1
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
2
|
Abstract
The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.
Collapse
Affiliation(s)
- Jennifer Stander
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Sandiswa Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
3
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
4
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1681. [PMID: 33164326 PMCID: PMC8052270 DOI: 10.1002/wnan.1681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a major threat to global human health, yet prophylactic treatment options can be limited, as safe and efficacious vaccines exist only for a fraction of all diseases. Notably, devastating diseases such as acquired immunodeficiency syndrome (AIDS) and coronavirus disease of 2019 (COVID-19) currently do not have vaccine therapies. Conventional vaccine platforms, such as live attenuated vaccines and whole inactivated vaccines, can be difficult to manufacture, may cause severe side effects, and can potentially induce severe infection. Subunit vaccines carry far fewer safety concerns due to their inability to cause vaccine-based infections. The applicability of protein nanoparticles (NPs) as vaccine scaffolds is promising to prevent infectious diseases, and they have been explored for a number of viral, bacterial, fungal, and parasitic diseases. Many types of protein NPs exist, including self-assembling NPs, bacteriophage-derived NPs, plant virus-derived NPs, and human virus-based vectors, and these particular categories will be covered in this review. These vaccines can elicit strong humoral and cellular immune responses against specific pathogens, as well as provide protection against infection in a number of animal models. Furthermore, published clinical trials demonstrate the promise of applying these NP vaccine platforms, which include bacteriophage-derived NPs, in addition to multiple viral vectors that are currently used in the clinic. The continued investigations of protein NP vaccine platforms are critical to generate safer alternatives to current vaccines, advance vaccines for diseases that currently lack effective prophylactic therapies, and prepare for the rapid development of new vaccines against emerging infectious diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nina Butkovich
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
| | - Amanda M. Burkhardt
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697 USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| |
Collapse
|
6
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
7
|
Santoni M, Zampieri R, Avesani L. Plant Virus Nanoparticles for Vaccine Applications. Curr Protein Pept Sci 2020; 21:344-356. [PMID: 32048964 DOI: 10.2174/1389203721666200212100255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/16/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
| | | | - Linda Avesani
- Department of Biotechnology, University of Verona. Strada Le Grazie, 15. 37134 Verona, Italy
- Diamante srl. Strada Le Grazie, 15. 37134 Verona, Italy
| |
Collapse
|
8
|
Venkataraman S, Reddy VS, Khurana SMP. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
10
|
Le DHT, Méndez-López E, Wang C, Commandeur U, Aranda MA, Steinmetz NF. Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules 2019; 20:469-477. [PMID: 30516960 PMCID: PMC6485256 DOI: 10.1021/acs.biomac.8b01365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanoparticles with high aspect ratios have favorable attributes for drug delivery and bioimaging applications based on their enhanced tissue penetration and tumor homing properties. Here, we investigated a novel filamentous viral nanoparticle (VNP) based on the Pepino mosaic virus (PepMV), a relative of the established platform Potato virus X (PVX). We studied the chemical reactivity of PepMV, produced fluorescent versions of PepMV and PVX, and then evaluated their biodistribution in mouse tumor models. We found that PepMV can be conjugated to various small chemical modifiers including fluorescent probes via the amine groups of surface-exposed lysine residues, yielding VNPs carrying payloads of up to 1600 modifiers per particle. Although PepMV and PVX share similarities in particle size and shape, PepMV achieved enhanced tumor homing and less nonspecific tissue distribution compared to PVX in mouse models of triple negative breast cancer and ovarian cancer. In conclusion, PepMV provides a novel tool for nanomedical research but more research is needed to fully exploit the potential of plant VNPs for health applications.
Collapse
Affiliation(s)
- Duc H. T. Le
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Chao Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Ulrich Commandeur
- Department of Molecular Biology, RWTH-Aachen University, Aachen 52064, Germany
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Narayanan KB, Han SS. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018; 54:623-637. [PMID: 30008053 DOI: 10.1007/s11262-018-1583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/23/2018] [Indexed: 01/15/2023]
Abstract
Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea. .,Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
13
|
Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516030081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Abstract
Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.
Collapse
|
17
|
Liew PS, Hair-Bejo M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv Virol 2015; 2015:936940. [PMID: 26351454 PMCID: PMC4550766 DOI: 10.1155/2015/936940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.
