1
|
Immunogenicity of Wild Type and Mutant Hepatitis B Surface Antigen Virus-like Particles (VLPs) in Mice with Pre-Existing Immunity against the Wild Type Vector. Viruses 2023; 15:v15020313. [PMID: 36851527 PMCID: PMC9963944 DOI: 10.3390/v15020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Virus-like particles (VLPs), composed of the small hepatitis B virus surface antigen (HBsAgS), are the antigenic components of the hepatitis B virus (HBV) vaccine and represent the backbones for a chimeric anti-malaria vaccine and various vaccine candidates. Biological vectors have to face pre-existing anti-vector immune responses due to previous immune exposure. Vector recognition after natural infections or vaccinations can result in unwarranted outcomes, with compromising effects on clinical outcomes. In order to evaluate the impact of a pre-existing anti-HBsAgS immune response, we developed mutant VLPs composed of subunits with reduced HBsAgS-specific antigenicity. The insertion of a Plasmodium falciparum circumsporozoite protein (CSP)-derived epitope as a read-out allowed the assessment of wild type (wt) and mutant VLPs in the context of a pre-existing immune response. Mutant and wt VLP platforms with a CSP-epitope insert are immunogenic and have the ability to generate anti-CSP antibody responses in both naïve BALB/c mice and mice with a pre-existing anti-HBsAgS immune response, but with superior anti-CSP responses in mice with a pre-existing immunity. The data indicate that previous HBsAgS exposure facilitates enhanced antibody responses against foreign epitopes delivered by the HBsAgS platform, and, in this context, the state of immune sensitization alters the outcome of subsequent vaccinations.
Collapse
|
2
|
Structure-Based and Rational Design of a Hepatitis C Virus Vaccine. Viruses 2021; 13:v13050837. [PMID: 34063143 PMCID: PMC8148096 DOI: 10.3390/v13050837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.
Collapse
|
3
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
4
|
Ninyio NN, Ho KL, Yong CY, Chee HY, Hamid M, Ong HK, Mariatulqabtiah AR, Tan WS. Chimeric Virus-Like Particles of Prawn Nodavirus Displaying Hepatitis B Virus Immunodominant Region: Biophysical Properties and Cytokine Response. Int J Mol Sci 2021; 22:ijms22041922. [PMID: 33672018 PMCID: PMC7919259 DOI: 10.3390/ijms22041922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
Hepatitis B is a major global health challenge. In the absence of an effective treatment for the disease, hepatitis B vaccines provide protection against the viral infection. However, some individuals do not have positive immune responses after being vaccinated with the hepatitis B vaccines available in the market. Thus, it is important to develop a more protective vaccine. Previously, we showed that hepatitis B virus (HBV) ‘a’ determinant (aD) displayed on the prawn nodavirus capsid (Nc) and expressed in Spodoptera frugiperda (Sf9) cells (namely, Nc-aD-Sf9) self-assembled into virus-like particles (VLPs). Immunisation of BALB/c mice with the Nc-aD-Sf9 VLPs showed significant induction of humoral, cellular and memory B-cell immunity. In the present study, the biophysical properties of the Nc-aD-Sf9 VLPs were studied using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy. Enzyme-linked immunosorbent assay (ELISA) was used to determine the antigenicity of the Nc-aD-Sf9 VLPs, and multiplex ELISA was employed to quantify the cytokine response induced by the VLPs administered intramuscularly into BALB/c mice (n = 8). CD spectroscopy of Nc-aD-Sf9 VLPs showed that the secondary structure of the VLPs predominantly consisted of beta (β)-sheets (44.8%), and they were thermally stable up to ~52 °C. ELISA revealed that the aD epitope of the VLPs was significantly antigenic to anti-HBV surface antigen (HBsAg) antibodies. In addition, multiplex ELISA of serum samples from the vaccinated mice showed a significant induction (p < 0.001) of IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-12p70. This cytokine profile is indicative of natural killer cell, macrophage, dendritic cell and cytotoxic T-lymphocyte activities, which suggests a prophylactic innate and adaptive cellular immune response mediated by Nc-aD-Sf9 VLPs. Interestingly, Nc-aD-Sf9 induced a more robust release of the aforementioned cytokines than that of Nc-aD VLPs produced in Escherichia coli and a commercially used hepatitis B vaccine. Overall, Nc-aD-Sf9 VLPs are thermally stable and significantly antigenic, demonstrating their potential as an HBV vaccine candidate.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Department of Microbiology, Faculty of Science, Kaduna State University, P.M.B. 2339, Tafawa Balewa Way, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Hui Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-6715; Fax: +603-9769-7590
| |
Collapse
|
5
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
6
|
Ninyio NN, Ho KL, Ong HK, Yong CY, Chee HY, Hamid M, Tan WS. Immunological Analysis of the Hepatitis B Virus "a" Determinant Displayed on Chimeric Virus-Like Particles of Macrobrachium rosenbergii Nodavirus Capsid Protein Produced in Sf9 Cells. Vaccines (Basel) 2020; 8:vaccines8020275. [PMID: 32512923 PMCID: PMC7350026 DOI: 10.3390/vaccines8020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus “a” determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Department of Microbiology, Faculty of Science, Kaduna State University, P.M.B. 2339, Tafawa Balewa Way, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (K.L.H.); (H.K.O.)
