1
|
Soltani S, Zandi M, Shiri Aghbash P, Rezaei M, Mohammadzadeh N, Afsharifar A, Poortahmasebi V. A review of COVID-19 vaccines and major considerations for diabetic patients. Biotechnol Appl Biochem 2020; 69:30-40. [PMID: 33179788 DOI: 10.1002/bab.2076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
The necessity and impact of SARS-CoV2 on the world's health have led to developing and producing practical and useful vaccines for this deadly respiratory virus. Since April 2020, a vaccine for the virus has been developed. Given that comorbidities such as diabetes, hypertension, and cardiovascular disease are more prone to viruses and the risk of infection, vaccines should be designed to protect against high-risk respiratory illnesses. Including SARS, MERS, influenza, and the SARS-CoV-2 provide a safe immune response. Here, we review the information and studies that have been done to help develop strategies and perspectives for producing a safe and ideal vaccine to prevent COVID-19 in normal people, especially at high-risk groups such as diabetes patients.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shiri Aghbash
- Department of Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Rezaei
- Department of Plant Protection, Shiraz University, Shiraz, Iran
| | - Nader Mohammadzadeh
- Health Reference Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 2012; 93:1305-1315. [PMID: 22398318 DOI: 10.1099/vir.0.040055-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex type 2 (HSV-2) envelope glycoprotein (gD2) was evaluated as a potential antigen candidate for a plasmid DNA (pDNA)-based HSV-2 vaccine. The pDNA was formulated with Vaxfectin, a cationic lipid-based adjuvant, and tested in a murine HSV-2 lethal challenge model. gD2 was expressed as full-length (FL) and secreted (S) gD2 forms. A 0.1 µg pDNA dose was tested to distinguish treatment conditions for survival and a 100 µg pDNA dose was tested to distinguish treatment conditions for reduction in vaginal and latent HSV-2 copies. Vaxfectin-formulated gD2 pDNA significantly increased serum IgG titres and survival for both FL gD2 and S gD2 compared with gD2 pDNA alone. Mice immunized with FL gD2 formulated with Vaxfectin showed reduction in vaginal and dorsal root ganglia (DRG) HSV-2 copies. The stringency of this protection was further evaluated by testing Vaxfectin-formulated FL gD2 pDNA at a high 500 LD(50) inoculum. At this high viral challenge, the 0.1 µg dose of FL gD2 Vaxfectin-formulated pDNA yielded 80 % survival compared with no survival for FL gD2 pDNA alone. Vaxfectin-formulated FL gD2 pDNA, administered at a 100 µg pDNA dose, significantly reduced HSV-2 DNA copy number, compared with FL gD2 DNA alone. In addition, 40 % of mice vaccinated with adjuvanted FL pDNA had no detectable HSV-2 viral genomes in the DRG, whereas all mice vaccinated with gD2 pDNA alone were positive for HSV-2 viral genomes. These results show the potential contribution of Vaxfectin-gD2 pDNA to a future multivalent HSV-2 vaccine.
Collapse
Affiliation(s)
- Mark Shlapobersky
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Qun Wei
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alice Chu
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alain Rolland
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Sean Sullivan
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - David M Koelle
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Benaroya Research Institute, Seattle, WA 98101, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Jamali A, Soleimanjahi H, Moin M, Mahdavi M, Hashemi H, Sabahi F, Hassan ZM, Bamdad T. Withdrawal from morphine reduces cell-mediated immunity against herpes simplex virus generated by natural immunization. Neuroimmunomodulation 2012; 19:229-34. [PMID: 22441539 DOI: 10.1159/000334768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
In a previous study, the authors have shown that herpes simplex virus type 1 (HSV-1) glycoprotein B DNA vaccine but not live vaccine (non-virulent KOS strain) failed to induce protective immunity against acute HSV-1 challenge in morphine-dependent mice. The present study reports the effect of morphine withdrawal on protective immunity induced by live HSV-1 immunization. BALB/c mice were vaccinated with KOS strain as a live vaccine. Three weeks later, they were exposed to morphine for 14 days. On day 14, withdrawal was induced by administration of normal saline instead of morphine. One day later, immune responses against HSV-1 were assessed by measuring cytotoxicity, lymphocyte proliferation and interferon-γ production. Protection against HSV-1 was assessed by measuring the mortality rate after acute HSV-1 challenge. The results showed that withdrawal from morphine reduces protective immunity against acute HSV-1 challenge. These findings raise the possibility that withdrawal from morphine may increase the susceptibility of drug addicts to infectious diseases.