Collapse
Affiliation(s)
- Pit Sze Liew
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
18
|
Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines (Basel) 2015; 3:620-37. [PMID: 26350598 PMCID: PMC4586470 DOI: 10.3390/vaccines3030620] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022] Open
Abstract
Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.
Collapse
|
19
|
Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP, Ottensmeier C, Diebold SS, Stevenson FK, Savelyeva N. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS One 2015; 10:e0118096. [PMID: 25692288 PMCID: PMC4332868 DOI: 10.1371/journal.pone.0118096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
Induction of potent antibody is the goal of many vaccines targeted against infections or cancer. Modern vaccine designs that use virus-like particles (VLP) have shown efficacy for prophylactic vaccination against virus-associated cancer in the clinic. Here we used plant viral particles (PVP), which are structurally analogous to VLP, coupled to a weak idiotypic (Id) tumour antigen, as a conjugate vaccine to induce antibody against a murine B-cell malignancy. The Id-PVP vaccine incorporates a natural adjuvant, the viral ssRNA, which acts via TLR7. It induced potent protective anti-Id antibody responses in an in vivo mouse model, superior to the "gold standard" Id vaccine, with prevalence of the IgG2a isotype. Combination with alum further increased antibody levels and maintained the IgG2a bias. Engagement of TLR7 in vivo was followed by secretion of IFN-α by plasmacytoid dendritic cells and by activation of splenic CD11chi conventional dendritic cells. The latter was apparent from up-regulation of co-stimulatory molecules and from secretion of a wide range of inflammatory cytokines and chemokines including the Th1-governing cytokine IL-12, in keeping with the IgG2a antibody isotype distribution. PVP conjugates are a novel cancer vaccine design, offering an attractive molecular form, similar to VLP, and providing T-cell help. In contrast to VLP, they also incorporate a safe "in-built" ssRNA adjuvant.
Collapse
Affiliation(s)
- Jantipa Jobsri
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alex Allen
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Deepa Rajagopal
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Michael Shipton
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kostya Kanyuka
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, United Kingdom
| | | | - Christian Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sandra S. Diebold
- King’s College London, Peter Gorer Department of Immunobiology, Guy’s Hospital, London, United Kingdom
| | - Freda K. Stevenson
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Natalia Savelyeva
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Sharma M, Dixit A. Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein. Appl Microbiol Biotechnol 2015; 99:6277-91. [DOI: 10.1007/s00253-015-6398-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/10/2023]
|
21
|
Nagata T, Inoue-Nagata AK. Simplified methods for the construction of RNA and DNA virus infectious clones. Methods Mol Biol 2015; 1236:241-54. [PMID: 25287508 DOI: 10.1007/978-1-4939-1743-3_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infectious virus clones are one of the most powerful tools in plant pathology, molecular biology, and biotechnology. The construction of infectious clones of RNA and DNA viruses, however, usually requires laborious cloning and subcloning steps. In addition, instability of the RNA virus genome is frequently reported after its introduction into the vector and transference to Escherichia coli. These difficulties hamper the cloning procedures, making it tedious and cumbersome. This chapter describes two protocols for a simple construction of infectious viruses, an RNA virus, the tobamovirus Pepper mild mottle virus, and a DNA virus, a bipartite begomovirus. For this purpose, the strategy of overlap-extension PCR was used for the construction of infectious tobamovirus clone and of rolling circle amplification (RCA) for the construction of a dimeric form of the begomovirus clone.
Collapse
Affiliation(s)
- Tatsuya Nagata
- Laboratório de Microscopia e Virologia, Departamento de Biologia Celular, Conselho de Ensino, Pesquisa, e Extensão, Universidade de Brasília, IB-Bloco K, Asa Norte, 70910-900, Brasilia, DF, Brazil,
| | | |
Collapse
|
22
|
Luckanagul JA, Lee LA, You S, Yang X, Wang Q. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo. J Biomed Mater Res A 2014; 103:887-95. [PMID: 24829052 DOI: 10.1002/jbm.a.35227] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 12/16/2022]
Abstract
Viruses are no longer recognized purely for being ubiquitous pathogens, but have served as building blocks for material chemistry and nanotechnology. Thousands of coat protein subunits of a viral particle can be modified chemically and/or genetically. We have previously shown that the three-dimensional porous hydrogels can easily be functionalized by Tobacco mosaic virus (TMV), a rod-like plant virus, using its mutant, RGD-TMV. RGD-TMV hosted bioadhesive peptide (RGD) in the hydrogel, which was shown to enhance cell attachment and promote osteogenic differentiation of cultured stem cell. To translate this technology to potential clinical applications, we sought to study the biocompatibility of the hydrogel. In this paper, the hydrogels were implanted in vivo and assessed for their immunogenicity, toxicity, and biodegradability. Immune response for TMV substantially decreased when incorporated in the hydrogel implants. The implanted TMV hydrogels exhibited no apparent toxicity and were degradable in mice. The results highlighted the feasibility of using TMV incorporated hydrogels as scaffolding materials for regenerative medicine in terms of biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Jittima Amie Luckanagul
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | | | | | | | | |
Collapse
|
23
|
Junqueira BRT, Nicolini C, Lucinda N, Orílio AF, Nagata T. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. J Virol Methods 2014; 198:32-6. [PMID: 24388933 DOI: 10.1016/j.jviromet.2013.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants.
