1
|
Hota S, Kumar M. Unveiling the impact of Leptospira TolC efflux protein on host tissue adherence, complement evasion, and diagnostic potential. Infect Immun 2024:e0041924. [PMID: 39392312 DOI: 10.1128/iai.00419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The TolC family protein of Leptospira is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic Leptospira species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic Leptospira but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition in vitro. Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by Leptospira and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Liao J, Zhang X, Zeng X, Zhao Z, Sun T, Xia Z, Jing H, Yuan Y, Chen Z, Gou Q, Zhao L, Zhang W, Zou Q, Zhang J. A rational designed multi-epitope vaccine elicited robust protective efficacy against Klebsiella pneumoniae lung infection. Biomed Pharmacother 2024; 174:116611. [PMID: 38643540 DOI: 10.1016/j.biopha.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.
Collapse
Affiliation(s)
- Jingwen Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Xi Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China; Department of Phamacy, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Tianjun Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhenping Xia
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Silva MF, Pereira G, Mateus L, da Costa LL, Silva E. Design of a multi-epitope-based vaccine candidate against Bovine Genital Campylobacteriosis using a reverse vaccinology approach. BMC Vet Res 2024; 20:144. [PMID: 38641595 PMCID: PMC11027316 DOI: 10.1186/s12917-024-04006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.
Collapse
Affiliation(s)
- Marta Filipa Silva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Gonçalo Pereira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luísa Mateus
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Luís Lopes da Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal
| | - Elisabete Silva
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
4
|
Ninyio N, Schmitt K, Sergon G, Nilsson C, Andersson S, Scherbak N. Stable expression of HIV-1 MPER extended epitope on the surface of the recombinant probiotic bacteria Escherichia Coli Nissle 1917 using CRISPR/Cas9. Microb Cell Fact 2024; 23:39. [PMID: 38311724 PMCID: PMC10840157 DOI: 10.1186/s12934-023-02290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917. RESULTS The HIV-1 MPER epitope was successfully introduced in the porin OmpF of the E. coli Nissle 1917 (EcN-MPER) and the modification was stable over 30 passages of the recombinant bacteria on the DNA and protein level. Furthermore, the introduced epitope was recognized by a human anti-HIV-1 gp41 (2F5) antibody using both live and heat-killed EcN-MPER, and this antigenicity was also retained over 30 passages. Whole-cell dot blot suggested a stronger binding of anti-HIV-1 gp41 (2F5) to heat-killed EcN-MPER than their live counterpart. An outer membrane vesicle (OMV) - rich extract from EcN-MPER culture supernatant was equally antigenic to anti-HIV-1 gp41 antibody which suggests that the MPER antigen could be harboured in EcN-MPER OMVs. Using quantitative ELISA, we determined the amount of MPER produced by the modified EcN to be 14.3 µg/108 cfu. CONCLUSIONS The CRISPR/Cas9 technology was an effective method for establishment of recombinant EcN-MPER bacteria that was stable over many passages. The developed EcN-MPER clone was devoid of extraneous plasmids and antibiotic resistance genes which eliminates the risk of plasmid transfer to animal hosts, should this clone be used as a vaccine. Also, the EcN-MPER clone was recognised by anti-HIV-1 gp41 (2F5) both as live and heat-killed bacteria making it suitable for pre-clinical evaluation. Expression of OmpF on bacterial surfaces and released OMVs identifies it as a compelling candidate for recombinant epitope modification, enabling surface epitope presentation on both bacteria and OMVs. By applying the methods described in this study, we present a potential platform for cost-effective and rational vaccine antigen expression and administration, offering promising prospects for further research in the field of vaccine development.
Collapse
Affiliation(s)
- Nathaniel Ninyio
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Katharina Schmitt
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
- Institute of Virology, Saarland University Medical Center, 66421, Homburg, Germany
| | - Gladys Sergon
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden
| | - Charlotta Nilsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sören Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Public Health Analysis and Data Management, Unit for Vaccination Programmes, Public Health Agency of Sweden, Solna, Sweden
| | - Nikolai Scherbak
- School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden.
| |
Collapse
|
5
|
Shahbazi S, Habibi M, Badmasti F, Sabzi S, Farokhi M, Asadi Karam MR. Design and fabrication of a vaccine candidate based on rOmpA from Klebsiella pneumoniae encapsulated in silk fibroin-sodium alginate nanoparticles against pneumonia infection. Int Immunopharmacol 2023; 125:111171. [PMID: 37948863 DOI: 10.1016/j.intimp.2023.111171] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
The present study describes the design and fabrication of a novel vaccine candidate based on the outer membrane protein A (rOmpA) from Klebsiella pneumoniae (K. pneumoniae) encapsulated in silk fibroin-sodium alginate nanoparticles (SF-SANPs) against K. pneumoniae-mediated pneumonia. The physicochemical properties, toxicity, release profile, and in vivo potency of SF-SANPs encapsulated with rOmpA were evaluated. The spherical nano vaccine was created with an average particle size of 160 nm and an encapsulation efficiency of 80 %. Antigen release from SF-SANPs was 40 % after 22 days release assay. The SF-SANPs showed a zeta potential of -24.8 mV and had no toxic effect on the L929 cells in vitro. It was found that SF-SANPs in the vaccine formulation promoted systemic and mucosal antibodies and also stimulated cytokine responses, inducing both humoral (Th2) and cellular (Th1) immune responses, with a Th1-polarized response. The vaccine candidate was effective in protecting the mice lung against experimental pneumonia and reducing inflammation. These findings suggest that the rOmpA-based vaccine encapsulated in SF-SANPs could be a promising strategy for preventing pneumonia caused by K. pneumoniae.
Collapse
Affiliation(s)
- Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Sabzi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
6
|
Berzosa M, Delgado-López A, Irache JM, Gamazo C. Optimization of Enterotoxigenic Escherichia coli (ETEC) Outer Membrane Vesicles Production and Isolation Method for Vaccination Purposes. Microorganisms 2023; 11:2088. [PMID: 37630648 PMCID: PMC10458947 DOI: 10.3390/microorganisms11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The study addresses Enterotoxigenic Escherichia coli (ETEC), a significant concern in low-income countries. Despite its prevalence, there is no licensed vaccine against ETEC. Bacterial vesicle-based vaccines are promising due to their safety and diverse virulence factors. However, cost-effective production requires enhancing vesicle yield while considering altered properties due to isolation methods. The proposed method involves heat treatment and ultrafiltration to recover vesicles from bacterial cultures. Two vesicle types, collected from heat-treated (HT-OMV) or untreated (NT-OMV) cultures, were compared. Vesicles were isolated via ultrafiltration alone ("complete") or with ultracentrifugation ("sediment"). Preliminary findings suggest complete HT-OMV vesicles are suitable for an ETEC vaccine. They express important proteins (OmpA, OmpX, OmpW) and virulence factors (adhesin TibA). Sized optimally (50-200 nm) for mucosal vaccination, they activate macrophages, inducing marker expression (CD40, MHCII, CD80, CD86) and Th1/Th2 cytokine release (IL-6, MCP-1, TNF-α, IL12p70, IL-10). This study confirms non-toxicity in RAW 264.7 cells and the in vivo ability of complete HT-OMV to generate significant IgG2a/IgG1 serum antibodies. Results suggest promise for a cost-effective ETEC vaccine, requiring further research on in vivo toxicity, pathogen-specific antibody detection, and protective efficacy.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Alberto Delgado-López
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
7
|
Gregg KA, Wang Y, Warfel J, Schoenfeld E, Jankowska E, Cipollo JF, Mayho M, Boinett C, Prasad D, Brickman TJ, Armstrong SK, Parkhill J, Da Silva Antunes R, Sette A, Papin JF, Wolf R, Merkel TJ. Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. J Infect Dis 2023; 227:583-591. [PMID: 36575950 PMCID: PMC10169431 DOI: 10.1093/infdis/jiac502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite high vaccination rates, the United States has experienced a resurgence in reported cases of pertussis after switching to the acellular pertussis vaccine, indicating a need for improved vaccines that enhance infection control. METHODS Bordetella pertussis antigens recognized by convalescent-baboon serum and nasopharyngeal wash were identified by immunoproteomics and their subcellular localization predicted. Genes essential or important for persistence in the baboon airway were identified by transposon-directed insertion-site sequencing (TraDIS) analysis. RESULTS In total, 314 B. pertussis antigens were identified by convalescent baboon serum and 748 by nasopharyngeal wash. Thirteen antigens were identified as immunogenic in baboons, essential for persistence in the airway by TraDIS, and membrane-localized: BP0840 (OmpP), Pal, OmpA2, BP1485, BamA, Pcp, MlaA, YfgL, BP2197, BP1569, MlaD, ComL, and BP0183. CONCLUSIONS The B. pertussis antigens identified as immunogenic, essential for persistence in the airway, and membrane-localized warrant further investigation for inclusion in vaccines designed to reduce or prevent carriage of bacteria in the airway of vaccinated individuals.