Collapse
Affiliation(s)
- Abbas Jamali
- Influenza Unit, Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 2011; 85:10472-86. [PMID: 21813597 DOI: 10.1128/jvi.00849-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation.
Collapse
|
5
|
Kask AS, Chen X, Marshak JO, Dong L, Saracino M, Chen D, Jarrahian C, Kendall MA, Koelle DM. DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine 2010; 28:7483-91. [PMID: 20851091 DOI: 10.1016/j.vaccine.2010.09.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/13/2010] [Accepted: 09/03/2010] [Indexed: 02/02/2023]
Abstract
There is an unmet medical need for a prophylactic vaccine against herpes simplex virus (HSV). DNA vaccines and cutaneous vaccination have been tried for many applications, but few reports combine this vaccine composition and administration route. We compared DNA administration using the Nanopatch™, a solid microprojection device coated with vaccine comprised of thousands of short (110 μm) densly-packed projections (70 μm spacing), to standard intramuscular DNA vaccination in a mouse model of vaginal HSV-2 infection. A dose-response relationship was established for immunogenicity and survival in both vaccination routes. Appropriate doses administered by Nanopatch™ were highly immunogenic and enabled mouse survival. Vaginal HSV-2 DNA copy number day 1 post challenge correlated with survival, indicating that vaccine-elicited acquired immune responses can act quickly and locally. Solid, short, densely-packed arrays of microprojections applied to the skin are thus a promising route of administration for DNA vaccines.
Collapse
Affiliation(s)
- Angela Shaulov Kask
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
A DNA vaccine-encoded nucleoprotein of influenza virus fails to induce cellular immune responses in a diabetic mouse model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:683-7. [PMID: 20164252 DOI: 10.1128/cvi.00445-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influenza virus infections cause yearly epidemics and are a major cause of lower respiratory tract illnesses in humans worldwide. Influenza virus has long been recognized to be associated with higher morbidity and mortality in diabetic patients. Vaccination is an effective tool to prevent influenza virus infection in this group of patients. Vaccines employing recombinant-DNA technologies are an alternative to inactivated virus and live attenuated virus vaccines. Internal highly conserved viral nucleoprotein (NP) can be delivered as a DNA vaccine to provide heterosubtypic immunity, offering resistance against various influenza virus strains. In this study, we investigated the efficacy of an NP DNA vaccine for induction of cell-mediated immune responses and protection against influenza virus infection in a mouse model of diabetes. Healthy and diabetic BALB/c mice were immunized on days 0, 14, and 28 by injection of NP DNA vaccine. Two weeks after the last immunization, the cellular immune response was evaluated by gamma interferon (IFN-gamma), lymphocyte proliferation, and cytotoxicity assays. The mice were challenged with influenza virus, and the viral titers in the lungs were measured on day 4. Diabetic mice showed significantly smaller amounts of IFN-gamma production, lymphocyte proliferation, and cytotoxicity responses than nondiabetic mice. Furthermore, higher titers of the influenza virus were detected after challenge in the lungs of the diabetic mice. The present data suggest that the NP DNA vaccine with the protocol of immunization described here is not able to induce efficient cellular immune responses against influenza virus infection in diabetic mice.