Collapse
Affiliation(s)
| | - Cícero Nicolini
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Natalia Lucinda
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Anelise Franco Orílio
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Tatsuya Nagata
- Pós-graduação em Biologia Molecular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
24
|
McCormick AA, Palmer KE. Genetically engineered Tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 2014; 7:33-41. [DOI: 10.1586/14760584.7.1.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Wei D, Zhao X, Chen L, Lan X, Li Y, Lin Y, Wang Q. Viral nanoparticles as antigen carriers: influence of shape on humoral immune responses in vivo. RSC Adv 2014. [DOI: 10.1039/c4ra01821d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rod-shaped viral nanoparticles serve as effective carriers for small molecular haptens with improved humoral immune responses in vivo.
Collapse
Affiliation(s)
- Deqiang Wei
- College of Life Science
- Northeast Forestry University
- Harbin 150040, P.R. China
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
| | - Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P.R. China
| | - Limin Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P.R. China
| | - Xingguo Lan
- College of Life Science
- Northeast Forestry University
- Harbin 150040, P.R. China
| | - Yuhua Li
- College of Life Science
- Northeast Forestry University
- Harbin 150040, P.R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P.R. China
| | - Qian Wang
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia, USA
| |
Collapse
|
26
|
Balique F, Colson P, Barry AO, Nappez C, Ferretti A, Moussawi KA, Ngounga T, Lepidi H, Ghigo E, Mege JL, Lecoq H, Raoult D. Tobacco mosaic virus in the lungs of mice following intra-tracheal inoculation. PLoS One 2013; 8:e54993. [PMID: 23383021 PMCID: PMC3559775 DOI: 10.1371/journal.pone.0054993] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
Plant viruses are generally considered incapable of infecting vertebrates. Accordingly, they are not considered harmful for humans. However, a few studies questioned the certainty of this paradigm. Tobacco mosaic virus (TMV) RNA has been detected in human samples and TMV RNA translation has been described in animal cells. We sought to determine if TMV is detectable, persists, and remains viable in the lung tissues of mice following intratracheal inoculation, and we attempted to inoculate mouse macrophages with TMV. In the animal model, mice were intratracheally inoculated with 10(11) viral particles and were sacrificed at different time points. The virus was detected in the mouse lungs using immunohistochemistry, electron microscopy, real-time RT-PCR and sequencing, and its viability was studied with an infectivity assay on plants. In the cellular model, the culture medium of murine bone marrow derived macrophages (BMDM) was inoculated with different concentrations of TMV, and the virus was detected with real-time RT-PCR and immunofluorescence. In addition, anti-TMV antibodies were detected in mouse sera with ELISA. We showed that infectious TMV could enter and persist in mouse lungs via the intratracheal route. Over 14 days, the TMV RNA level decreased by 5 log(10) copies/ml in the mouse lungs and by 3.5 log(10) in macrophages recovered from bronchoalveolar lavage. TMV was localized to lung tissue, and its infectivity was observed on plants until 3 days after inoculation. In addition, anti-TMV antibody seroconversions were observed in the sera from mice 7 days after inoculation. In the cellular model, we observed that TMV persisted over 15 days after inoculation and it was visualized in the cytoplasm of the BMDM. This work shows that a plant virus, Tobacco mosaic virus, could persist and enter in cells in mammals, which raises questions about the potential interactions between TMV and human hosts.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
- * E-mail:
| | - Abdoulaye Oury Barry
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Claude Nappez
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Audrey Ferretti
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Khatoun Al Moussawi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Tatsiana Ngounga
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Hubert Lepidi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Eric Ghigo
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Didier Raoult
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
27
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
29
|