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Hui Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia; (N.N.N.); (C.Y.Y.); (M.H.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-6715; Fax: +603-9769-7590
| |
Collapse
|
7
|
Ho JKT, Jeevan-Raj B, Netter HJ. Hepatitis B Virus (HBV) Subviral Particles as Protective Vaccines and Vaccine Platforms. Viruses 2020; 12:v12020126. [PMID: 31973017 PMCID: PMC7077199 DOI: 10.3390/v12020126] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B remains one of the major global health problems more than 40 years after the identification of human hepatitis B virus (HBV) as the causative agent. A critical turning point in combating this virus was the development of a preventative vaccine composed of the HBV surface (envelope) protein (HBsAg) to reduce the risk of new infections. The isolation of HBsAg sub-viral particles (SVPs) from the blood of asymptomatic HBV carriers as antigens for the first-generation vaccines, followed by the development of recombinant HBsAg SVPs produced in yeast as the antigenic components of the second-generation vaccines, represent landmark advancements in biotechnology and medicine. The ability of the HBsAg SVPs to accept and present foreign antigenic sequences provides the basis of a chimeric particulate delivery platform, and resulted in the development of a vaccine against malaria (RTS,S/AS01, MosquirixTM), and various preclinical vaccine candidates to overcome infectious diseases for which there are no effective vaccines. Biomedical modifications of the HBsAg subunits allowed the identification of strategies to enhance the HBsAg SVP immunogenicity to build potent vaccines for preventative and possibly therapeutic applications. The review provides an overview of the formation and assembly of the HBsAg SVPs and highlights the utilization of the particles in key effective vaccines.
Collapse
Affiliation(s)
- Joan Kha-Tu Ho
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Beena Jeevan-Raj
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
| | - Hans-Jürgen Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; (J.K.-T.H.); (B.J.-R.)
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia
- Correspondence:
| |
Collapse
|
8
|
Wei S, Lei Y, Yang J, Wang X, Shu F, Wei X, Lin F, Li B, Cui Y, Zhang H, Wei S. Neutralization effects of antibody elicited by chimeric HBV S antigen viral-like particles presenting HCV neutralization epitopes. Vaccine 2018; 36:2273-2281. [PMID: 29576303 DOI: 10.1016/j.vaccine.2018.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health problem despite effectual direct-acting antivirals (DAAs) therapy. Development of a prophylactic vaccine is essential to block spread of HCV infection. The HBV small surface antigen (HBsAg-S) can self-assemble into virus-like particles (VLPs), has higher immunogenicity and is used as a vaccine against HBV infections. Chimeric HBsAg-S proteins with foreign epitopes allow VLP formation and induce the specific humoral and cellular immune responses against the foreign proteins. In this study, we investigated the immune responses induced by chimeric VLPs with HCV neutralizing epitopes and HBV S antigen in mice. The chimeric HCV-HBV VLPs expressing neutralizing epitopes were prepared and purified. BALB/c mice were immunized with purified chimeric VLPs and the serum neutralizing antibodies were analyzed. We found that these chimeric VLPs induced neutralizing antibodies against HCV in mice. Additionally, the murine serum neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b and 2a genotypes. We also found that immunization with chimeric VLPs induced anti-HBsAg antibodies. This study provides a novel strategy for development of a HCV prophylactic neutralizing epitope vaccine and a HCV-HBV bivalent prophylactic vaccine.