Collapse
|
7
|
Evaluation of apoptotic and anti-apoptotic genes on efficacy of DNA vaccine encoding glycoprotein B of Herpes Simplex Virus type 1. Immunol Lett 2010; 128:137-42. [DOI: 10.1016/j.imlet.2009.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/02/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022]
|
8
|
Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009; 27:6845-53. [PMID: 19761834 DOI: 10.1016/j.vaccine.2009.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) binds complement component C3b and inhibits complement-mediated immunity. HSV-1 glycoprotein D (gD-1) is a potent immunogen and a candidate antigen for a subunit vaccine. We evaluated whether combined immunization with gD-1 and gC-1 provides better protection against challenge than gD-1 alone based on antibodies to gC-1 preventing HSV-1-mediated immune evasion. IgG purified from mice immunized with gC-1 blocked C3b binding to gC-1 and greatly increased neutralization by gD-1 IgG in the presence of complement. Passive transfer of gC-1 IgG protected complement intact mice against HSV-1 challenge but not C3 knockout mice, indicating that gC-1 antibody activity in vivo is complement-dependent. Immunizing mice with gD-1 and gC-1 provided better protection than gD-1 alone in preventing zosteriform disease and infection of dorsal root ganglia. Therefore, gC-1 immunization prevents HSV-1 evasion from complement and enhances the protection provided by gD-1 immunization.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, United States.
| | | | | |
Collapse
|
9
|
Jamali A, Mahdavi M, Hassan ZM, Sabahi F, Farsani MJ, Bamdad T, Soleimanjahi H, Motazakker M, Shahabi S. A novel adjuvant, the general opioid antagonist naloxone, elicits a robust cellular immune response for a DNA vaccine. Int Immunol 2009; 21:217-25. [PMID: 19174474 DOI: 10.1093/intimm/dxn139] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While many adjuvants have been discovered and used in research, only a few adjuvants have been permitted for use with human vaccination. We have previously shown that the administration of naloxone (NLX), a general opioid antagonist, during infection with a non-virulent strain of herpes simplex virus type 1 (HSV-1) could enhance protection against HSV-1 challenge. Here, the adjuvant activity of NLX has been evaluated using a DNA vaccine for HSV-1 as a model. BALB/c mice were divided into four groups; for experimental groups, mice received the glycoprotein D1 (gD1) DNA vaccine alone or in combination with the adjuvant NLX. A positive control group received the KOS strain of HSV-1, and a negative control group received PBS. All mice were immunized three times on days 0, 21 and 42. Three weeks after the last immunization, immune responses against HSV-1 were assessed. Our results indicate that the administration of NLX as an adjuvant increased the ability of the gD1 DNA vaccine to enhance cytolytic T lymphocyte activity, lymphocyte proliferation, delayed-type hypersensitivity and shifting the immune response toward a T helper (Th)1 pattern and improved protective immunity against HSV-1. NLX also increased the IgG2a/IgG1 ratio, though it did not affect the production of HSV-1 antiserum. In conclusion, administration of NLX as an adjuvant in combination with the gD1 DNA vaccine can enhance cell-mediated immunity and shift the immune responses to Th1.