Bruckman MA, Hern S, Jiang K, Flask CA, Yu X, Steinmetz NF. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J Mater Chem B 2013; 1:1482-1490. [PMID: 23589767 DOI: 10.1039/c3tb00461a] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To compensate for the low sensitivity of magnetic resonance imaging (MRI), nanoparticles have been developed to deliver high payloads of contrast agents to sites of disease. Here, we report the development of supramolecular MRI contrast agents using the plant viral nanoparticle tobacco mosaic virus (TMV). Rod-shaped TMV nanoparticles measuring 300×18 nm were loaded with up to 3,500 or 2,000 chelated paramagnetic gadolinium (III) ions selectively at the interior (iGd-TMV) or exterior (eGd-TMV) surface, respectively. Spatial control is achieved through targeting either tyrosine or carboxylic acid side chains on the solvent exposed exterior or interior TMV surface. The ionic T1 relaxivity per Gd ion (at 60 MHz) increases from 4.9 mM-1s-1 for free Gd(DOTA) to 18.4 mM-1s-1 for eGd-TMV and 10.7 mM-1s-1 for iGd-TMV. This equates to T1 values of ~ 30,000 mM-1s-1 and ~ 35,000 mM-1s-1 per eGd-TMV and iGd-TMV nanoparticle. Further, we show that interior-labeled TMV rods can undergo thermal transition to form 170 nm-sized spherical nanoparticles containing ~ 25,000 Gd chelates and a per particle relaxivity of almost 400,000 mM-1s-1 (15.2 mM-1s-1 per Gd). This work lays the foundation for the use of TMV as a contrast agent for MRI.
Collapse
Affiliation(s)
- Michael A Bruckman
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
30
|
Li M, Li P, Song R, Xu Z. An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco. PLoS One 2010; 5:e15087. [PMID: 21124743 PMCID: PMC2993970 DOI: 10.1371/journal.pone.0015087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. CONCLUSIONS Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes.
Collapse
Affiliation(s)
- Mangmang Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengkai Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
31
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
32
|
Trastuzumab-binding peptide display by Tobacco mosaic virus. Virology 2010; 407:7-13. [PMID: 20801474 DOI: 10.1016/j.virol.2010.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/09/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.
Collapse
|
33
|
Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:174-196. [PMID: 20872839 PMCID: PMC7169818 DOI: 10.1002/wnan.119] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus‐like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus‐based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Emily M Plummer
- Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Gonzalez MJ, Plummer EM, Rae CS, Manchester M. Interaction of Cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS One 2009; 4:e7981. [PMID: 19956734 PMCID: PMC2776531 DOI: 10.1371/journal.pone.0007981] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022] Open
Abstract
Background Plant viruses such as Cowpea mosaic virus (CPMV) are increasingly being developed for applications in nanobiotechnology including vaccine development because of their potential for producing large quantities of antigenic material in plant hosts. In order to improve efficacy of viral nanoparticles in these types of roles, an investigation of the individual cell types that interact with the particles is critical. In particular, it is important to understand the interactions of a potential vaccine with antigen presenting cells (APCs) of the immune system. CPMV was previously shown to interact with vimentin displayed on cell surfaces to mediate cell entry, but the expression of surface vimentin on APCs has not been characterized. Methodology The binding and internalization of CPMV by several populations of APCs was investigated both in vitro and in vivo by flow cytometry and fluorescence confocal microscopy. The association of the particles with mouse gastrointestinal epithelium and Peyer's patches was also examined by confocal microscopy. The expression of surface vimentin on APCs was also measured. Conclusions We found that CPMV is bound and internalized by subsets of several populations of APCs both in vitro and in vivo following intravenous, intraperitoneal, and oral administration, and also by cells isolated from the Peyer's patch following gastrointestinal delivery. Surface vimentin was also expressed on APC populations that could internalize CPMV. These experiments demonstrate that APCs capture CPMV particles in vivo, and that further tuning the interaction with surface vimentin may facilitate increased uptake by APCs and priming of antibody responses. These studies also indicate that CPMV particles likely access the systemic circulation following oral delivery via the Peyer's patch.
