1
|
de Oliveira ZB, Silva da Costa DV, da Silva dos Santos AC, da Silva Júnior AQ, de Lima Silva A, de Santana RCF, Costa ICG, de Sousa Ramos SF, Padilla G, da Silva SKR. Synthetic Colors in Food: A Warning for Children's Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:682. [PMID: 38928929 PMCID: PMC11203549 DOI: 10.3390/ijerph21060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
This study addressed the harmful effects of artificial colors in pediatric populations, including children diagnosed with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), as well as those without behavioral disorders. There is a consensus that synthetic food colorings have several impacts on consumers, especially pediatrics, due to their influence on sensory appeal, which can encourage preference for certain foods. The results revealed that these color additives are directly linked to a series of health problems, with a greater impact on children, including a predisposition to pathological conditions such as carcinogenic, allergenic, mutagenic, cytotoxic, and clastogenic activities, as well as gastrointestinal and respiratory problems, in addition to behavioral changes in children with and without diagnosed disorders. The harms of synthetic dyes in children with or without comorbidities are worrying and require a careful and proactive approach from parents, caregivers and public authorities.
Collapse
Affiliation(s)
- Zandleme Birino de Oliveira
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Darlene Vitória Silva da Costa
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Ana Caroline da Silva dos Santos
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Antônio Quaresma da Silva Júnior
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Amanda de Lima Silva
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Raphael Carlos Ferrer de Santana
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Isabella Cristhina Gonçalves Costa
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Sara Freitas de Sousa Ramos
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Gabriel Padilla
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Silvia Katrine Rabelo da Silva
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil
| |
Collapse
|
2
|
Ristea ME, Zarnescu O. Indigo Carmine: Between Necessity and Concern. J Xenobiot 2023; 13:509-528. [PMID: 37754845 PMCID: PMC10532910 DOI: 10.3390/jox13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
3
|
Liu Y, Dong W, Jiang X, Xu J, Yang K, Zhu L, Lin D. Efficient Degradation of Intracellular Antibiotic Resistance Genes by Photosensitized Erythrosine-Produced 1O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12105-12116. [PMID: 37531556 DOI: 10.1021/acs.est.3c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant 1O2 under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and 1O2 concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by 1O2. Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high 1O2 yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by 1O2 and provide a new strategy of developing technologies with high 1O2 yield, like ERY photosensitizing, for efficient iARG removal.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xunheng Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
4
|
Insight into Green Extraction for Roselle as a Source of Natural Red Pigments: A Review. Molecules 2023; 28:molecules28031336. [PMID: 36771003 PMCID: PMC9919762 DOI: 10.3390/molecules28031336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Roselle (Hibiscus sabdariffa L.) is a source of anthocyanins as red pigments that is extensively farmed in tropical and subtropical regions, including Indonesia, Malaysia, China, Thailand, Egypt, Mexico, and West India. The roselle plant contains a variety of nutrients, including anthocyanins, organic acids, pectin, etc. Due to the toxicity and combustibility of the solvents, traditional extraction methods for these compounds are restricted. Obtaining pure extracts is typically a lengthy procedure requiring many processes. Supercritical carbon dioxide (ScCO2) extraction as a green technology is rapidly improving and extending its application domains. The advantages of this method are zero waste production, quicker extraction times, and reduced solvent consumption. The ScCO2 extraction of natural pigments has great promise in food, pharmaceuticals, cosmetics, and textiles, among other uses. The ScCO2 technique for natural pigments may also be advantageous in a variety of other contexts. Due to their minimal environmental risk, the high-quality red pigments of roselle rich in anthocyanins extracted using ScCO2 extraction have a high sustainability potential. Therefore, the objective of this review is to increase knowledge related to the natural colorant of roselle as a substitute for chemically manufactured colorants using ScCO2 as a green method. This article covers ScCO2 extraction, particularly as it relates to the optimization of pigments that promote health. This article focuses on the high extraction efficiency of ScCO2 extraction. Natural colorants extracted via ScCO2 are regarded as safe compounds, especially for human consumption, such as novel functional food additives and textile and pharmaceutical colors.