Collapse
Affiliation(s)
- Abbas Jamali
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Durmanová V, Sapák M, Kosovský J, Rezuchová I, Kúdelová M, Buc M, Rajcáni J. Immune response and cytokine production following immunization with experimental herpes simplex virus 1 (HSV-1) vaccines. Folia Microbiol (Praha) 2008; 53:73-83. [PMID: 18481222 DOI: 10.1007/s12223-008-0011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 11/01/2007] [Indexed: 11/25/2022]
Abstract
Balb/c mice were immunized with the recombinant fusion protein gD1/313 (FpgD1/313 representing the ectodomain of HSV-1 gD), with the non-pathogenic ANGpath gE-del virus, with the plasmid pcDNA3.1-gD expressing full-length gD1 and with the recombinant immediate early (IE) HSV-1 protein ICP27. Specific antibodies against these antigens (as detected by ELISA) reached high titers with the exception of the DNA vaccine. High-grade protection against challenge with the virulent strain SC16 was found following immunization with the pcDNA3.1-gD plasmid and with the gE-del virus. Medium grade, but satisfactory protection developed after immunization with the FpgD1/313 and minimum grade protection was seen upon immunization with the IE/ICP27 polypeptide. A considerable response of peripheral blood cells (PBL) and splenocytes in the lymphocyte transformation test (LTT) was found in mice immunized with FpgD1/313, with the pcDNA3.1-gD plasmid and with the live ANGpathgE-del virus. For lymphocyte stimulation in vitro, the FpgD1/313 antigen was less effective than the purified gD1/313 polypeptide (cleaved off from the fusion protein); both proteins elicited higher proliferation at the 5 microg per 0.1 mL dose than at the 1 microg per 0.1 mL dose. The secretion of Th type 1 (TNF, IFN-gamma and IL-2) and Th type 2 (IL-4 and IL-6) cytokines was tested in the medium fluid of purified PBL and splenocyte cultures; their absolute values were expressed in relative indexes. The PBL from FpgD1/313 immunized mice showed increased secretion of both T(H)1 (TNF) as well as T(H)2 (IL-4) cytokines (7-10-fold, respectively). Splenocytes from FpgD1/313 immunized mice showed a significant (23-fold) increase in IL-4 production.
Collapse
Affiliation(s)
- V Durmanová
- Institute of Virology, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
11
|
Jamali A, Mahdavi M, Shahabi S, Hassan ZM, Sabahi F, Javan M, Farsani MJ, Parsania M, Bamdad T. Naloxone, an opioid receptor antagonist, enhances induction of protective immunity against HSV-1 infection in BALB/c mice. Microb Pathog 2007; 43:217-23. [PMID: 17669616 DOI: 10.1016/j.micpath.2007.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
The immunomodulatory effects of exogenous opioids on induction of acquired immunity during microbial infection are now well known; however, our knowledge about the relationship between endogenous opioid response and microbial infections is rudimentary. Here, we report the effect of administration of Naloxone (NLX), an opioid receptor antagonist, on induction of acquired immunity during primary herpes simplex virus type 1 (HSV-1) infection. BALB/c mice received NLX, twice daily, 2 h before infection with HSV-1 until 7 days after infection. Cell-mediated immunity was assessed by evaluating lymphocyte proliferation, interferon-gamma (IFN-gamma) production, delayed type hypersensitivity (DTH) and mortality rate after acute HSV-1 challenge. The findings showed that a higher level of cell-mediated immunity was induced in the NLX-treated animals compared to the control group after induction of HSV-1 infection. However, the data indicate similar neutralizing antibody production in NLX-treated animals and control animals. This observation and further studies in this field may lead to the use of NLX as an adjuvant for designing microbial vaccines and adjunctive therapy of viral infections.
Collapse
Affiliation(s)
- Abbas Jamali
- Department of Virology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jamali A, Roostaee MH, Soleimanjahi H, Ghaderi Pakdel F, Bamdad T. DNA vaccine-encoded glycoprotein B of HSV-1 fails to protect chronic morphine-treated mice against HSV-1 challenge. Comp Immunol Microbiol Infect Dis 2007; 30:71-80. [PMID: 17126902 DOI: 10.1016/j.cimid.2006.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2006] [Indexed: 11/16/2022]
Abstract
The use of morphine has been demonstrated to increase susceptibility to infections. Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen among immunocompromised individuals. In the present study, due to the importance of HSV vaccination in morphine abusers, the effects of chronic morphine exposure on the host response to a HSV-1 gB DNA-based vaccine have been investigated. The study is addressing an important aspect of vaccine development among the susceptible (immunocompromised) hosts. BALB/c mice were exposed to morphine over 11 days. They were then vaccinated with DNA vaccine or KOS strain as a live vaccine. The findings showed that the morphine-treated animals failed to respond to DNA vaccination evaluated by the anti-HSV gB antibody titer, delayed type hypersensitivity (DTH) and lethal HSV-1 challenge. Under the same conditions, the KOS vaccine showed a reduced Ab titer and DTH response in morphine-treated mice, but could protect mice against the lethal challenge and was safe for vaccination of morphine-treated animals.