Collapse
Affiliation(s)
- Kelsey A Gregg
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yihui Wang
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jason Warfel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Schoenfeld
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ewa Jankowska
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Deepika Prasad
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roman Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Muniz APM, Tolesano-Pascoli G, Vieira RBK, Polli MG, Rodrigues VDS, Gonzaga HT, Mamede CCN, Da Cunha NC, Szabó MJP, Yokosawa J. Evaluation of a mimotope of the Rickettsia outer membrane protein A (OmpA) as an antigen in enzyme-linked immunosorbent assay to detect rickettsiosis in capybaras (Hydrochoerus hydrochaeris), horses (Equus caballus), and opossums (Didelphis sp.). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:317-327. [PMID: 36795267 DOI: 10.1007/s10493-023-00776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Rickettsia rickettsii is the etiological agent of Rocky Mountain spotted fever, which is an important tick-borne zoonosis and, in Brazil, it causes Brazilian spotted fever, which has high lethality rate. This study aimed to evaluate a synthetic peptide corresponding to a segment of the outer membrane protein A (OmpA) as an antigen in a serological test for the diagnosis of rickettsial infections. The amino acid sequence of the peptide was selected by predicting B cell epitopes using B Cell Epitope Prediction (Immune Epitope Database and Analysis Resource) and Epitopia and OmpA sequences of Rickettsia rickettsii strain 'Brazil' and Rickettsia parkeri strains 'Maculatum 20' and 'Portsmouth'. A peptide with amino acid sequence common to both Rickettsia species was synthesized and arbitrarily named OmpA-pLMC. To evaluate this peptide in enzyme-linked immunosorbent assay (ELISA), serum samples of capybara (Hydrochoerus hydrochaeris), horse (Equus caballus), and opossum (Didelphis albiventris) that had been previously tested by indirect immunofluorescence assay (IFA) for rickettsial infection were separated into IFA-positive and IFA-negative groups and used in the assay. There were no significant differences in ELISA optical density (OD) values between IFA-positive and IFA-negative groups with horse samples. The mean OD values were significantly higher in the IFA-positive capybara serum samples (IFA-pos vs. IFA-neg = 2.389 ± 0.761 vs. 1.760 ± 0.840). However, receiver operating characteristic (ROC) curve analysis did not show significant diagnostic parameters. On the other hand, 12 out of 14 (85.7%) opossum samples of the IFA-positive group showed reactivity in ELISA, and this was significantly higher than of the IFA-negative group (0.7196 ± 0.440 vs. 0.2318 ± 0.098, respectively; 85.7% sensitivity, 100% specificity). Therefore, our results show that OmpA-pLMC has a potential to be used in immunodiagnostic assays to detect spotted fever group rickettsial infections.
Collapse
Affiliation(s)
- Ana Paula Mendes Muniz
- Laboratory of Microorganisms of Cerrado (Brazilian Savannah), Department of Microbiology, Instituto De Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | | | - Raíssa Brauner Kamla Vieira
- Laboratory of Ixodology, Faculdade de Medicina Veterinária, UFU, Uberlândia, Brazil
- Department of Veterinary Public Health, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Mayara Garcia Polli
- Laboratory of Microorganisms of Cerrado (Brazilian Savannah), Department of Microbiology, Instituto De Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | | | | | | | - Nathalie Costa Da Cunha
- Department of Veterinary Public Health, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | | | - Jonny Yokosawa
- Laboratory of Microorganisms of Cerrado (Brazilian Savannah), Department of Microbiology, Instituto De Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil.
| |
Collapse
|
9
|
Rafi MO, Al-Khafaji K, Mandal SM, Meghla NS, Biswas PK, Rahman MS. A subunit vaccine against pneumonia: targeting S treptococcus pneumoniae and Klebsiella pneumoniae. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:21. [PMID: 37096010 PMCID: PMC10115389 DOI: 10.1007/s13721-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Community-acquired pneumonia is primarily caused by Streptococcus pneumoniae and Klebsiella pneumoniae, two pathogens that have high morbidity and mortality rates. This is largely due to bacterial resistance development against current antibiotics and the lack of effective vaccines. The objective of this work was to develop an immunogenic multi-epitope subunit vaccine capable of eliciting a robust immune response against S. pneumoniae and K. pneumoniae. The targeted proteins were the pneumococcal surface proteins (PspA and PspC) and choline-binding protein (CbpA) of S. pneumoniae and the outer membrane proteins (OmpA and OmpW) of K. pneumoniae. Different computational approaches and various immune filters were employed for designing a vaccine. The immunogenicity and safety of the vaccine were evaluated by utilizing many physicochemical and antigenic profiles. To improve structural stability, disulfide engineering was applied to a portion of the vaccine structure with high mobility. Molecular docking was performed to examine the binding affinities and biological interactions at the atomic level between the vaccine and Toll-like receptors (TLR2 and 4). Further, the dynamic stabilities of the vaccine and TLRs complexes were investigated by molecular dynamics simulations. While the immune response induction capability of the vaccine was assessed by the immune simulation study. Vaccine translation and expression efficiency was determined through an in silico cloning experiment utilizing the pET28a(+) plasmid vector. The obtained results revealed that the designed vaccine is structurally stable and able to generate an effective immune response to combat pneumococcal infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13721-023-00416-3.
Collapse
Affiliation(s)
- Md. Oliullah Rafi
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | | | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Nigar Sultana Meghla
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Md. Shahedur Rahman
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
10
|
Wierzbicki PM, Czajkowski M, Kotulak-Chrząszcz A, Bukowicz J, Dzieciuch K, Sokołowska-Wojdyło M, Kmieć Z, Matuszewski M. Altered mRNA Expression of NFKB1 and NFKB2 Genes in Penile Lichen Sclerosus, Penile Cancer and Zoon Balanitis. J Clin Med 2022; 11:jcm11247254. [PMID: 36555871 PMCID: PMC9784631 DOI: 10.3390/jcm11247254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The nuclear factor-κB transcription factors 1 and 2 (NFKB1 and NFKB2) are key components of the NF-κB pathway, which responds to inflammatory signals. Since the NFKB1/2 factors are activated via different inflammatory molecules, we aimed to check their expression levels in penile cancer (PC), penile dermatoses: lichen sclerosus (PLS) and zoon balanitis (ZB). METHODS Skin biopsies from altered and healthy looking foreskin were obtained from 59 (49 LS; early PLS: 13, moderate PLS: 32, severe PLS: 4; 6 PC; 4 ZB) and unchanged foreskin from 13 healthy control adult males undergoing circumcision. NFKB1/2 mRNA levels were quantified by qPCR. RESULTS The highest levels of NFKB1 and NFKB2 were observed in PC, ca. 22 and 3.5 times higher than in control, respectively. NFKB1 expression was correlated with PLS progression (rs = 0.667) and was ca. 20 times higher in advanced PLS than in controls and early PLS. Occurrence of micro-incontinence was associated with elevated NFKB1 levels in PLS. CONCLUSION This is the first study regarding gene profiles of NFKB1/2 in PC and penile dermatoses. New drugs targeting modulation of canonical-activated NF-κB pathway should be studied and introduced to the treatment of PLS and PC apart from other treatments.