Collapse
Affiliation(s)
- Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Yingfeng Lei
- Department of Microbiology, The Fourth Military Medical University, No. 17 West Road, Xi'an, Shaanxi 710032, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Fang Shu
- Department of Clinical Laboratory, Xi'an Third Hospital, No. 10 Eastern Section of The Third FengCheng Rd., WeiYang District, Xi'an, Shaanxi 710018, China
| | - Xin Wei
- Department of Infectious Disease, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Fang Lin
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Bin Li
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Ying Cui
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Hai Zhang
- Laboratory Animal Research Center, The Fourth Military Medical University, No. 17 West Road, Xi'an, Shaanxi 710032, China.
| | - Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
9
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Czarnota A, Tyborowska J, Peszyńska-Sularz G, Gromadzka B, Bieńkowska-Szewczyk K, Grzyb K. Immunogenicity of Leishmania-derived hepatitis B small surface antigen particles exposing highly conserved E2 epitope of hepatitis C virus. Microb Cell Fact 2016; 15:62. [PMID: 27075377 PMCID: PMC4831159 DOI: 10.1186/s12934-016-0460-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a major health problem worldwide, affecting an estimated 2-3 % of human population. An HCV vaccine, however, remains unavailable. High viral diversity poses a challenge in developing a vaccine capable of eliciting a broad neutralizing antibody response against all HCV genotypes. The small surface antigen (sHBsAg) of hepatitis B virus (HBV) has the ability to form highly immunogenic subviral particles which are currently used as an efficient anti-HBV vaccine. It also represents an attractive antigen carrier for the delivery of foreign sequences. In the present study, we propose a bivalent vaccine candidate based on novel chimeric particles in which highly conserved epitope of HCV E2 glycoprotein (residues 412-425) was inserted into the hydrophilic loop of sHBsAg. RESULTS The expression of chimeric protein was performed in an unconventional, Leishmania tarentolae expression system resulting in an assembly of particles which retained immunogenicity of both HCV epitope and sHBsAg protein. Direct transmission electron microscopy observation and immunogold staining confirmed the formation of spherical particles approximately 22 nm in diameter, and proper foreign epitope exposition. Furthermore, the sera of mice immunized with chimeric particles proved reactive not only to purified yeast-derived sHBsAg proteins but also HCV E2 412-425 synthetic peptide. Most importantly, they were also able to cross-react with E1E2 complexes from different HCV genotypes. CONCLUSIONS For the first time, we confirmed successful assembly of chimeric sHBsAg virus-like particles (VLPs) in the L. tarentolae expression system which has the potential to produce high-yields of properly N-glycosylated mammalian proteins. We also proved that chimeric Leishmania-derived VLPs are highly immunogenic and able to elicit cross-reactive antibody response against HCV. This approach may prove useful in the development of a bivalent prophylactic vaccine against HBV and HCV and opens up a new and low-cost opportunity for the production of chimeric sHBsAg VLPs requiring N-glycosylation process for their proper functionality and immunogenicity.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Jolanta Tyborowska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, Gdańsk, 80-307, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Beata Gromadzka
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, Gdańsk, 80-307, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
12
|
Beaumont E, Roingeard P. Chimeric hepatitis B virus (HBV)/hepatitis C virus (HCV) subviral envelope particles induce efficient anti-HCV antibody production in animals pre-immunized with HBV vaccine. Vaccine 2015; 33:973-6. [PMID: 25596457 DOI: 10.1016/j.vaccine.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/16/2022]
Abstract
The development of an effective, affordable prophylactic vaccine against hepatitis C virus (HCV) remains a medical priority. The recently described chimeric HBV-HCV subviral envelope particles could potentially be used for this purpose, as they could be produced by industrial procedures adapted from those established for the hepatitis B virus (HBV) vaccine. We show here, in an animal model, that pre-existing immunity acquired through HBV vaccination does not influence the immunogenicity of the HCV E2 protein presented by these chimeric particles. Thus, these chimeric HBV-HCV subviral envelope particles could potentially be used as a booster in individuals previously vaccinated against HBV, to induce protective immunity to HCV.
