala seed extract against influenza virus is most probably associated with inhibiting viral RNA transcription. Therefore, this extract and its total alkaloid should be further characterized to be developed as anti-influenza A virus agent.
Collapse
Affiliation(s)
- Mohammad-Taghi Moradi
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Karimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
49
|
Li S, Cheng X, Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:127-162. [PMID: 28359849 DOI: 10.1016/j.jep.2017.03.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research. MATERIALS AND METHODS Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS's dissertations. RESULTS The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory. CONCLUSIONS Based on this review, there is some evidence for extracts' pharmacological effects on Alzheimer's and Parkinson's diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China.
| |
Collapse
|
50
|
Shirani-Boroujeni M, Heidari-Soureshjani S, Keivani Hafshejani Z. Impact of oral capsule of Peganum harmala on alleviating urinary symptoms in men with benign prostatic hyperplasia; a randomized clinical trial. J Renal Inj Prev 2016; 6:127-131. [PMID: 28497089 PMCID: PMC5423280 DOI: 10.15171/jrip.2017.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Introduction: Benign prostatic hyperplasia (BPH) is considered as a major cause of lower urinary tract symptoms (LUTS) in older men and its most common sign is nocturia.
Objectives: This study aimed to determine the effect of the seeds of Peganum harmala compared with tamsulosin on alleviating urinary symptoms in patients with BPH.
Patients and Methods: In this single blind clinical trial study, 90 patients diagnosed with BPH and LUTS, based on international prostate standard survey (IPSS) were divided into three groups. The first group was received oral capsule of P. harmala, the second group was administered tamsulosin with oral P. harmala seed and the third group was received tamsulosin drug and they were evaluated after 4 weeks.
Results: The results showed that the difference between mean scores of IPSS was significant after the intervention (P=0.001). Besides, the mean of IPSS in the three groups was significantly different (P=0.001) (the first group 41.9±5.3, the second group 21.0±4.4 ,the third group 16.5±3.7 respectively). However, after the intervention, patients in the second group had the lowest average on most indicators of IPSS but the difference was only significant about urinary frequency, nocturia and intermittency(P<0.05).
Conclusion: Application of Peganum harmala seed can be useful in reducing urinary symptoms in patients with BPH.
Collapse
|