Collapse
Affiliation(s)
- Piotr M. Wierzbicki
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Mateusz Czajkowski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland
- Correspondence:
| | | | - Justyna Bukowicz
- Hematology Laboratory, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland
| | - Klaudia Dzieciuch
- Early Phase Clinical Research Center, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Mariana Smoluchowskiego 17 Street, 80-214 Gdansk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Marcin Matuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland
| |
Collapse
|
11
|
Fowler BD, Kose N, Reidy JX, Handal LS, Skaar EP, Crowe JE. Human Monoclonal Antibodies to Escherichia coli Outer Membrane Protein A Porin Domain Cause Aggregation but Do Not Alter In Vivo Bacterial Burdens in a Murine Sepsis Model. Infect Immun 2022; 90:e0017622. [PMID: 35583347 PMCID: PMC9202393 DOI: 10.1128/iai.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is one of the most frequent human pathogens, increasingly exhibits antimicrobial resistance, and has complex interactions with the host immune system. E. coli exposure or infection can result in the generation of antibodies specific for outer membrane protein A (OmpA), a multifunctional porin. We identified four OmpA-specific naturally occurring antibodies from healthy human donor B cells and assessed their interactions with E. coli and OmpA. These antibodies are highly specific for OmpA, exhibiting no cross-reactivity to a strain lacking ompA and retaining binding to both laboratory and clinical isolates of E. coli in enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. One monoclonal antibody (Mab), designated ECOL-11, is specific for the extracellular N-terminal porin domain of OmpA and induces growth phase-specific bacterial aggregation. This aggregation is not induced by the fragment antigen binding (Fab) form of the MAb, suggesting the importance of bivalency for this aggregating activity. ECOL-11 decreases adhesion and phagocytosis of E. coli by RAW 264.7 macrophage-like cells, possibly by inhibiting the adhesion functions of OmpA. Despite this in vitro phenotype, organ E. coli burdens were not altered by antibody prophylaxis in a murine model of lethal E. coli septic shock. Our findings support the importance of OmpA at the host-pathogen interface and begin to explore the implications and utility of E. coli-specific antibodies in human hosts.
Collapse
Affiliation(s)
- Benjamin D. Fowler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph X. Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Laura S. Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Hagag YA, Said HS, Kenawy HI, Hassan R. A novel pentavalent vaccine candidate completely protects against Acinetobacter baumannii in a mouse model of peritonitis. Appl Microbiol Biotechnol 2022; 106:8151-8167. [PMID: 36401642 PMCID: PMC9676856 DOI: 10.1007/s00253-022-12231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022]
Abstract
Acinetobacter baumannii is considered as one of the most virulent and infectious organisms that have an increased ability to both evade host immune response and resist various classes of antibiotics, leading to life-threatening infections. Multiple virulence factors have been implicated in the high prevalence rate of A. baumannii in hospitalized and immunocompromised patients. Moreover, improper use of antibiotics has led to the emergence of extensive drug-resistant strains that urgently require alternative strategies to control this superbug. Unfortunately, the availability of a licensed vaccine against A. baumannii infections is still challenged by the vast diversity among A. baumannii strains. Here, we report the development of a novel pentavalent vaccine candidate composed of two recombinant proteins (Wza and YiaD) and a pool of capsular polysaccharides isolated from 3 clinical isolates. We tested this new vaccine in vivo in a mouse model of peritonitis against the standard strain ATCC 19606 in addition to 3 clinical isolates of A. baumannii. Immunization with this vaccine completely protected the challenged mice with 100% survival rate in the case of all the tested bacteria. Further clinical studies are urgently needed to evaluate the efficacy and safety of this proprietary vaccine to protect patients from A. baumannii lethal infections. KEY POINTS: • Recombinant proteins pool (Wza and YiaD) immunization led to a synergistic immune response. • Capsular polysaccharides pool induced up to 90% protection of tested clinical isolates. • The pentavalent pool showed superiority with 100% survival of immunized mice.
Collapse
Affiliation(s)
- Yomna A. Hagag
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Hany I. Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
13
|
Sharma A, Yadav SP, Sarma D, Mukhopadhaya A. Modulation of host cellular responses by gram-negative bacterial porins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:35-77. [PMID: 35034723 DOI: 10.1016/bs.apcsb.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The outer membrane of a gram-negative bacteria encapsulates the plasma membrane thereby protecting it from the harsh external environment. This membrane acts as a sieving barrier due to the presence of special membrane-spanning proteins called "porins." These porins are β-barrel channel proteins that allow the passive transport of hydrophilic molecules and are impermeable to large and charged molecules. Many porins form trimers in the outer membrane. They are abundantly present on the bacterial surface and therefore play various significant roles in the host-bacteria interactions. These include the roles of porins in the adhesion and virulence mechanisms necessary for the pathogenesis, along with providing resistance to the bacteria against the antimicrobial substances. They also act as the receptors for phage and complement proteins and are involved in modulating the host cellular responses. In addition, the potential use of porins as adjuvants, vaccine candidates, therapeutic targets, and biomarkers is now being exploited. In this review, we focus briefly on the structure of the porins along with their important functions and roles in the host-bacteria interactions.
Collapse
Affiliation(s)
- Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Dwipjyoti Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
14
|
Chen W, Dong B, Liu W, Liu Z. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Curr Med Chem 2021; 28:1104-1125. [PMID: 32484766 DOI: 10.2174/0929867327666200602132504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
The emergence of antibiotic-resistant bacteria and the slow progress in searching for new antimicrobial agents makes it hard to treat bacterial infections and cause problems for the healthcare system worldwide, including high costs, prolonged hospitalizations, and increased mortality. Therefore, the discovery of effective antibacterial agents is of great importance. One attractive alternative is antisense peptide nucleic acid (PNA), which inhibits or eliminates gene expression by binding to the complementary messenger RNA (mRNA) sequence of essential genes or the accessible and functionally important regions of the ribosomal RNA (rRNA). Following 30 years of development, PNAs have played an extremely important role in the treatment of Gram-positive, Gram-negative, and acidfast bacteria due to their desirable stability of hybrid complex with target RNA, the strong affinity for target mRNA/rRNA, and the stability against nucleases. PNA-based antisense antibiotics can strongly inhibit the growth of pathogenic and antibiotic-resistant bacteria in a sequence-specific and dose-dependent manner at micromolar concentrations. However, several fundamental challenges, such as intracellular delivery, solubility, physiological stability, and clearance still need to be addressed before PNAs become broadly applicable in clinical settings. In this review, we summarize the recent advances in PNAs as antibacterial agents and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Wei Chen
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Bo Dong
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS One 2021; 16:e0248061. [PMID: 33730022 PMCID: PMC7968690 DOI: 10.1371/journal.pone.0248061] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Developing an efficacious vaccine for SARS-CoV-2 infection is critical to stemming COVID-19 fatalities and providing the global community with immune protection. We have used a bioinformatic approach to aid in designing an epitope peptide-based vaccine against the spike protein of the virus. Five antigenic B cell epitopes with viable antigenicity and a total of 27 discontinuous B cell epitopes were mapped out structurally in the spike protein for antibody recognition. We identified eight CD8+ T cell 9-mers and 12 CD4+ T cell 14-15-mer as promising candidate epitopes putatively restricted by a large number of MHC I and II alleles, respectively. We used this information to construct an in silico chimeric peptide vaccine whose translational rate was highly expressed when cloned in pET28a (+) vector. With our In silico test, the vaccine construct was predicted to elicit high antigenicity and cell-mediated immunity when given as a homologous prime-boost, triggering of toll-like receptor 5 by the adjuvant linker. The vaccine was also characterized by an increase in IgM and IgG and an array of Th1 and Th2 cytokines. Upon in silico challenge with SARS-CoV-2, there was a decrease in antigen levels using our immune simulations. We, therefore, propose that potential vaccine designs consider this approach.
Collapse
Affiliation(s)
| | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tawakalt A. Fagbayi
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| | - Rebecca C. Chukwuanukwu
- Immunology Unit, Medical Laboratory Science Department, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Victor O. Oyebanji
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | - Taiwo T. Bankole
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| | - Richard A. Adewole
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| | - Eze M. Daniel
- Public Health Biotechnology Unit, Institute of Child Health, University College Hospital, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
16
|
Cheng L, Liu WL, Tsou YT, Li JC, Chien CH, Su MP, Liu KL, Huang YL, Wu SC, Tsai JJ, Hsieh SL, Chen CH. Transgenic Expression of Human C-Type Lectin Protein CLEC18A Reduces Dengue Virus Type 2 Infectivity in Aedes aegypti. Front Immunol 2021; 12:640367. [PMID: 33767710 PMCID: PMC7985527 DOI: 10.3389/fimmu.2021.640367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023] Open
Abstract
The C-type lectins, one family of lectins featuring carbohydrate binding domains which participate in a variety of bioprocesses in both humans and mosquitoes, including immune response, are known to target DENV. A human C-type lectin protein CLEC18A in particular shows extensive glycan binding abilities and correlates with type-I interferon expression, making CLEC18A a potential player in innate immune responses to DENV infection; this potential may provide additional regulatory point in improving mosquito immunity. Here, we established for the first time a transgenic Aedes aegypti line that expresses human CLEC18A. This expression enhanced the Toll immune pathway responses to DENV infection. Furthermore, viral genome and virus titers were reduced by 70% in the midgut of transgenic mosquitoes. We found significant changes in the composition of the midgut microbiome in CLEC18A expressing mosquitoes, which may result from the Toll pathway enhancement and contribute to DENV inhibition. Transgenic mosquito lines offer a compelling option for studying DENV pathogenesis, and our analyses indicate that modifying the mosquito immune system via expression of a human immune gene can significantly reduce DENV infection.