Collapse
Affiliation(s)
- Elodie Beaumont
- INSERM U966, Université François Rabelais and CHRU de Tours, 10 bld Tonnelle, Tours, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, 10 bld Tonnelle, Tours, France.
| |
Collapse
|
13
|
Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 2014; 12:143-54. [DOI: 10.1586/erv.13.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Immunological response to parenteral vaccination with recombinant hepatitis B virus surface antigen virus-like particles expressing Helicobacter pylori KatA epitopes in a murine H. pylori challenge model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:268-76. [PMID: 22205658 DOI: 10.1128/cvi.05295-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus-like particles (VLPs) based on the small envelope protein of hepatitis B virus (HBsAg-S) are immunogenic at the B- and T-cell level. In this study, we inserted overlapping sequences encoding the carboxy terminus of the Helicobacter pylori katA gene product into HBsAg-S. The HBsAg-S-KatA fusion proteins were able to assemble into secretion-competent VLPs (VLP-KatA). The VLP-KatA proteins were able to induce KatA-specific antibodies in immunized mice. The mean total IgG antibody titers 41 days post-primary immunization with VLP-KatA (2.3 × 10(3)) were significantly greater (P < 0.05) than those observed for vaccination with VLP alone (5.2 × 10(2)). Measurement of IgG isotypes revealed responses to both IgG1 and IgG2a (mean titers, 9.0 × 10(4) and 2.6 × 10(4), respectively), with the IgG2a response to vaccination with VLP-KatA being significantly higher than that for mice immunized with KatA alone (P < 0.05). Following challenge of mice with H. pylori, a significantly reduced bacterial load in the gastric mucosa was observed (P < 0.05). This is the first report describing the use of VLPs as a delivery vehicle for H. pylori antigens.
Collapse
|
15
|
Cheong WS, Reiseger J, Turner SJ, Boyd R, Netter HJ. Chimeric virus-like particles for the delivery of an inserted conserved influenza A-specific CTL epitope. Antiviral Res 2009; 81:113-22. [DOI: 10.1016/j.antiviral.2008.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
|
16
|
Vietheer PTK, Boo I, Drummer HE, Netter HJ. Immunizations with Chimeric Hepatitis B Virus-Like Particles to Induce Potential Anti-Hepatitis C Virus Neutralizing Antibodies. Antivir Ther 2007. [DOI: 10.1177/135965350701200409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Virus-like particles (VLPs) are highly immunogenic and proven to induce protective immunity. The small surface antigen (HBsAg-S) of hepatitis B virus (HBV) self-assembles into VLPs and its use as a vaccine results in protective antiviral immunity against HBV infections. Chimeric HBsAg-S proteins carrying foreign epitopes allow particle formation and have the ability to induce anti-foreign humoral and cellular immune responses. Methods/results The insertion of the hypervariable region 1 (HVR1) sequence derived from the envelope protein 2 (E2) of hepatitis C virus (HCV) into the major antigenic site of HBsAg-S (‘a’-determinant) resulted in the formation of highly immunogenic VLPs that retained the antigenicity of the inserted HVR1 sequence. BALB/c mice were immunized with chimeric VLPs, which resulted in antisera with anti-HCV activity. The antisera were able to immunoprecipitate native HCV envelope complexes (E1E2) containing homologous or heterologous HVR1 sequences. HCV E1E2 pseudotyped HIV-1 particles (HCVpp) were used to measure entry into HuH-7 target cells in the presence or absence of antisera that were raised against chimeric VLPs. Anti-HVR1 VLP sera interfered with entry of entry-competent HCVpps containing either homologous or heterologous HVR1 sequences. Also, immunizations with chimeric VLPs induced anti-surface antigen (HBsAg) antibodies, indicating that HBV-specific antigenicity and immunogenicity of the ‘a’-determinant region is retained. Conclusions A multivalent vaccine against different pathogens based on the HBsAg delivery platform should be possible. We hypothesize that custom design of VLPs with an appropriate set of HCV-neutralizing epitopes will induce antibodies that would serve to decrease the viral load at the initial infecting inoculum.