Collapse
Affiliation(s)
- Maria J. Gonzalez
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Emily M. Plummer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chris S. Rae
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marianne Manchester
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
36
|
Karasev AV, Fitzmaurice WP, Turpen TH, Palmer KE. Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 2009; 332:13-31. [PMID: 19401819 PMCID: PMC7122513 DOI: 10.1007/978-3-540-70868-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the potential that tobacco mosaic virus (TMV) has as a carrier for immunogenic epitopes, and the factors that must be considered in order to bring products based on this platform to the market. Large Scale Biology Corporation developed facile and scaleable methods for manufacture of candidate peptide display vaccines based on TMV. We describe how rational design of peptide vaccines can improve the manufacturability of particular TMV products. We also discuss downstream processing and purification of the vaccine products, with particular attention to the metrics that a product must attain in order to meet criteria for regulatory approval as injectable biologics.
Collapse
Affiliation(s)
- Alexander V. Karasev
- Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| | | | | | | |
Collapse
|
37
|
Yusibov V, Rabindran S. Recent progress in the development of plant derived vaccines. Expert Rev Vaccines 2008; 7:1173-83. [PMID: 18844592 DOI: 10.1586/14760584.7.8.1173] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant subunit vaccines have been with us for the last 30 years and they provide us with the unique opportunity to choose from the many available production systems that can be used for recombinant protein expression. Plants have become an attractive production platform for recombinant biopharmaceuticals and vaccines have been at the forefront of this new and expanding industry sector. The particular advantages of plant-based vaccines in terms of cost, safety and scalability are discussed in the light of recent successful clinical trials and the likely impact of plant systems on the vaccine industry is evaluated.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 1971, USA.
| | | |
Collapse
|
38
|
Abstract
Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins.
Collapse
Affiliation(s)
- Chiara Lico
- UTS BIOTEC, Section of Genetics and Plant Genomics, ENEA CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
39
|
Pier G. Application of vaccine technology to prevention of Pseudomonas aeruginosa infections. Expert Rev Vaccines 2007; 4:645-56. [PMID: 16221066 DOI: 10.1586/14760584.4.5.645] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Development of an effective vaccine against the multiple presentations of Pseudomonas aeruginosa infection, including nosocomial pneumonia, bloodstream infections, chronic lung infections in cystic fibrosis patients and potentially sight-threatening keratitis in users of contact lenses, is a high priority. As with vaccine development for any pathogen, key information about the most effective immunologic effectors of immunity and target antigens needs to be established. For P. aeruginosa, although there is a role for cell-mediated immunity in animals following active vaccination, the bulk of the data indicate that opsonically-active antibodies provide the most effective mediators of acquired immunity. Major target antigens include the lipopolysaccharide O-polysaccharides, cell-surface alginate, flagella, components of the Type III secretion apparatus and outer membrane proteins with a potentially additive effect achieved by including immune effectors to toxins and proteases. A variety of active vaccination approaches have the potential for efficacy such as vaccination with purified or recombinant antigens incorporating multiple epitopes, conjugate vaccines incorporating proteins and carbohydrate antigens, and live attenuated vaccines, including heterologous antigen delivery systems expressing immunogenic P. aeruginosa antigens. A diverse range of passive immunotherapeutic approaches are also candidates for effective immunity, with a variety of human monoclonal antibodies described over the years with good preclinical efficacy and some early Phase I and II studies in humans. Finding an effective active and/or passive vaccination strategy for P. aeruginosa infections could be realized in the next 5 to 10 years, but will require that advances are made in the understanding of antigen expression and immune effectors that work in different human tissues and clinical settings, and also require a means to validate that clinical outcomes achieved in Phase III trials represent meaningful advances in management and treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Gerald Pier
- Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Li Q, Jiang L, Li M, Li P, Zhang Q, Song R, Xu Z. Morphology and stability changes of recombinant TMV particles caused by a cysteine residue in the foreign peptide fused to the coat protein. J Virol Methods 2007; 140:212-7. [PMID: 17140672 DOI: 10.1016/j.jviromet.2006.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 10/15/2006] [Accepted: 10/25/2006] [Indexed: 11/26/2022]
Abstract
In the studies of expressing various foreign peptides using a TMV-based vector, a portion of morphologically altered progeny viral particles from some recombinant TMV constructs were detected by transmission electron microscopy in the first systematically infected upper leaves, but not in the fully expanded inoculated leaves, from infected tobacco plants. Furthermore, in vitro stability of such recombinant TMV constructs were lower than those of the wild type and other recombinant TMV constructs able to form regular rod-shape virions, hence causing the lower yields of recombinant viral particles purified from the infected tobacco plants. Our studies revealed that the presence of a cysteine residue in the foreign peptides, regardless of its position and the peptide sequence, was directly related to changes in the morphology and stability of these TMV recombinants.