Collapse
Affiliation(s)
- Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yun-Ting Tsou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Hao Chien
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya, Japan
| | - Kun-Lin Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
17
|
Oxidative stress responses of pathogen bacteria in poultry to plasma-activated lactic acid solutions. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Rahmat Ullah S, Majid M, Rashid MI, Mehmood K, Andleeb S. Immunoinformatics Driven Prediction of Multiepitopic Vaccine Against Klebsiella pneumoniae and Mycobacterium tuberculosis Coinfection and Its Validation via In Silico Expression. Int J Pept Res Ther 2020; 27:987-999. [PMID: 33281529 PMCID: PMC7703501 DOI: 10.1007/s10989-020-10144-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Klebsiella pneumoniae and Mycobacterium tuberculosis coinfection is one of the most lethal combinations that has been becoming frequent yet, not diagnosed and reported properly. Due to the simultaneous occurrence of both infections, diagnosis is delayed leading to inadequate treatments and mortality. With the rise of MDR Klebsiella and Mycobacterium, a prophylactic and an immunotherapeutic vaccine has to be entailed for preemptive and adroit therapeutic approach. In this study, we aim to implement reverse vaccinology approach that encompasses a comprehensive evaluation of vital aspects of the pathogens to explore immunogenic epitopes against Omp A of Klebsiella and Rv1698, Rv1973 of Mtb that may help in vaccine development. The designed multi-epitopic vaccine was assessed for antigenicity, allergenicity and various physiochemical parameters. Molecular docking and simulations were executed to assess the immunogenicity and complex stability of the vaccine. The final multi-epitopic vaccine is validated to be highly immunogenic and can serve as a valuable proactive remedy for subject pathogens.
Collapse
Affiliation(s)
- Sidra Rahmat Ullah
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Mahnoor Majid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ibrahim Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Institute of Basic Medical Sciences, Khyber Medical University (KMU), Peshawar, Pakistan
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, Kingdom of Saudi Arabia, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
19
|
DNA vaccine encoding OmpA and Pal from Acinetobacter baumannii efficiently protects mice against pulmonary infection. Mol Biol Rep 2019; 46:5397-5408. [PMID: 31342294 DOI: 10.1007/s11033-019-04994-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen that causes serious infections in the lungs, blood, and brain in critically ill hospital patients, resulting in considerable mortality rates every year. Due to the rapid appearance of multi-drug resistance or even pan-drug resistance isolates, it is becoming more and more difficult to cure A. baumannii infection by traditional antibiotic treatment, alternative strategies are urgently required to combat A. baumannii infection. In this study, we developed a DNA vaccine encoding two antigens from A. baumannii, OmpA and Pal, and the immunogenicity and protective efficacy was further evaluated. The results showed that the DNA vaccine exhibited significant immune protective efficacy against acute A. baumannii infection in a mouse pneumonia model, and cross protective efficacy was observed when immunized mice were challenged with clinical strains of A. baumannii. DNA vaccine immunization induced high level of humoral response and a mixed Th1/Th2/Th17 cellular response, which protect against lethal bacterial challenges by decreased bacterial loads and pathology in the lungs, and reduced level of inflammatory cytokines expression and inflammatory cell infiltration in BALF. These results demonstrated that it is possible to prevent A. baumannii infection by DNA vaccine and both OmpA and Pal could be serve as promising candidate antigens.
Collapse
|
20
|
Carvalho AL, Miquel-Clopés A, Wegmann U, Jones E, Stentz R, Telatin A, Walker NJ, Butcher WA, Brown PJ, Holmes S, Dennis MJ, Williamson ED, Funnell SGP, Stock M, Carding SR. Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization. Clin Exp Immunol 2019; 196:287-304. [PMID: 30985006 PMCID: PMC6514708 DOI: 10.1111/cei.13301] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/19/2022] Open
Abstract
Plague caused by the Gram‐negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non‐human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V‐OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV‐based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo‐tolerance; needle‐free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell‐mediated immune responses; and targeting of primary sites of plague infection.
Collapse
Affiliation(s)
- A L Carvalho
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Miquel-Clopés
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - U Wegmann
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - E Jones
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - R Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - A Telatin
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - N J Walker
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - W A Butcher
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - P J Brown
- Public Health England, Porton, Porton, Salisbury, UK
| | - S Holmes
- Public Health England, Porton, Porton, Salisbury, UK
| | - M J Dennis
- Public Health England, Porton, Porton, Salisbury, UK
| | - E D Williamson
- Defence Science and Technology Laboratory, Porton, Salisbury, UK
| | - S G P Funnell
- Public Health England, Porton, Porton, Salisbury, UK
| | - M Stock
- Plant Biotechnology Ltd, Norwich, UK
| | - S R Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK.,Norwich Medical School, University East Anglia, Norwich, UK
| |
Collapse
|
21
|
Li Y, Tang X, Zhao Z, Wang H, Wang X, Shang X, Liu P, Kou Z, Jiang Y, Li Y. Intranasal immunization with recombinant outer membrane protein A induces protective immune response against Stenotrophomonas maltophilia infection. PLoS One 2019; 14:e0214596. [PMID: 30934008 PMCID: PMC6443155 DOI: 10.1371/journal.pone.0214596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia), a multi-drug resistant opportunistic pathogen, is associated with nosocomial and community-acquired infections. Preventive and therapeutic strategies for such infections are greatly needed. In this study, sequence alignment analysis revealed that Outer membrane protein A (OmpA) was highly conserved among S. maltophilia strains but shared no significant similarity with human and mouse proteomes. In mice, intranasal immunization with S. maltophilia recombinant OmpA (rOmpA) without additional adjuvant induced sustained mucosal and systemic rOmpA-specific antibody responses. Treatment with rOmpA stimulated significantly higher levels of secretion of IFN-γ, IL-2, and IL-17A (All P<0.05) from the primary splenocytes isolated from rOmpA-immunized mice than from the primary splenocytes isolated from PBS-immunized mice. Furthermore, mice immunized with rOmpA showed significantly reduced bacterial burden in the lung and reduced levels of pro-inflammatory cytokines (TNF-α and IL-6) in bronchoalveolar lavage fluid (BALF) 24 hours after intranasal S. maltophilia infection, indicating that immunization with rOmpA may have protective effects against S. maltophilia challenge in mice. Our findings suggest that intranasal immunization with rOmpA may induce mucosal and systemic immune responses in mice, trigger Th1- and Th17-mediated cellular immune responses, and thus stimulate host immune defense against S. maltophilia infection. These results also demonstrate that intranasal vaccination may offer an alternative approach to current strategies since it induces a mucosal as well as a systemic immune response.