Collapse
Affiliation(s)
- Abbas Jamali
- Department of Virology, School of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | | | | | | | | |
Collapse
|
13
|
Rajcáni J, Durmanová V. Developments in herpes simplex virus vaccines: old problems and new challenges. Folia Microbiol (Praha) 2006; 51:67-85. [PMID: 16821715 DOI: 10.1007/bf02932160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vaccination has remained the best method for preventing virus spread. The herpes simplex virus (HSV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD). In many experiments performed in mice, guinea pigs and rabbits, clear-cut protection against acute virus challenge was demonstrated along with the reduction of the extent of latency, when established in the immunized host. The immunotherapeutic effect of herpes vaccines seems less convincing. However, introduction of new adjuvants, which shift the cytokine production of helper T-cells toward stimulation of cytotoxic T-cells (TH1 type cytokine response), reveals a promising development. Mathematical analysis proved that overall prophylactic vaccination of seronegative women, even when eliciting 40-60 % antibody response only, would reduce the frequency of genital herpes within the vaccinated population. Even when partially effective, immunotherapeutic vaccination might represent a suitable alternative of chronic chemotherapy in recurrent labial and genital herpes.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | | |
Collapse
|
14
|
Austin BA, James CM, Härle P, Carr DJ. Direct application of plasmid DNA containing type I interferon transgenes to vaginal mucosa inhibits HSV-2 mediated mortality. Biol Proced Online 2006; 8:55-62. [PMID: 16900260 PMCID: PMC1489265 DOI: 10.1251/bpo118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022] Open
Abstract
The application of naked DNA containing type I interferon (IFN) transgenes is a promising potential therapeutic approach for controlling chronic viral infections. Herein, we detail the application of this approach that has been extensively used to restrain ocular HSV-1 infection, for antagonizing vaginal HSV-2 infection. We show that application of IFN-alpha1, -alpha5, and -beta transgenes to vaginal mouse lumen 24 hours prior to HSV-2 infection reduces HSV-2 mediated mortality by 2.5 to 3-fold. However, other type I IFN transgenes (IFN- alpha4, -alpha5, -alpha6, and -alpha9) are non effectual against HSV-2. We further show that the efficacy of IFN-alpha1 transgene treatment is independent of CD4+ T lymphocytes. However, in mice depleted of CD8+ T lymphocytes, the ability of IFN-alpha1 transgene treatment to antagonize HSV-2 was lost.
Collapse
Affiliation(s)
- Bobbie Ann Austin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cassandra M. James
- Division of Veterinary & Biomedical Health Science, Murdoch University, Perth, Australia 6150
| | - Peter Härle
- Laboratory of Neuroendocrinoimmunology, University Medical Center, Regensburg, Germany 93053
| | - Daniel J.J. Carr
- Departments of Ophthalmology and Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Soleimanjahi H, Roostaee MH, Rasaee MJ, Mahboudi F, Kazemnejad A, Bamdad T, Zandi K. The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections. ACTA ACUST UNITED AC 2006; 46:100-6. [PMID: 16420602 DOI: 10.1111/j.1574-695x.2005.00015.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus produces primary and latent infections with periodic recurrency. The prime-boost immunization strategies were studied using a DNA vaccine carrying the full-length glycoprotein D-1 gene and a baculovirus-derived recombinant glycoprotein D, both expressing herpes simplex virus glycoprotein D-1 protein. Immunization with recombinant DNAs encoding antigenic proteins could induce cellular and humoral responses by providing antigen expression in vivo. Higher immune response, however, occurred when the recombinant proteins followed DNA inoculation. While all groups of the immunized mice and positive control group could resist virus challenge, a higher virus neutralizing antibody level was detected in the animals receiving recombinant protein following DNA vaccination.