Collapse
Affiliation(s)
- Qiaoli Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, P.R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kramberger P, Peterka M, Boben J, Ravnikar M, Strancar A. Short monolithic columns—A breakthrough in purification and fast quantification of tomato mosaic virus. J Chromatogr A 2007; 1144:143-9. [PMID: 17097098 DOI: 10.1016/j.chroma.2006.10.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 11/18/2022]
Abstract
Drawbacks of conventional virus purification methods have led to the development of new, mostly chromatography-based methods. Short monolithic columns are stationary phases intended for purification of large molecules. In this work efficient chromatographic purification of tomato mosaic virus (ToMV) from plant material is described. Based on short monolithic column, the purification process was shortened from 5 days to 2 hours. High viral purity was achieved and recovery of chromatographic step was up to 90%. In addition, these columns enabled preliminary quantification of the virus in just a few minutes, much faster than other quantification methods (e.g. enzyme-linked immunosorbent assay or real-time polymerase chain reaction) which take 1-2 days. These results demonstrate the potential of short monolith column technology for purification and analysis of different viruses.
Collapse
Affiliation(s)
- Petra Kramberger
- BIA Separations, d.o.o., Teslova 30, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
42
|
Li Q, Li M, Jiang L, Zhang Q, Song R, Xu Z. TMV recombinants encoding fused foreign transmembrane domains to the CP subunit caused local necrotic response on susceptible tobacco. Virology 2006; 348:253-9. [PMID: 16542697 PMCID: PMC7111735 DOI: 10.1016/j.virol.2005.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/12/2005] [Accepted: 11/11/2005] [Indexed: 11/25/2022]
Abstract
With regard to the effects of various foreign peptides fused to the coat protein subunits on the infectivity of corresponding TMV recombinants, some of TMV recombinants were found to induce necrotic local lesions on the inoculated leaves of susceptible tobacco. This paper reported that there existed a group of TMV recombinants in which the fused foreign peptides contained a transmembrane domain according to the predictions by three programs of SOSUI, TMpred and DAS. Further studies showed for the first time that a foreign transmembrane domain in a fused peptide of the corresponding TMV recombinant would result in the local lesions on the susceptible tobacco leaves. In addition, it was concluded that none of the TMV recombinants that systematically infected susceptible tobacco contained a transmembrane domain in the coat protein subunits.
Collapse
Affiliation(s)
- Qiaoli Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Mangmang Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Lubin Jiang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingqi Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Rentao Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhengkai Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
43
|
Fujiyama K, Saejung W, Yanagihara I, Nakado J, Misaki R, Honda T, Watanabe Y, Seki T. In Planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system. J Biosci Bioeng 2006; 101:398-402. [PMID: 16781468 DOI: 10.1263/jbb.101.398] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 02/06/2006] [Indexed: 11/17/2022]
Abstract
The tobacco mosaic virus (TMV) provides an attractive means of producing foreign peptides in plants. In this study, a TMV-based vector was designed such that a fragment encoding 15 amino acids of the poliovirus peptide (PVP) derived from the viral capsid proteins VP3 and VP1 of poliovirus type 1 Sabin was inserted downstream of the six-base 3' context nucleotide sequence of the TMV coat protein (CP) gene. This design allowed readthrough at the amber stop codon, thereby producing the chimeric TMV particle with both intact CP and CP-fusion protein (CP-PVP) in Nicotiana tabacum cv. Samsun infected with the TMV vector. The TMVCP-PVP virus particle induced antibodies against PVP as well as TMVCP in mice after intraperitoneal immunization. These data illustrate the potential of the readthrough translation system with TMVCP for antigen presentation and vaccine production.