Collapse
Affiliation(s)
- Yan Li
- No 307 Hospital of PLA of Anhui Medical University, Hefei, China.,Department of Critical Care Medicine, No 307 Hospital of PLA, Beijing, China.,Department of Respiratory and Digestive, Fengyang First People's Hospital, Fengyang, Anhui, China
| | - Xueping Tang
- Department of Critical Care Medicine, No 307 Hospital of PLA, Beijing, China
| | - Zunquan Zhao
- The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hui Wang
- The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Department of Critical Care Medicine, No 307 Hospital of PLA, Beijing, China
| | - Xueyi Shang
- Department of Critical Care Medicine, No 307 Hospital of PLA, Beijing, China
| | - Peng Liu
- The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhihua Kou
- The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- The Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yan Li
- No 307 Hospital of PLA of Anhui Medical University, Hefei, China.,Department of Critical Care Medicine, No 307 Hospital of PLA, Beijing, China
| |
Collapse
|
22
|
Antibiotic Characterization of Acinetobacter baumannii Isolated from Clinical Samples and Production of Recombinant OmpA from Resistant Strains. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.78773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Ain QU, Ahmad S, Azam SS. Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: An etiological agent of Yersiniosis. Microb Pathog 2018; 125:336-348. [PMID: 30273644 DOI: 10.1016/j.micpath.2018.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Yersinia enterocolitica is the third most common cause of gastrointestinal manifestations in Europe. Statistically, every year the pathogen accounts for 640 hospitalizations, 117,000 illnesses, and 35 deaths in the United States. The associated mortality rate of the pathogen is 50% and is virtually resistant to penicillin G, ampicillin and cephalotin. The development of new and effective therapeutic procedures is urgently needed to counter the multi-drug-resistant phenotypes imposed by the said pathogen. Based on subtractive reverse vaccinology and immunoinformatics approaches, we have successfully predicted novel antigenic peptide vaccine candidates against Y. enterocolitica. The pipeline revealed two isoforms of ompC family; meoA (ompC) and ompC2 as promising vaccine targets. Protein-protein interactions elaborated the involvement of target candidates in the major biological pathways of the pathogen. The predicted 9-mer B-cell derived T-cell epitope of proteins are found to be virulent, antigenic, non-allergic, surface exposed and conserved in all nine completely sequenced strains of the pathogen. Molecular docking predicts deep and stable binding of the epitopes in the binding pocket of the most predominant allele in human population-the DRB1*0101. These epitopes of target proteins could provide the foundation for the development of an epitope-driven vaccine against Y. enterocolitica.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
24
|
Ehsan N, Ahmad S, Azam SS, Rungrotmongkol T, Uddin R. Proteome-wide identification of epitope-based vaccine candidates against multi-drug resistant Proteus mirabilis. Biologicals 2018; 55:27-37. [PMID: 30078661 DOI: 10.1016/j.biologicals.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 11/19/2022] Open
Abstract
Proteus mirabilis is one of the important pathogens of urinary tract and exhibits resistance to multiple drugs. Development of vaccine tends to be the most promising and cost-effective remedy against the said pathogen. Herein, we implement a combinatorial approach for screening proteins harboring potential broad-spectrum antigenic epitopes in the proteome of P. mirabilis. The targets are host non-homologous, essential and virulent, and have localization in the extracellular and outer membrane. Immuno-informatics revealed antigenic, surface exposed and broad-spectrum B-cell derived T-cell epitopes for three membrane usher family candidates: AtfC, PMI2533 and PMI1466, which could evoke a substantial immune response. Protein-protein interactions of targeted three proteins have shown their involvement in biologically significant pathways indispensable for the growth and survival of the pathogen. The antigenic epitopes are conserved among all completely annotated strains and docked deeply in the binding cavity of the most prevalent allele-DRB1*0101 in human population. Future work is necessary to characterize the shortlisted proteins and epitopes for immune protection in animal models.
Collapse
Affiliation(s)
- Nosheen Ehsan
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
25
|
Chaudhuri D, Roy Chowdhury A, Biswas B, Chakravortty D. Salmonella Typhimurium Infection Leads to Colonization of the Mouse Brain and Is Not Completely Cured With Antibiotics. Front Microbiol 2018; 9:1632. [PMID: 30072981 PMCID: PMC6058050 DOI: 10.3389/fmicb.2018.01632] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Salmonella systemic infections claim thousands of lives worldwide even today. Certain cases lead to an infection in the brain culminating in meningitis and associated neurological abnormalities. Multiple reports have indicated neurological manifestations in patients suffering from typhoid fever during the course of infection and afterwards. While the meanderings of Salmonella systemic infections are fairly well studied, the flow of events in the brain is very poorly understood. We investigated the colonization of various brain parts by Salmonella in mice. It was observed that the bacterium is frequently able to invade various brain parts in mice. Selected mutants namely deletion mutants of key proteins encoded by the Salmonella pathogenicity islands (SPIs) 1 and 2 and ompA gene were also used to decipher the roles of specific genes in establishing an infection in the brain. Our results suggest roles for the Salmonella pathogenicity island (SPI) 1 and outer membrane protein A gene in enabling blood-brain barrier penetration by the pathogen. We further investigated behavioral abnormalities in infected mice and used an antibiotic treatment regime in an attempt to reverse the same. Results show some mice still display behavioral abnormalities and a high bacterial burden in brain despite clearance from spleen and liver. Overall, our study provides novel insights into S. Typhimurium's capacity to invade the mouse brain and the effectiveness of antibiotic treatment on behavioral manifestations due to infection. These observations could have important implications in understanding reported neurological manifestations in typhoid patients.
Collapse
Affiliation(s)
- Debalina Chaudhuri
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biswendu Biswas
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Wang SN, Cheng ZX, Ling XP, Chu X, Peng XX, Li H. Construction, immune protection and innate immune response of shuffled polyvalent ompAs vaccines. FISH & SHELLFISH IMMUNOLOGY 2018; 74:325-331. [PMID: 29289655 DOI: 10.1016/j.fsi.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Our previous studies demonstrated that molecular breeding via DNA shuffling directs the evolution of polyvalent vaccines with desired traits, which leads to generation of polyvalent ompA vaccines using Vibrio alginolyticus VA0764 primers. Here, we replaced VA0764 primers with Edwardsiella tarda ompA primers to generate new polyvalent ompA vaccines by DNA shuffling of the same five ompA genes from four species of bacteria E. tarda, V. parahaemolyticus, V. alginolyticus and Escherichia coli. We identified four polyvalent vaccine candidates from a eukaryotic expressing library EompAs-FE containing 82 ompAs using active immune protection against V. alginolyticus and E. tarda. Furthermore, we explored mechanisms of polyvalent vaccine candidates by investigation of the innate immune response to these ompAs, and found that expression of IL-1β, IL-8, IL-15, COX-2, IFN-γ, TLR-1, TLR-3 and C3b genes was elevated as a characteristic feature of these polyvalent vaccine candidates. These results indicate that use of different primers to construct a DNA library selects new evolution of polyvalent vaccines with desired traits, and polyvalent ompA vaccines elicit high innate immune response.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Zhi-Xue Cheng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xiao-Peng Ling
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xiao Chu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China.
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
27
|
Sobotta K, Hillarius K, Jiménez PH, Kerner K, Heydel C, Menge C. Interaction of Coxiella burnetii Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages. Front Cell Infect Microbiol 2018; 7:543. [PMID: 29379776 PMCID: PMC5771007 DOI: 10.3389/fcimb.2017.00543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Most human Q fever infections originate from small ruminants. By contrast, highly prevalent shedding of Coxiella (C.) burnetii by bovine milk rarely results in human disease. We hypothesized that primary bovine and human monocyte-derived macrophages (MDM) represent a suitable in vitro model for the identification of strain-specific virulence properties at the cellular level. Twelve different C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA) genotypes. Infection efficiency and replication of C. burnetii were monitored by cell culture re-titration and qPCR. Expression of immunoregulatory factors after MDM infection was measured by qRT-PCR and flow cytometry. Invasion, replication and MDM response differed between C. burnetii strains but not between MDMs of the two hosts. Strains isolated from ruminants were less well internalized than isolates from humans and rodents. Internalization of MLVA group I strains was lower compared to other genogroups. Replication efficacy of C. burnetii in MDM ranged from low (MLVA group III) to high (MLVA group IV). Infected human and bovine MDM responded with a principal up-regulation of pro-inflammatory cytokines such as IL-1β, IL-12, and TNF-α. However, MLVA group IV strains induced a pronounced host response whereas infection with group I strains resulted in a milder response. C. burnetii infection marginally affected polarization of MDM. Only one C. burnetii strain of MLVA group IV caused a substantial up-regulation of activation markers (CD40, CD80) on the surface of bovine and human MDM. The study showed that replication of C. burnetii in MDM and the subsequent host cell response is genotype-specific rather than being determined by the host species pointing to a clear distinction in C. burnetii virulence between the genetic groups.