Collapse
Affiliation(s)
| | - Irene Boo
- Burnet Institute, Commercial Road, Prahran, Victoria, Australia
| | - Heidi E Drummer
- Burnet Institute, Commercial Road, Prahran, Victoria, Australia
| | - Hans-Jürgen Netter
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Iglesias E, Thompson R, Carrazana Y, Lobaina Y, García D, Sánchez J, García J, Cruz O, Brown E, Martin A, Muzio VL, Aguilar JC. Coinoculation with hepatitis B surface and core antigen promotes a Th1 immune response to a multiepitopic protein of HIV-1. Immunol Cell Biol 2006; 84:174-83. [PMID: 16519735 DOI: 10.1111/j.1440-1711.2005.01408.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been defined that strong and multispecific cellular immune responses correlate with a better prognosis during the course of chronic diseases. A cross-enhancing effect on the resulting immune response obtained by the coadministration of recombinant hepatitis B virus (HBV) surface and core Ag was recently observed. With the objective of studying the effect of such Ag on the immune response to coinoculated heterologous Ag and vice versa, several formulations containing the recombinant HBV Ag and a multiepitopic protein (CR3) composed by CTL and Th epitopes from HIV-1 were evaluated by s.c. and mucosal administration. Combinations of two and three Ag were evaluated for cellular and humoral immune responses. The results showed that the best Ag combination for nasal immunization was the mixture comprising the CR3 recombinant HIV protein and both HBV Ag. Similarly, it was also the best formulation for s.c. immunization in aluminium phosphate adjuvant. In conclusion, it is possible to induce a Th1 stimulation of the cellular immune response specific for a HIV-based recombinant protein by formulating this Ag with the recombinant HBV Ag.
Collapse
|
18
|
Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4:2. [PMID: 16476163 PMCID: PMC1386698 DOI: 10.1186/1477-3155-4-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 02/13/2006] [Indexed: 11/22/2022] Open
Abstract
Specific targeting of tumor cells is an important goal for the design of nanotherapeutics for the treatment of cancer. Recently, viruses have been explored as nano-containers for specific targeting applications, however these systems typically require modification of the virus surface using chemical or genetic means to achieve tumor-specific delivery. Interestingly, there exists a subset of viruses with natural affinity for receptors on tumor cells that could be exploited for nanotechnology applications. For example, the canine parvovirus (CPV) utilizes transferrin receptors (TfRs) for binding and cell entry into canine as well as human cells. TfRs are over-expressed by a variety of tumor cells and are widely being investigated for tumor-targeted drug delivery. We explored whether the natural tropism of CPV to TfRs could be harnessed for targeting tumor cells. Towards this goal, CPV virus-like particles (VLPs) produced by expression of the CPV-VP2 capsid protein in a baculovirus expression system were examined for attachment of small molecules and delivery to tumor cells. Structural modeling suggested that six lysines per VP2 subunit are presumably addressable for bioconjugation on the CPV capsid exterior. Between 45 and 100 of the possible 360 lysines/particle could be routinely derivatized with dye molecules depending on the conjugation conditions. Dye conjugation also demonstrated that the CPV-VLPs could withstand conditions for chemical modification on lysines. Attachment of fluorescent dyes neither impaired binding to the TfRs nor affected internalization of the 26 nm-sized VLPs into several human tumor cell lines. CPV-VLPs therefore exhibit highly favorable characteristics for development as a novel nanomaterial for tumor targeting.
Collapse
Affiliation(s)
- Pratik Singh
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giuseppe Destito
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia di Catanzaro Campus Universitario di Germaneto, Catanzaro, ITALY
| | - Anette Schneemann
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marianne Manchester
- Center for Integrative Molecular Biosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Pattenden LK, Middelberg APJ, Niebert M, Lipin DI. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 2006; 23:523-9. [PMID: 16084615 DOI: 10.1016/j.tibtech.2005.07.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/03/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022]
Abstract
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.