Collapse
|
5
|
Red Tomato Products as an Alternative to Reduce Synthetic Dyes in the Food Industry: A Review. Molecules 2021; 26:molecules26237125. [PMID: 34885711 PMCID: PMC8659080 DOI: 10.3390/molecules26237125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Most dyes used in the food industry are synthetic and can be a health hazard. Red tomato may serve as a natural alternative dye to replace synthetic colorants. This study aimed to review the literature on the addition of red tomato products (powder tomato, paste, freeze-dried, tomato peel powder, tomato pomace) to reduce the usage of synthetic dyes in the food industry. Red tomato products have been used as coloring in pasta, bologna, sausages, cookies, crackers, macaroons, hamburgers, breads, muffins, cheeses, and nuggets. The trans-cis isomerization of lycopene by oxidative processes directly affects the color of the pigment. The lycopene contained in tomato has antioxidant activity and could reduce or eliminate other oxidants and/or synthetic preservatives in food. Moreover, tomatoes in foods have high sensory scores, nutritional appeal, and marketing potential. However, its use as a food colorant has been not extensively explored. Therefore, further studies are still required, especially on the stability of carotenoids in tomatoes used in processed foods.
Collapse
|
6
|
Rastogi SD, Dixit S, Tripathi A, Das M. Simultaneous Determination of Acetaminophen and Synthetic Color(s) by Derivative Spectroscopy in Syrup Formulations and Validation by HPLC: Exposure Risk of Colors to Children. AAPS PharmSciTech 2015; 16:505-17. [PMID: 25374343 DOI: 10.1208/s12249-014-0228-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Color additives are used in pediatric syrup formulations as an excipient; though not pre-requisite, but pediatric syrup formulations are normally colored. An attempt has been made to measure simultaneously the single drug, acetaminophen (AT), along with the colors, carmoisine (CA), erythrosine (ET), and sunset yellow FCF (SSY) added in it by three derivative spectroscopy methods namely, 1st order, ratio, and differential derivative methods. Moreover, evaluation has been made for the exposure assessment of the colors added as excipient because some colors have been reported to cause allergic reactions and hypersensitivity in children. The present methods provide simple, accurate, and reproducible quantitative determination of the drug, AT, along with the color in synthetic mixtures and commercial drug formulations without any interference. The limit of detection varied from 0.0001-0.31 μg/ml while limit of quantification ranged from 0.002-1.04 μg/ml in all the three methods. The calibration curve of all the three derivative methods exhibited good linear relationship with excellent regression coefficients (0.9986-1.000). Both intra-day and inter-day precisions showed %RSD value less than 2% while the percentage recovery was found between 96.8-103.8%. The sensitivity of the proposed methods is almost comparable to HPLC and thus, can be used for determination of drug AT, and color simultaneously in pharmaceutical formulation on routine basis. The present methods also showed that colors like SSY and ET are saturating more than 50% of acceptable daily intake (ADI) value which is alarming and needs to be considered for modification by regulatory authorities to safeguard the health of children.
Collapse
|
7
|
Düsman E, Berti AP, Soares LC, Vicentini VEP. Cytotoxicity and mutagenicity of cola and grape flavored soft drinks in bone marrow cells of rodents. FOOD SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1590/s0101-20612013005000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the large consumption of soft drinks in Brazil and worldwide in recent years and considering that some of the components present in their composition pose potential risks to human health, the aim of this study was to evaluate the cytotoxic and mutagenic potential of specific cola and grape-flavored soft drink brands. Bone marrow cells of Wistar rats were initially treated by gavage with one single dose of Cola or Grape soft drink, which was next offered ad libitum (instead of water) for 24 hours. A negative control treatment was performed by administering one single dose of water and a positive control administering cyclophosphamide intraperitoneally. Statistical analysis showed that the Cola and Grape soft drinks studied were not cytotoxic. However, the Cola soft drink proved mutagenic in this experiment treatment time. Therefore, this study serves as a warning about the consumption of Cola-flavored soft drink and for the need for further subchronic and chronic studies on soft drinks in order to evaluate the long term mutagenic and cytotoxic effects of these substances.