Collapse
Affiliation(s)
- Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, Suita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 2006; 10:185-218. [PMID: 15757412 DOI: 10.1517/14728214.10.1.185] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of our 'small-molecule-drugs' are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Collapse
Affiliation(s)
- Richard M Twyman
- University of York, Department of Biology, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
45
|
Jiang L, Li Q, Li M, Zhou Z, Wu L, Fan J, Zhang Q, Zhu H, Xu Z. A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco. Vaccine 2006; 24:109-15. [PMID: 16337317 DOI: 10.1016/j.vaccine.2005.09.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 09/27/2005] [Accepted: 09/27/2005] [Indexed: 11/24/2022]
Abstract
Based upon a mutant isolated from tobacco infected with a recombinant tobacco mosaic virus (TMV), a new TMV-based vector was developed in which four to six C-terminal amino acid residues were deleted from the viral coat protein (CP) subunit. The new vector was quite similar to the original TMV-based vector, which all expressed a well characterized epitope peptide F11 (P(142)-A(152)) of VP1 from foot-and-mouth disease virus (FMDV) serotype O in tobacco, in the infectivity, yield of the virus particles and more importantly protective activity of F11 in guinea pigs and swine against the FMDV. Furthermore, the capacity of the length of foreign peptide encoded by this new vector was much improved to successfully express a peptide F25 containing two fused epitopes F14 (R(200)-L(213)) and F11 of FMDV VP1, which was failed using the original vector in tobacco. Although animal assays indicated that such expressed F25 was not as efficient as F11 in the immunity, possibly due to lack of a spacer arm between the two fused epitopes, the new TMV-based vector may meet the requirement of expressing longer foreign peptides for different vaccines and other medicines.
Collapse
Affiliation(s)
- Lubin Jiang
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai University, Shanghai 200436, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R. The Potential of Plant Virus Vectors for Vaccine Production. Drugs R D 2006; 7:203-17. [PMID: 16784246 DOI: 10.2165/00126839-200607040-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Plants viruses are versatile vectors that allow the rapid and convenient production of recombinant proteins in plants. Compared with production systems based on transgenic plants, viral vectors are easier to manipulate and recombinant proteins can be produced more quickly and in greater yields. Over the last few years, there has been much interest in the development of plant viruses as vectors for the production of vaccines, either as whole polypeptides or epitopes displayed on the surface of chimeric viral particles. Several viruses have been extensively developed for vaccine production, including tobacco mosaic virus, potato virus X and cowpea mosaic virus. Vaccine candidates have been produced against a range of human and animal diseases, and in many cases have shown immunogenic activity and protection in the face of disease challenge. In this review, we discuss the advantages of plant virus vectors, the development of different viruses as vector systems, and the immunological experiments that have demonstrated the principle of plant virus-derived vaccines.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711, USA.
| | | | | | | | | |
Collapse
|
48
|
Sedlak-Weinstein E, Cripps AW, Kyd JM, Foxwell AR. Pseudomonas aeruginosa: the potential to immunise against infection. Expert Opin Biol Ther 2005; 5:967-82. [PMID: 16018741 DOI: 10.1517/14712598.5.7.967] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas aeruginosa remains a serious pathogen for specific cohorts of patients where chronic infection is a poor prognostic indicator, such as those with cystic fibrosis, burn wounds or those who are immunocompromised. Significant disease burden is associated with a diverse spectrum of both nosocomial and community-acquired infections. To date, vaccines against P. aeruginosa have shown limited and often conflicting efficacy data, especially against heterologous strains, which are increasingly identified as co-colonisers of biofilms. While few studies have gone beyond Phase II clinical trials, a particular concern is the ability of P. aeruginosa to evade the immune system while provoking an immune response that contributes to the destructive nature of infection. Therefore, vaccine development needs to focus on preventing attachment and colonisation, as well as preventing conversion to a mucoid phenotype that is characteristic of the chronic condition that promotes pathology.
Collapse
Affiliation(s)
- E Sedlak-Weinstein
- Griffith University Gold Coast Campus, School of Medicine, PMB 50, Gold Coast Mail Centre, Queensland 9726, Australia
| | | | | | | |
Collapse
|
49
|
Abstract
The small size of plant viral genomes, the ease with which they can be manipulated, and the simplicity of the infection process is making the viral vectors an attractive alternative to the transgenic systems for the expression of foreign proteins in plants. One use of these virus expression systems is for vaccine production. There are two basic types of viral system that have been developed for the production of immunogenic peptides and proteins in plants: epitope presentation and polypeptide expression systems. In this review, we discuss advances made in this field.
Collapse
|
50
|
Antigen Delivery Systems III: Use of Recombinant Plant Viruses. Mucosal Immunol 2005. [PMCID: PMC7149764 DOI: 10.1016/b978-012491543-5/50063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|