Collapse
Affiliation(s)
- Katharina Sobotta
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Kirstin Hillarius
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Pablo H Jiménez
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Karlsruhe, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Carsten Heydel
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
28
|
Cellular and humoral immune response to recombinant Escherichia coli OmpA in cows. PLoS One 2017; 12:e0187369. [PMID: 29088296 PMCID: PMC5663511 DOI: 10.1371/journal.pone.0187369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
The outer membrane protein (Omp) A is a major constituent of the outer membrane of Escherichia coli. This protein has been used in several vaccine development studies, but seldom with a view to vaccinating against mastitis. The objective of this study was to investigate the immunogenicity of E. coli OmpA and its vaccine potential for cows. Both the humoral and cellular immune responses were investigated. The gene for OmpA of the mastitis-causing strain P4 was cloned and expressed, and the recombinant protein (rEcOmpA) purified. Cows were immunized twice with rEcOmpA with adjuvant one month apart by the systemic route. Before immunization, few antibodies to rEcOmpA were detected, and there was little production of IL-17A in a whole blood stimulation assay (WBA) with rEcOmpA. Antibodies to rEcOmpA were induced by immunization. These antibodies were not able to react with E. coli P4, but reacted with a rough P4 mutant prepared by inactivating the rfb locus. This suggests that the complete LPS O-chain precluded the accessibility of antibodies to their target at the outer membrane. The cellular immune response appeared to be biased towards a Th17-type, as more IL-17A than IFN-γ was produced in the OmpA-specific WBA. There was a good correlation between antibody titers and the production of IL-17A in the WBA. The intramammary instillation of rEcOmpA elicited a slight local inflammatory response which was not related to the WBA. Overall, the interest of OmpA as vaccine immunogen was not established, although other experimental conditions (dose, adjuvant, route) need to be investigated to conclude definitively. The study pointed to several important issues such as the accessibility of OmpA to antibodies and the weakness of Th1-type response induced by OmpA.
Collapse
|
29
|
Tang X, Wang H, Liu F, Sheng X, Xing J, Zhan W. Outer membrane protein A: An immunogenic protein induces highly protective efficacy against Vibrio ichthyoenteri. Microb Pathog 2017; 113:152-159. [PMID: 29074429 DOI: 10.1016/j.micpath.2017.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022]
Abstract
Vibrio ichthyoenteri was an important causative agent of bacterial enteritis in flounder (Paralichthys olivaceus). Outer membrane protein A (OmpA) of Gram-negative pathogen was a major cell surface antigen. In the present study, OmpA of V. ichthyoenteri was recombinantly expressed in Escherichia coli, and the immunogenicity of OmpA was identified by western blotting using flounder anti-rOmpA and anti-V. ichthyoenteri antibodies. The vaccine potential of rOmpA was tested in a flounder model, and a high relative percentage of survival rate was obtained with 73.1% after challenge with V. ichthyoenteri. Meanwhile, the immune response of flounder induced by rOmpA was also investigated, and the results showed that the sIg + lymphocytes in blood, spleen, and pronephros significantly proliferated, and the peak levels occurred at week 4 after immunization. Moreover, rOmpA could induce higher levels of specific serum antibodies than the control group after immunization, and the peak level occurred at week 5 after immunization. Meanwhile, qRT-PCR analysis showed that the expressions of CD4-1, CD8α, IL-1β, IFN-γ, MHCIα and MHCIIα genes were significantly up-regulated after immunization with rOmpA. Taking together, these results demonstrated that rOmpA could evoke highly protective effects against V. ichthyoenteri challenge and induce strong immune response of flounder, which indicated that OmpA was a promising vaccine candidate.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China
| | - Hongye Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Fuguo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China.
| |
Collapse
|
30
|
Babu L, Uppalapati SR, Sripathy MH, Reddy PN. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Front Microbiol 2017; 8:1805. [PMID: 28979250 PMCID: PMC5611512 DOI: 10.3389/fmicb.2017.01805] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Safety and protective efficacy of recombinant multi-epitope subunit vaccine (r-AK36) was evaluated in a mouse model. Recombinant AK36 protein comprised of immunodominant antigens from outer membrane proteins (Omp’s) of Klebsiella pneumoniae namely OmpA and OmpK36. r-AK36 was highly immunogenic and the hyperimmune sera reacted strongly with native OmpA and OmpK36 proteins from different K. pneumoniae strains. Hyperimmune sera showed cross-reactivity with Omp’s of other Gram-negative organisms. Humoral responses showed a Th2-type polarized immune response with IgG1 being the predominant antibody isotype. Anti-r-AK36 antibodies showed antimicrobial effect during in vitro testing with MIC values in the range of 25–50 μg/ml on different K. pneumoniae strains. The recombinant antigen elicited three fold higher proliferation of splenocytes from immunized mice compared to those with sham-immunized mice. Anti-r-AK36 antibodies also exhibited in vitro biofilm inhibition property. Subunit vaccine r-AK36 immunization promoted induction of protective cytokines IL-2 and IFN-γ in immunized mice. When r-AK36-immunized mice were challenged with 3 × LD100 dose, ∼80% of mice survived beyond the observation period. Passive antibody administration to naive mice protected them (67%) against the lethal challenge. Since the targeted OMPs are conserved among all K. pneumoniae serovars and due to the strong nature of immune responses, r-AK36 subunit vaccine could be a cost effective candidate against klebsiellosis.
Collapse
Affiliation(s)
- Litty Babu
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Siva R Uppalapati
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Murali H Sripathy
- Department of Microbiology, Defence Food Research LaboratoryMysore, India
| | - Prakash N Reddy
- Department of Microbiology, Defence Food Research LaboratoryMysore, India.,Department of Biotechnology, Vignan's Foundation for Science, Technology and Research UniversityGuntur, India
| |
Collapse
|
31
|
Prado IC, Chino META, Dos Santos AL, Souza ALA, Pinho LG, Lemos ERS, De-Simone SG. Development of an electrochemical immunosensor for the diagnostic testing of spotted fever using synthetic peptides. Biosens Bioelectron 2017; 100:115-121. [PMID: 28886455 DOI: 10.1016/j.bios.2017.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/29/2017] [Accepted: 08/12/2017] [Indexed: 01/11/2023]
Abstract
Spotted fever is a rare acute and multisystemic febrile infectious disease with a mortality rate of ≥50% without adequate antibiotic treatment, and in diagnosed and treated cases, of approximately 2.5%. Currently, the applied test to diagnose this disease is the indirect immunofluorescence reaction, however two samples of paired sera are necessary to confirm the diagnosis, since using only one sample may allow for confusion with cross reactions. OmpA is an outer membrane protein present in the R. rickettsia, the etiological agent of spotted fever, able to activate dendritic and macrophage cells. It also presents immunogenicity properties, and is considered a target for the development of diagnostic tests for spotted fever. In this context, an amperometric immunosensor was developed for the identification of sera antibodies (human IgG) from patients with spotted fever aimed at improving sensitivity and minimize sample volume. The development of the immunosensor was conducted using a synthetic peptide, derivative from the H6PGA4 R. rickettsia protein, homologous to OmpA. Amperometric responses were generated at -0.6 to 0.6V, at a scan rate of 0.025Vs-1 for 20 cycles, a limit of detection of approximately 10ngmL-1 for the synthetic peptides and 0.01µgmL-1 for the humam serum, a sensitivity of 2.59µA, adequate for the detection of spotted fever antibodies. The construction of this immunosensor, capable of identifying circulating antibodies in real time, can also be applied in the diagnosis of other infectious-parasitic diseases.
Collapse
Affiliation(s)
- Isis C Prado
- Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| | - Mônica E T A Chino
- Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Antonia L Dos Santos
- Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - André L A Souza
- Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Luciano G Pinho
- Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Elba R S Lemos
- Hantavirus and Rickettsia Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Salvatore G De-Simone
- Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro, RJ, Brazil; Laboratory of Experimental and Computational Biochemistry of Pharmaceuticals, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil; Department of Cellular and Molecular Biology, Biology Institute, Federal University Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
32
|
Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biomed Pharmacother 2017; 93:580-588. [PMID: 28686972 DOI: 10.1016/j.biopha.2017.06.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
In recent years, the emergence of ESBL-producing and multi-drug resistant bacteria have been increased and designing novel components is necessary for confrontation these bacteria. Peptide nucleic acids (PNAs) are one of the synthetic components that bind to single strand DNA and RNA. Applications of these components are wide while, and one of the important applications of these components is inhibition of gene expression and knock downing the target gene follow as inhibition of bacterial growth. For PNA targeting gene, peptide-PNAs (PPNA) activity cannot be occurred without sequence homology, at the same time, it has been affected by sequence-based specific target and dose-dependent-based manner. Choosing the conserved sequence in different bacterial genus can provide broad-spectrum antimicrobial activity. In this review article, we studied several research papers and extract PNA targeting genes that cause gene knock down and inhibition of bacterial growth. Some novel opportunities for advancement and the design ultra-narrow-spectrum antimicrobial drugs against multi-drug can be accessible by utilizing PNA against necessary genes of pathogens. These results open novel vision for therapeutic intervention. Future researches are required to evaluate the safety, toxicity and pharmacokinetics properties of PPNAs in order to be utilized in clinical treatment.