Collapse
|
8
|
Takamura-Enya T, Ishii R, Oda Y. Evaluation of photo-genotoxicity using the umu test in strains with a high sensitivity to oxidative DNA damage. Mutagenesis 2011; 26:499-505. [DOI: 10.1093/mutage/ger008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
9
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Dixit S, Purshottam S, Gupta S, Khanna S, Das M. Usage pattern and exposure assessment of food colours in different age groups of consumers in the State of Uttar Pradesh, India. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:181-9. [DOI: 10.1080/19440040903268062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Waite JG, Yousef AE. Chapter 3 Antimicrobial Properties of Hydroxyxanthenes. ADVANCES IN APPLIED MICROBIOLOGY 2009; 69:79-98. [DOI: 10.1016/s0065-2164(09)69003-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Waite JG, Yousef AE. Enhanced inactivation of foodborne pathogenic and spoilage bacteria by FD&C Red no. 3 and other xanthene derivatives during ultrahigh pressure processing. J Food Prot 2008; 71:1861-7. [PMID: 18810870 DOI: 10.4315/0362-028x-71.9.1861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Variability among microorganisms in barotolerance has been demonstrated at genus, species, and strain levels. Identification of conditions and additives that enhance the efficacy of ultrahigh pressure (UHP) against important foodborne microorganisms is crucial for maximizing product safety and stability. Preliminary work indicated that FD&C Red No. 3 (Red 3), a xanthene derivative, was bactericidal and acted synergistically with UHP against Lactobacillus spp. The objective of this study was to determine the antimicrobial efficacy of Red 3 and other xanthene derivatives, alone and combined with UHP, against spoilage and pathogenic bacteria in citrate-phosphate buffer (pH 7.0). Xanthene derivatives tested were fluorescein, Eosin Y, Erythrosin B, Phloxine B, Red 3, and Rose Bengal. Halogenated xanthene derivatives (10 ppm) were effective at reducing Listeria monocytogenes survivors but ineffective against Escherichia coli O157:H7. When combined with UHP (400 MPa, 3 min), the presence of derivatives enhanced inactivation. Because Red 3 was the only xanthene derivative to produce synergistic inactivation of both pathogens, further studies using this colorant were warranted. Efficacy of Red 3 against gram-positive bacteria (Lactobacillus plantarum and L. monocytogenes) was concentration dependent (1 to 10 ppm). E. coi O157: H7 strains were resistant to Red 3 concentrations up to 300 ppm. When Red 3 was combined with UHP, the lethality against gram-positive and gram-negative bacteria was dose dependent, with synergy being significant for most strains at > or = 3 ppm. Additional gram-positive and gram-negative bacteria showed lethalities similar to those observed for L. plantarum or L. monocytogenes, and E. coli O157:H7, respectively. Red 3 is a potentially useful additive to enhance the safety and stability of UHP-treated food products.