Collapse
Affiliation(s)
- Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rajcáni J, Mosko T, Rezuchová I. Current developments in viral DNA vaccines: shall they solve the unsolved? Rev Med Virol 2005; 15:303-25. [PMID: 15906276 DOI: 10.1002/rmv.467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes the mechanisms of immune response following DNA vaccination. The efficacy of DNA vaccines in animal models is highlighted, especially in viral diseases against which no widely accepted vaccination is currently available. Emphasis is given to possible therapeutic vaccination in chronic infections due to persisting virus genomes, such as recurrent herpes (HSV-1 and HSV-2), pre-AIDS (HIV-1) and/or chronic hepatitis B (HBV). In these, the problem of introducing foreign viral DNA may not be of crucial importance, since the immunised subject is already a viral DNA (or provirus) carrier. The DNA-based immunisation strategies may overcome several problems of classical viral vaccines. Novel DNA vaccines could induce immunity against multiple viral epitopes including the conservative type common ones, which do not undergo antigenic drifts. Within the immunised host, they mimic the effect of live attenuated viral vaccines when continuously expressing the polypeptide in question. For this reason they directly stimulate the antigen-presenting cells, especially dendritic cells. The antigen encoded by plasmid elicits T helper cell activity (Th1 and Th2 type responses), primes the cytotoxic T cell memory and may induce a satisfactory humoral response. The efficacy of DNA vaccines can be improved by adding plasmids encoding immunomodulatory cytokines and/or their co-receptors.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
17
|
Zhang CH, Lu JH, Wang YF, Zheng HY, Xiong S, Zhang MY, Liu XJ, Li JX, Wan ZY, Yan XG, Qi SY, Cui Z, Zhang B. Immune responses in Balb/c mice induced by a candidate SARS-CoV inactivated vaccine prepared from F69 strain. Vaccine 2005; 23:3196-201. [PMID: 15837220 PMCID: PMC7115646 DOI: 10.1016/j.vaccine.2004.11.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/22/2004] [Accepted: 11/29/2004] [Indexed: 11/16/2022]
Abstract
The immunogenicity of a candidate-inactivated vaccine prepared from SARS-CoV F69 strain was evaluated in Balb/c mice. Potent humoral immune responses were induced under the elicitation of three times of immunizations at 2-week intervals with this vaccine, combined with three types of adjuvants (Freund's adjuvant, Al(OH)(3) adjuvant and CpG adjuvant). Titers of specific IgG antibodies in three test groups all peaked in the sixth week after first vaccination, but significant differences existed in the kinetics of specific IgG antibody levels. The strong neutralizing capacity exhibited in micro-cytopathic effect neutralization tests indicated the specific antibodies are protective. Western blot assay further demonstrated the specificity of the induced serum antibodies.
Collapse
Affiliation(s)
- Chuan-hai Zhang
- Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cui FD, Asada H, Jin ML, Kishida T, Shin-Ya M, Nakaya T, Kita M, Ishii M, Iwai M, Okanoue T, Imanishi J, Mazda O. Cytokine genetic adjuvant facilitates prophylactic intravascular DNA vaccine against acute and latent herpes simplex virus infection in mice. Gene Ther 2005; 12:160-8. [PMID: 15470476 DOI: 10.1038/sj.gt.3302393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intravascular plasmid DNA (pDNA) vaccine encoding herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) effectively induces prophylactic immunity against lethal HSV-1 infection in mice. We investigated whether the vaccine potency is further improved by coadministration of cytokine genes together with a low dose of genetic vaccine. pDNA encoding IL-12, IL-15, IL-18 or IL-21 was capable of elevating survival rates of HSV-1-infected mice when coinjected with 1 microg of gB pDNA, while IL-10 gene delivery failed to affect the effectiveness of the genetic immunization. Although only 17% of mice survived acute HSV infection after the gB pDNA vaccination at a dose of 1 microg, all mice coadministered with 1 microg each of gB and IL-12 pDNAs not only survived the acute infection but also escaped latent infection. In these animals, the neutralizing antibody against HSV-1 was abundantly produced, and CTL activity against the gB antigen was augmented. Coadministration of the gB and IL-12 genes also elevated the serum level of interferon-gamma. Adaptive transfer experiments indicated that soluble factors contributed to preventive immunity, while cell components alone were not capable of protecting mice from fatal viral infection. These results strongly suggest potential usefulness of Th1 cytokine genes as effective molecular adjuvants that facilitate specific humoral as well as cellular immune responses elicited by intravascular molecular vaccination.