Collapse
|
33
|
Zhang YL, Peng B, Li H, Yan F, Wu HK, Zhao XL, Lin XM, Min SY, Gao YY, Wang SY, Li YY, Peng XX. C-Terminal Domain of Hemocyanin, a Major Antimicrobial Protein from Litopenaeus vannamei: Structural Homology with Immunoglobulins and Molecular Diversity. Front Immunol 2017; 8:611. [PMID: 28659912 PMCID: PMC5468459 DOI: 10.3389/fimmu.2017.00611] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022] Open
Abstract
Invertebrates rely heavily on immune-like molecules with highly diversified variability so as to counteract infections. However, the mechanisms and the relationship between this variability and functionalities are not well understood. Here, we showed that the C-terminal domain of hemocyanin (HMC) from shrimp Litopenaeus vannamei contained an evolutionary conserved domain with highly variable genetic sequence, which is structurally homologous to immunoglobulin (Ig). This domain is responsible for recognizing and binding to bacteria or red blood cells, initiating agglutination and hemolysis. Furthermore, when HMC is separated into three fractions using anti-human IgM, IgG, or IgA, the subpopulation, which reacted with anti-human IgM (HMC-M), showed the most significant antimicrobial activity. The high potency of HMC-M is a consequence of glycosylation, as it contains high abundance of α-d-mannose relative to α-d-glucose and N-acetyl-d-galactosamine. Thus, the removal of these glycans abolished the antimicrobial activity of HMC-M. Our results present a comprehensive investigation of the role of HMC in fighting against infections through genetic variability and epigenetic modification.
Collapse
Affiliation(s)
- Yue-Ling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Bo Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Hui Li
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Fang Yan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Hong-Kai Wu
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Xian-Liang Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Xiang-Min Lin
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Shao-Ying Min
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Yuan-Yuan Gao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - San-Ying Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuan-You Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| |
Collapse
|
34
|
Yagnik B, Sharma D, Padh H, Desai P. Immunization with r-Lactococcus lactis expressing outer membrane protein A of Shigella dysenteriae type-1: evaluation of oral and intranasal route of administration. J Appl Microbiol 2016; 122:493-505. [PMID: 27860045 DOI: 10.1111/jam.13353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023]
Abstract
AIMS To evaluate the comparative immunogenic potential of food grade Lactococcus lactis expressing outer membrane protein A (OmpA) of Shigella dysenteriae type-1 (SD-1) when administered either orally or intranasally. METHODS AND RESULTS OmpA of SD-1 was cloned and expressed first in Escherichia coli and then in L. lactis. Presence of recombinant gene was confirmed by restriction enzyme digestion and immunoblot analysis. Using immobilized metal affinity chromatography, OmpA was purified from recombinant E. coliBL21 (DE3) and subcutaneously administered in BALB/c mice. Detection of OmpA-specific IgG antibodies by enzyme-linked immunosorbent assay (ELISA) confirmed the immunogenicity of OmpA. In order to establish r-L. lactis as a mucosal delivery vehicle, it was administered orally and nasally in BALB/c mice. Serum IgG and faecal IgA were assessed through ELISA to compare the relative potential of immunization routes and immunogenic potential of r-L. lactis. Immunization via the oral route proved superior to intranasal exposure. CONCLUSION Recombinant L. lactis expressing OmpA of SD-1 was found to be immunogenic. Oral administration of r-L. lactis elicited higher systemic and mucosal immune response when compared with the nasal route. SIGNIFICANCE AND IMPACT OF THE STUDY Using food grade recombinant L. lactis has implications in the development of a prophylactic against multidrug-resistant Shigella, which can be used as a prospective vaccine candidate. Evaluating mucosal routes of immunization demonstrated that the oral route of administration elicited better immune response against OmpA of Shigella.
Collapse
Affiliation(s)
- B Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, 380054, Gujarat, India.,B. R. D School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, 388120, Gujarat, India
| | - D Sharma
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, 380054, Gujarat, India.,B. R. D School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, 388120, Gujarat, India
| | - H Padh
- Sardar Patel University, Vallabh Vidhyanagar, 388120, Gujarat, India
| | - P Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, 380054, Gujarat, India
| |
Collapse
|
35
|
Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016; 6:41. [PMID: 27325348 PMCID: PMC4916078 DOI: 10.1186/s13568-016-0212-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Collapse
|
36
|
Wajanarogana S, Kritsiriwuthinan K. Efficacy of indirect ELISA for serodiagnosis of melioidosis using immunodominant antigens from non-pathogenic Burkholderia thailandensis. SPRINGERPLUS 2016; 5:1814. [PMID: 27812452 PMCID: PMC5069239 DOI: 10.1186/s40064-016-3505-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/10/2016] [Indexed: 01/05/2023]
Abstract
Melioidosis caused by gram negative bacteria, B. pseudomallei, is a fatal disease in the tropical and sub-tropical regions. However, sporadic cases have been reported in elsewhere. Early detection is imperative to reduce the mortality rate. Serological tests have being substantially developed using recombinant proteins as specific targeted antigens to melioidosis antibodies. In the present study, we focus on a truncated flagellin fragment (FLAG300) and outer membrane protein A (OmpABT) of B. thailandensis E264 as potential antigens for developing indirect ELISA to improve the serodiagnosis of melioidosis. Recombinant proteins were overexpressed and purified by immobilized metal affinity chromatography with denaturing conditions. The sensitivity and specificity of individual test were calculated within culture-confirmed melioidosis sera (n = 42) and non-melioidosis serum samples (n = 241) using the cut-off point at average of absorbance plus 2 standard deviations. The results demonstrated that a FLAG 300 based indirect ELISA showed 90.48 % sensitivity and 87.14 % specificity and an OmpABT based this assay revealed sensitivity of 80.95 % and specificity of 89.21 %. Their use in a double-antigen ELISA resulted in improve specificity (92.95 %) and still high degree of sensitivity (85.71 %). These data suggest a facile method for serodiagnosis of melioidosis by the use of antigens from a non-pathogenic strain.
Collapse
Affiliation(s)
- Sumet Wajanarogana
- Department of Basic Medical Science, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, 10300 Thailand
| | | |
Collapse
|
37
|
Li H, Chu X, Peng B, Peng XX. DNA shuffling approach for recombinant polyvalent OmpAs against V. alginolyticus and E. tarda infections. FISH & SHELLFISH IMMUNOLOGY 2016; 58:508-513. [PMID: 27697557 DOI: 10.1016/j.fsi.2016.09.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Molecular breeding via DNA shuffling directs the evolution of vaccines with desired traits. In the present study, polyvalent OmpA vaccines were generated by DNA shuffling of five ompA genes from four species of bacteria Vibrio parahaemolyticus, V. alginolyticus, Edwardsiella tarda and Escherichia coli. First, a new hybrid OmpA was constructed using VA0764 primers and used for construction of a prokaryotic expressing library PompAs-FV containing 84 ompAs, which were validated by PCR and SDS/PAGE. Then, the 84 ompAs were used to construct a eukaryotic expressing library EompAs-FV for preparing DNA vaccines. Third, extracellular bacterium V. alginolyticus challenge post active immunization using these DNA vaccines was carried out to identify genes with high immunoprotection. Among the 84 ompAs, 17 showed higher or equal immune protection against infection caused by V. alginolyticus than control VA0764. Finally, immune protection against infection caused by intracellular bacterium Edwardsiella tarda was assessed further using the top seven out of the 17 ompAs. This led to identification of three efficient polyvalent vaccines against infections caused by the extracellular bacterium V. alginolyticus and intracellular bacterium E. tarda. In addition, we sequenced genes for understanding mechanisms of the polyvalent vaccines, but association of immune protection with mutation of gene and amino acids is not determined. These results indicate that DNA shuffling is an efficient way to develop polyvalent vaccines against microbial infections.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| | - Xiao Chu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
38
|
Edwardsiella tarda Outer Membrane Protein C: An Immunogenic Protein Induces Highly Protective Effects in Flounder (Paralichthys olivaceus) against Edwardsiellosis. Int J Mol Sci 2016; 17:ijms17071117. [PMID: 27420049 PMCID: PMC4964492 DOI: 10.3390/ijms17071117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 11/28/2022] Open
Abstract
Outer membrane protein C of Edwardsiella tarda is a major cell surface antigen and it was identified to be an immunogenic protein by Western blot using flounder (Paralichthys olivaceus) anti-recombinant OmpC (rOmpC), and anti-E. tarda antibodies. rOmpC tested the immune protective effect against E. tarda challenge in a flounder model and produced a relative percentage of survival rate of 85%. The immune response of flounder induced by rOmpC was investigated, and the results showed that: (1) the levels of specific serum antibodies induced by rOmpC were significantly higher than the control group after the second week after immunization, and the peak level occurred at week five after immunization; (2) rOmpC could induce the proliferation of sIg+ lymphocytes, and the peak levels of sIg+ lymphocytes in blood, spleen, and pronephros occurred at 4–5 weeks after immunization; and (3) the MHCIIα, CD4-1, IL-1β, IL-6 and TNF-α genes were significantly induced after being injected with rOmpC. Taken together, these results demonstrated that rOmpC could evoke highly protective effects against E. tarda challenge and induce strong innate immune response and humoral immune response of flounder, which indicated that OmpC was a promising vaccine candidate against E. tarda infection.