Collapse
Affiliation(s)
- Joy G Waite
- Department of Food Science and Technology, 2015 Fyffe Court, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
13
|
Ohno K, Tanaka-Azuma Y, Yoneda Y, Yamada T. Genotoxicity test system based on p53R2 gene expression in human cells: examination with 80 chemicals. Mutat Res 2005; 588:47-57. [PMID: 16236544 DOI: 10.1016/j.mrgentox.2005.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 09/13/2005] [Accepted: 09/16/2005] [Indexed: 11/20/2022]
Abstract
p53R2, which encodes a subunit of ribonucleotide reductase, is activated by DNA damage induced by gamma-ray and ultraviolet irradiation, and also by genotoxic chemicals such as adriamycin. For the purpose of constructing an easy-operating genotoxicity test system using human cell lines, we developed a p53R2-dependent luciferase reporter gene assay, and demonstrated dose-dependent luminescence caused by adriamycin in two human cell lines that express wild-type p53, MCF-7 and HepG2. The performance of this assay system was evaluated with 80 chemicals including those known in the Ames test as genotoxic or non-genotoxic. When the luciferase activity of cells treated with the test sample was over 200% to that of control cells in a dose-dependent increasing manner, the sample was judged positive as a genotoxic chemical. Forty of 43 Ames-positive chemicals induced luciferase activity in this assay system. Eight Ames-negative chemicals also induced luciferase activity. These eight chemicals are genotoxic in other in vitro test systems using mammalian cells. It is suggested that this assay system can be applied to rapid screening of chemicals for potential human genotoxicity.
Collapse
Affiliation(s)
- Katsutoshi Ohno
- Food Safety Research Institute, Nissin Food Products Co. Ltd, 2247 Noji-Cho, Kusatsu, Shiga 525-0055, Japan.
| | | | | | | |
Collapse
|
14
|
Kohno Y, Kitamura S, Yamada T, Sugihara K, Ohta S. Production of superoxide radical in reductive metabolism of a synthetic food-coloring agent, indigocarmine, and related compounds. Life Sci 2005; 77:601-14. [PMID: 15921992 DOI: 10.1016/j.lfs.2004.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 08/02/2004] [Indexed: 11/20/2022]
Abstract
Indigocarmine, which is widely used as a synthetic colouring agent for foods and cosmetics in many countries, was reduced to its leuco form and decolorized by rat liver microsomes with NADPH under anaerobic conditions. The reductase activity was enhanced in liver microsomes of phenobarbital-treated rats, and inhibited by diphenyliodonium chloride, a NADPH-cytochrome P450 reductase (P450 reductase) inhibitor, but was not inhibited by SKF 525-A or carbon monoxide. Indigocarmine reductase activity was exhibited by purified rat P450 reductase. In contrast, when indigocarmine was incubated with rat liver microsomes and NADPH under aerobic conditions, superoxide radical was produced and its production was inhibited by superoxide dismutase and diphenyliodonium chloride. When indigocarmine was incubated with purified rat P450 reductase in the presence of NADPH, superoxide radical production was enhanced 17.7-fold (similar to the enhancement of indigocarmine-reducing ability) as compared with that of rat liver microsomes. A decrease of one molecule of NADPH was accompanied with formation of about two molecules of superoxide radical. P450 reductase exhibited little reductase activity towards indigo and tetrabromoindigo, which also afforded little superoxide radical under aerobic conditions. These results indicate that indigocarmine is reduced by P450 reductase to its leuco form, and superoxide radical is produced by autoxidation of the leuco form, through a mechanism known as futile redox cycling.