Collapse
Affiliation(s)
- F-D Cui
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of gammadelta T cells. Microbes Infect 2005; 7:518-28. [PMID: 15777667 PMCID: PMC7110461 DOI: 10.1016/j.micinf.2004.12.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 12/14/2004] [Indexed: 12/27/2022]
Abstract
The complex antiviral immune mechanisms involve both adaptive and innate reactions mediated by γδ T lymphocytes, whose unique immunosurveillance contributions are analyzed here in different clinical and experimental settings. It is beyond any doubt that the fast, potent, cytotoxic as well as non-cytolytic antiviral activities of γδ T cells are critical in protecting the host against diverse viral pathogens.
Collapse
Affiliation(s)
- Fabrizio Poccia
- Unit of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, Via Portuense 292, 00149 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Hoshino Y, Dalai SK, Wang K, Pesnicak L, Lau TY, Knipe DM, Cohen JI, Straus SE. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs. J Virol 2005; 79:410-8. [PMID: 15596834 PMCID: PMC538700 DOI: 10.1128/jvi.79.1.410-418.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many candidate vaccines are effective in animal models of genital herpes simplex virus type 2 (HSV-2) infection. Among them, clinical trials showed moderate protection from genital disease with recombinant HSV-2 glycoprotein D (gD2) in alum-monophosphoryl lipid A adjuvant only in HSV women seronegative for both HSV-1 and HSV-2, encouraging development of additional vaccine options. Therefore, we undertook direct comparative studies of the prophylactic and therapeutic efficacies and immunogenicities of three different classes of candidate vaccines given in four regimens to two species of animals: recombinant gD2, a plasmid expressing gD2, and dl5-29, a replication-defective strain of HSV-2 with the essential genes UL5 and UL29 deleted. Both dl5-29 and gD2 were highly effective in attenuating acute and recurrent disease and reducing latent viral load, and both were superior to the plasmid vaccine alone or the plasmid vaccine followed by one dose of dl5-29. dl5-29 was also effective in treating established infections. Moreover, latent dl5-29 virus could not be detected by PCR in sacral ganglia from guinea pigs vaccinated intravaginally. Finally, dl5-29 was superior to gD2 in inducing higher neutralizing antibody titers and the more rapid accumulation of HSV-2-specific CD8+ T cells in trigeminal ganglia after challenge with wild-type virus. Given its efficacy, its defectiveness for latency, and its ability to induce rapid, virus-specific CD8(+)-T-cell responses, the dl5-29 vaccine may be a good candidate for early-phase human trials.
Collapse
Affiliation(s)
- Yo Hoshino
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F. Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 2004; 73:313-22. [PMID: 15122810 DOI: 10.1002/jmv.20093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here, we studied the role of nitric oxide (NO) production during the first steps of the respiratory infection of BALB/c mice with herpes simplex virus type 1 (HSV-1), strain F. Nitric oxide synthase II (NOS-II) mRNA and protein were detected by reverse transcription (RT)-PCR and dot blot, respectively in samples of lungs and turbinates early post-infection (p.i.). Immunohistochemical analysis revealed pulmonar macrophages and PMN expressing NOS-II in the lungs of infected animals. Animals intranasally treated with aminoguanidine (AG), a NOS inhibitor, during the first steps of infection, showed a dose-dependent increase in pneumonitis compared to controls. Viral titres in turbinates, lungs, and brains were higher in AG treated mice. Finally, histopathology studies revealed a stronger inflammation in eyes, and lungs of these animals. Taken together, these results suggest a role of NO in controlling primary HSV intranasal infection.