Collapse
|
39
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
40
|
Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response. Infect Immun 2016; 84:1722-1734. [PMID: 27021246 DOI: 10.1128/iai.01208-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.
Collapse
|
41
|
|
42
|
Bousquet J, Oliveri D. Role of ribomunyl((r)) in the prevention of recurrent respiratory tract infections in adults : overview of clinical results. ACTA ACUST UNITED AC 2016; 5:317-24. [PMID: 16928145 DOI: 10.2165/00151829-200605050-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recurrent respiratory tract infections (RRTIs) in adults are the result of an imbalance between lung defense mechanisms, and bacterial burden. Antibacterial treatments can temporarily restore the equilibrium between host and bacterial load, but do not prevent recurrence of infection. An alternative approach to prevent recurrence of infection is treatment with an immunostimulant, which provides immune protection against repeated bacterial and viral infection. All immunostimulant products are bacterial in origin: lysates (first generation immunostimulants), or bacterial extracts, like bacterial ribosomes, or membrane proteoglycans. This review highlights the current state of knowledge regarding the use of immunostimulants in adults with RRTIs, taking the ribosomal immunostimulant Ribomunyl((R)) as an example. Many studies are available on the mechanism of action and clinical efficacy in prevention of RRTIs in adults treated with Ribomunyl((R)). The effect of this immunostimulant on anti-infectious responses is explained by a stimulation of both nonspecific (innate) and specific (adaptive) immunity. In order to obtain a global overview of the therapeutic efficacy of Ribomunyl((R)) the most pertinent trials were selected from the literature based on adequate patient numbers and good methodology. Results of double-blind placebo-controlled trials using Ribomunyl((R)) for the treatment of different upper or lower RRTIs have demonstrated a statistically significant reduction in the number of infectious episodes and as a consequence, a decrease in antibacterial consumption, after 3 and 6 months of treatment. The tolerance profile of Ribomunyl((R)) was good in all studies. Economic evaluations suggest that savings can be made in healthcare expenditure, in patients with recurrent episodes of infection. It is concluded that Ribomunyl((R)) is effective in preventing and reducing upper and lower respiratory tract infections in adults. The product may also have an impact on reducing the development of bacterial resistance, as a result of fewer courses of antibacterials required to treat patients with RRTIs.
Collapse
Affiliation(s)
- Jean Bousquet
- Respiratory Diseases Department, A. de Villeneuve Hospital, Montpellier, France
| | | |
Collapse
|
43
|
Li H, Chu X, Li D, Zeng ZH, Peng XX. Construction and immune protection evaluation of recombinant polyvalent OmpAs derived from genetically divergent ompA by DNA shuffling. FISH & SHELLFISH IMMUNOLOGY 2016; 49:230-236. [PMID: 26707781 DOI: 10.1016/j.fsi.2015.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
A wide variety of bacterial infections is a major challenge in aquaculture. Development of polyvalent vaccines that can fight against as many pathogens as possible is especially necessary. The present study uses DNA shuffling to create a new hybrid OmpA with improved cross-protection against Vibrio alginolyticus and Edwardsiella tarda through the recombination of six OmpA genes from Vibrio parahaemolyticus, V. alginolyticus, E. tarda and Escherichia coli. Out of the 43 recombinant chimeras genes constructed using VA0764 primers, EompAs-19 was demonstrated as an ideal polyvalent vaccine against infections caused V. alginolyticus and E. tarda. Compared with VA0764, OmpAs-19 had three mutations, which may be a molecular basis of EompAs-19 as an efficient polyvalent vaccine against both V. alginolyticus and E. tarda infections. These results develop a polyvalent vaccine that prevents the infections caused by extracellular and intracellular bacteria. Thus, the present study highlights the way to develop polyvalent vaccines against microbial infections by DNA shuffling.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| | - Xiao Chu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Dan Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Zao-Hai Zeng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
44
|
|
45
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
46
|
Rana A, Rub A, Akhter Y. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach. J Mol Recognit 2015; 28:506-20. [PMID: 25727233 DOI: 10.1002/jmr.2458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an etiological agent of chronic inflammation of the intestine among ruminants and humans. Currently, there are no effective vaccines and sensitive diagnostic tests available for its control and detection. For this, it is of paramount importance to identify the MAP antigens, which may be immunologically recognized by the host immune system. To address this challenge, we performed identification of the immunogenic epitopes in the MAP outer membrane proteins (OMPs). We have previously identified 57 MAP proteins as OMPs [Rana A, Rub A, Akhter Y. 2014. Molecular BioSystems, 10:2329-2337] and have evaluated them for the epitope selection and analysis employing a computational approach. Thirty-five MAP OMPs are reported with nine-mer peptides showing high binding affinity to major histocompatibility complex (MHC) class I molecules and 28 MAP OMPs with 15-mer peptides of high binding affinity for MHC class II molecules. The presence of MHC binding epitopes indicates the potential cell-mediated immune response inducing capacity of these MAP OMPs in infected host. To further investigate the humoral response inducing properties of OMPs of MAP, we report potential B cell epitopes based on the sequences of peptide antigens and their molecular structures. We also report 10 proteins having epitopes for both B and T cells representing potential candidates which may invoke both humoral and cellular immune responses in the host. These findings will greatly accelerate and expedite the formulation of effective and cost-efficient vaccines and diagnostic tests against MAP infection.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Laboratory, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi,, 110025, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
47
|
Antibacterial mechanisms of polymyxin and bacterial resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:679109. [PMID: 25664322 PMCID: PMC4312571 DOI: 10.1155/2015/679109] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022]
Abstract
Multidrug resistance in pathogens is an increasingly significant threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial clinical therapy. In many such cases, polymyxins are the last option available, although their use increases the risk of developing resistant strains. This review mainly aims to discuss advances in unraveling the mechanisms of antibacterial activity of polymyxins and bacterial tolerance together with the description of polymyxin structure, synthesis, and structural modification. These are expected to help researchers not only develop a series of new polymyxin derivatives necessary for future medical care, but also optimize the clinical use of polymyxins with minimal resistance development.
Collapse
|
48
|
Zhang Y, Yang S, Dai X, Liu L, Jiang X, Shao M, Chi S, Wang C, Yu C, Wei K, Zhu R. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris. Protein Expr Purif 2014; 105:33-8. [PMID: 25317910 DOI: 10.1016/j.pep.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/21/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023]
Abstract
Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection.
Collapse
Affiliation(s)
- Yongbing Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Shifa Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Xiumei Dai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Liping Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Xiaodong Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Mingxu Shao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Shanshan Chi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Chuanwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Cuilian Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Avenue, Taian, Shandong 271018, PR China.
| |
Collapse
|
49
|
Outer membrane protein A (OmpA) of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB. PLoS One 2014; 9:e109107. [PMID: 25286253 PMCID: PMC4186783 DOI: 10.1371/journal.pone.0109107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/02/2014] [Indexed: 12/29/2022] Open
Abstract
B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA) of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs). The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs), ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an optimal vaccine antigen.
Collapse
|
50
|
Immunological evaluation of mannosylated chitosan nanoparticles based foot and mouth disease virus DNA vaccine, pVAC FMDV VP1–OmpA in guinea pigs. Biologicals 2014; 42:153-9. [DOI: 10.1016/j.biologicals.2014.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 10/26/2013] [Accepted: 01/09/2014] [Indexed: 11/22/2022] Open
|