Collapse
Affiliation(s)
- Yoichi Kohno
- Hiroshima University, Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
15
|
Ozaki A, Yamaguchi Y, Fujita T, Kuroda K, Endo G. Chemical analysis and genotoxicological safety assessment of paper and paperboard used for food packaging. Food Chem Toxicol 2004; 42:1323-37. [PMID: 15207384 DOI: 10.1016/j.fct.2004.03.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/22/2004] [Indexed: 11/18/2022]
Abstract
This study presents the research on the chemical analysis and genotoxicity of 28 virgin/recycled paper products in food-contact use. In the chemical analysis, paper products were extracted by reflux with ethanol, and analyzed by gas chromatography/mass spectrometry. 4,4'-bis(dimethylamino)benzophenone (Michler's ketone: MK), 4,4'-bis(diethylamino)benzophenone (DEAB), 4-(dimethylamino)benzophenone (DMAB) and bisphenol A (BPA) were found characteristically in recycled products. Seventy-five percent of the recycled paper products contained MK (1.7-12 microg/g), 67% contained DEAB (0.64-10 micro g/g), 33% contained DMAB (0.68-0.9 microg/g) and 67% contained BPA (0.19-26 microg/g). Although, BPA was also detected in virgin paper products, the detection levels in the recycled products were ten or more times higher than those in the virgin products. The genotoxicity of paper and paperboard extracts and compounds found in them were investigated by Rec-assay and comet assay. Of the 28 products tested by Rec-assay using Bacillus subtilis, 13 possessed DNA-damaging activity. More recycled than virgin products (75% against 25%) exhibited such activity, which, of the compounds, was observed in BPA, 1,2-benzisothiazoline-3-one (BIT), 2-(thiocyanomethylthio)benzothiazole, 2,4,5,6-tetrachloro-isophthalonitrile, 2,4,6-trichlorophenol (TCP), and pentachlorophenol. The critical toxicant in one virgin paper product was concluded to be BIT. Eight samples with DNA-damaging activity were also tested by comet assay using HL-60 cells; six induced comet cells significantly (five times or higher than the control) without a decrease of viable cells. TCP, BZ, DEAB, and BIT also caused a slight increase in comet cells. In conclusion, we showed that most recycled paper products contain chemicals such as MK, DEAB, DMAB, and BPA, and possess genotoxicity. However, the levels of the chemicals in the recycled products could not explain their genotoxic effects.
Collapse
Affiliation(s)
- Asako Ozaki
- Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennouji-ku, Osaka 543-0026, Japan.
| | | | | | | | | |
Collapse
|
16
|
Abstract
This paper critically reviews the key literature on food additive-additive chemical interactions published over the last 30 years together with appropriate relevant information on food additive-food component interactions. Five main classes of food additive are included, reflecting the research effort to date: the sulfur (IV) species of preservatives, synthetic food colouring materials, nitrate and nitrite, ascorbic acid, and sorbic acid. Within each class, aspects of the chemistry (reactivity), functionality, stability, use and reactions with other specific food additives are reviewed. Where appropriate, the importance of interactions of food additives with other components of food (i.e. nutrients and non-nutrients) has been assessed and certain aspects of toxicology included. The practical outcome of this review is presented as a set of recommendations for future research in this area. The use of the data in this review is proposed as a training set to develop the framework into a diagnostic tool. This might be used ultimately for the development of a multilevel framework, operating systematically, to understand the important parameters that dictate the outcome of additive interactions.
Collapse
Affiliation(s)
- M J Scotter
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | |
Collapse
|
17
|
Kitano K, Fukukawa T, Ohtsuji Y, Masuda T, Yamaguchi H. Mutagenicity and DNA-damaging activity caused by decomposed products of potassium sorbate reacting with ascorbic acid in the presence of Fe salt. Food Chem Toxicol 2002; 40:1589-94. [PMID: 12176085 DOI: 10.1016/s0278-6915(02)00119-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although potassium sorbate (PS), ascorbic acid and ferric or ferrous salts (Fe-salts) are used widely in combination as food additives, the strong reactivity of PS and oxidative potency of ascorbic acid in the presence of Fe-salts might form toxic compounds in food during its deposit and distribution. In the present paper, the reaction mixture of PS, ascorbic acid and Fe-salts was evaluated for mutagenicity and DNA-damaging activity by means of the Ames test and rec-assay. Effective lethality was observed in the rec-assay. No mutagenicity was induced in either Salmonella typhimurium strains TA98 (with or without S-9 mix) or TA100 (with S-9 mix). In contrast, a dose-dependent mutagenic effect was obtained when applied to strain TA100 without S-9 mix. The mutagenic activity became stronger increasing with the reaction period. Furthermore, the reaction products obtained in a nitrogen atmosphere did not show any mutagenic and DNA-damaging activity. PS, ascorbic acid and Fe-salts were inactive when they were used separately. Omission of one component from the mixture of PS, ascorbic acid and Fe-salt turned the reaction system inactive. These results demonstrate that ascorbic acid and Fe-salt oxidized PS and the oxidative products caused mutagenicity and DNA-damaging activity.