Collapse
Affiliation(s)
- Leonard K Pattenden
- Centre for Biomolecular Engineering, School of Engineering and The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, QLD 4072, Australia
| | | | | | | |
Collapse
|
20
|
Chen Y, Xiong X, Liu X, Li J, Wen Y, Chen Y, Dai Q, Cao Z, Yu W. Immunoreactivity of HCV/HBV epitopes displayed in an epitope-presenting system. Mol Immunol 2005; 43:436-42. [PMID: 16337486 DOI: 10.1016/j.molimm.2005.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 03/04/2005] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that the immunodominant region of the HCV core protein and the hepatitis B surface antigen (HBsAg) have high degree of reactivity. In order to construct a chimeric protein that carries HCV and HBV epitopes and possesses immunogenicity to both HCV and HBV, four epitopes derived from residues aa2-21 (epitope C1), aa22-40 (epitope C2) of the core protein, residues aa315-328 (epitope E) of E1 protein of HCV, and residues aa124-147 (epitope S) of HBsAg were chosen to be displayed in a conformation-specific manner on the outer surface of the Flock House virus capsid protein and expressed in E. coli cells. The reactivity of these epitopes with antisera from hepatitis C and hepatitis B patients and induction of immune response in guinea pigs were determined. The results showed that when displayed in this system, the chimeric protein carrying only epitope S could react with anti-HBsAg positive human sera, elicit an anti-HBsAg response in guinea pigs. The chimeric protein carrying epitopes C1, C2 and E could react with antibodies to different HCV genotypes, elicit an anti-HCV response in guinea pigs. The chimeric protein carrying epitopes C1, C2, E, and S could react with antibodies against HCV and HBV, elicit anti-HCV and anti-HBsAg responses in guinea pigs. The results suggested that these epitopes displayed in this form could be considered for development of epitope-based vaccines against HCV/HBV infections.
Collapse
Affiliation(s)
- Yuanding Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, Yunnan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Geldmacher A, Skrastina D, Borisova G, Petrovskis I, Krüger DH, Pumpens P, Ulrich R. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine 2005; 23:3973-83. [PMID: 15917119 DOI: 10.1016/j.vaccine.2005.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis B virus (HBV) core particles carrying the amino-terminal 120 amino acids (aa) of the nucleocapsid (N) protein of the hantaviruses Dobrava, Hantaan or Puumala have been demonstrated to be highly immunogenic in mice when complexed with adjuvants. Here we demonstrate that even without adjuvant, these chimeric particles induced high-titered, and strongly cross-reactive N-specific antibody responses in BALB/c and C57BL/6 mice. The induced N-specific antibodies represented all IgG subclasses. Pre-existing core-specific antibodies did not abrogate the induction of an N-specific immune response by a hantavirus N insert presented on core particles. Therefore, chimeric core particles should represent promising vaccine candidates even for anti-core positive humans.
Collapse
Affiliation(s)
- Astrid Geldmacher
- Institute of Virology, Charité Medical School, Campus Mitte, D-10098 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Traditional successful antiviral vaccines have relied mostly on live-attenuated viruses. Live-attenuated HIV vaccine candidates are not ideal as they pose risks of reversion, recombination or mutations. Other current HIV vaccine candidates have difficulties generating broadly effective neutralising antibodies and cytotoxic T cell immune responses to primary HIV isolates. Virus-like-particles (VLPs) have been demonstrated to be safe to administer to animals and human patients as well as being potent and efficient stimulators of cellular and humoral immune responses. Therefore, VLPs are being considered as possible HIV vaccines. Chimeric HIV-1 VLPs constructed with either HIV or SIV capsid protein plus HIV immune epitopes and immuno-stimulatory molecules have further improved on early VLP designs, leading to enhanced immune stimulation. The administration of VLP vaccines via mucosal surfaces has also emerged as a promising strategy with which to elicit mucosal and systemic humoral and cellular immune responses. Additionally, new information on antigen processing and the presentation of particulate antigens by dendritic cells (DCs) has created new strategies for improved VLP vaccine candidates. This paper reviews the field of HIV-1 VLP vaccine development, focusing on recent studies that will likely uncover promising prospects for new HIV vaccines.
Collapse
Affiliation(s)
- Linh X Doan
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|