Collapse
Affiliation(s)
- Gisela Gamba
- Laboratory of Immunochemistry, Department of Biological Chemistry, Faculty of Sciences, University of Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
22
|
Martina BEE, van de Bildt MWG, Kuiken T, van Amerongen G, Osterhaus ADME. Immunogenicity and efficacy of recombinant subunit vaccines against phocid herpesvirus type 1. Vaccine 2003; 21:2433-40. [PMID: 12744876 DOI: 10.1016/s0264-410x(03)00056-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phocid herpesvirus type 1 (PhHV-1) is an alpha-herpesvirus that causes significant morbidity and mortality among young and immunocompromised harbour seals (Phoca vitulina) and therefore represents a major problem for seal rehabilitation centres. Consequently, there is a need for a safe and effective PhHV-1 vaccine. We tested an ISCOM-based recombinant PhHV-1 gB vaccine alone (gB) or with the addition of recombinant PhHV-1 gD (gBD) for (i). immunogenicity and protective efficacy against feline herpesvirus (FHV) infection in cats and (ii). their immunogenicity in seals. The FHV-cat model was chosen based on the close antigenic relationship between PhHV-1 and FHV. Upon challenge, all vaccinated (gB and gBD) cats excreted significantly less FHV (P<0.01) and gBD vaccinated cats showed less weight loss (P=0.05) than the mock-vaccinated cats. However, adding gD to the gB vaccine did not result in significantly better protection. Based on these data, immunogenicity studies in seals under rehabilitation were performed with the gB vaccine only. To this end, gB vaccine was tested at two different doses (20 or 40 microg). PhHV-1 specific antibody titres and in vitro proliferative T cell responses were measured in all seals upon vaccination. No differences were observed in antibody titres between seals vaccinated with either 20 or 40 microgB, but the higher gB concentration did result in higher specific proliferative T cell responses (P<0.01). Based on the close antigenic relationship between PhHV-1 and FHV, the safety and efficacy data in the FHV-cat model, and the immunogenicity data in the vaccinated seals, the gB based vaccine is expected to be safe and effective in protecting against PhHV-1 related disease in harbour seals.
Collapse
Affiliation(s)
- Byron E E Martina
- Seal Rehabilitation and Research Centre, Pieterburen, 9968 AG, Pieterburen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Loomis-Huff JE, Eberle R, Lockridge KM, Rhodes G, Barry PA. Immunogenicity of a DNA vaccine against herpes B virus in mice and rhesus macaques. Vaccine 2001; 19:4865-73. [PMID: 11535340 DOI: 10.1016/s0264-410x(01)00232-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herpes B virus (Cercopithecine herpesvirus 1) is endemic in captive macaque populations and poses a serious threat to humans who work with macaques or their tissues. A vaccine that could prevent or limit B virus infection in macaques would lessen occupational risk. To that end, a DNA vaccine plasmid expressing the B virus glycoprotein B (gB) was constructed and tested for immunogenicity in mice and macaques. Intramuscular (IM) or intradermal (ID) immunization in mice elicited antibodies to gB that were relatively stable over time and predominately of the IgG2a isotype. Five juvenile macaques were immunized by either IM+ID (n=2) or IM (n=3) routes, with two booster immunizations at 10 and 30 weeks. All five animals developed antibodies to B virus gB, with detectable neutralizing activity in the IM+ID immunized animals. These results demonstrated that DNA immunization can be used to generate an immune response against a B virus glycoprotein in uninfected macaques.
Collapse
Affiliation(s)
- J E Loomis-Huff
- Center for Comparative Medicine, School of Medicine, University of California-Davis, 95616, USA
| | | | | | | | | |
Collapse
|