Collapse
Affiliation(s)
- K Kitano
- Osaka City Institute of Public Health and Environment Sciences, Osaka 543-0023, Japan
| | | | | | | | | |
Collapse
|
18
|
Ozaki A, Kitano M, Furusawa N, Yamaguchi H, Kuroda K, Endo G. Genotoxicity of gardenia yellow and its components. Food Chem Toxicol 2002; 40:1603-10. [PMID: 12176087 DOI: 10.1016/s0278-6915(02)00118-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gardenia fruit (Gardenia jasminoides ELLIS) is widely used as a natural food colorant and as a traditional Chinese medicine for treatment of hepatic and inflammatory diseases. "Gardenia yellow" is a natural food colorant which is extracted by ethanol from gardenia fruit. The purpose of this study was to evaluate the genotoxicity of gardenia yellow. Genotoxicity of gardenia yellow and its components, crocetin, gentiobiose (a component of crocin), geniposide and genipin (formed by hydrolysis of geniposide), was studied by Ames test, rec-assay, and sister chromatid exchange (SCE) using V79 cells. Gardenia yellow and its components were found not to be mutagenic in the Salmonella reverse mutation assay. Gardenia yellow and genipin caused damage of DNA in rec-assay. Gardenia yellow induced a significant dose-dependent increase of SCE frequency (8.6 times at 1000 microg/ml as the value for the solvent control). Only genipin induced SCEs significantly among the components of gardenia yellow. Moreover, genipin induced a significant increase of tetraploids at all doses tested (95% at 8 microg/ml). Gardenia yellow preparation was analyzed by capillary electrophoresis (CE), and geniposide was detected. However, genipin was not observed. In conclusion, we have shown that genipin possesses genotoxicity. Furthermore, there were unidentified genotoxicants in gardenia yellow.
Collapse
Affiliation(s)
- A Ozaki
- Department of Preventive Medicine and Environmental Health, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Ferrand C, Marc F, Fritsch P, Cassand P, de Saint Blanquat G. Mutagenicity and genotoxicity of sorbic acid-amine reaction products. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:895-901. [PMID: 11271702 DOI: 10.1080/026520300750038063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sorbic acid (E200) and its salts (potassium and calcium sorbate: E202 and E203) are allowed for use as preservatives in numerous processed foods. Sorbic acid had a conjugated system of double bonds which makes it susceptible to nucleophilic attack, sometimes giving mutagenic products. Under conditions typical of food processing (50-80 degrees C), we analysed the cyclic derivatives resulting from a double addition reaction between sorbic acid and various amines. Mutagenesis studies, involving Ames' test and genotoxicity studies with HeLa cells and plasmid DNA, showed that none of the products studied presented either mutagenic or genotoxic activities.
Collapse
Affiliation(s)
- C Ferrand
- Laboratoire d'Analyse de la Valeur Biologique des Aliments, Departement Universitaire des Sciences d'Agen, Université Bordeaux 1, avenue Michel Serres, 47000 Agen, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Capillary electrophoresis (CE) has a unique capability for separation of analytes of environmental concern, particularly those that are more polar and ionic, based on the complementary separation principle of electrophoresis. In the past few years, CE has been selectively used to analyze various classes of compounds having current or potential environmental relevance. This review outlines the current status of CE for the determination of environmental pollutants, based predominantly on research results published from the beginning of 1997 to early 1999. Covered are environmental pollutants of all types except pesticides and inorganics. Certain naturally produced toxins are also covered because of their significant impacts upon human health and the environment. CE methods, as with all methods, must be judged on their ability to provide approaches that are reliable, sensitive, selective, and rapid, while meeting "green chemistry" initiatives for pollution prevention. We also compare CE methods to benchmark environmental techniques involving gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- G W Sovocool
- US Environmental Protection Agency, National Exposure Research Laboratory, Las Vegas, NV 89193-3478, USA.
| | | | | |
Collapse
|