1
|
Zhang J, Qin Y, Chen Y, Zhao X, Wang J, Wang Z, Li J, Zhao J, Liu S, Guo Z, Wei W, Zhao J, Wang X. Ultrathin 2D As 2Se 3 Nanosheets for Photothermal-Triggered Cancer Immunotherapy. ACS NANO 2024; 18:4398-4413. [PMID: 38275273 DOI: 10.1021/acsnano.3c10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Arsenic trioxide (As2O3) has achieved groundbreaking success in the treatment of acute promyelocytic leukemia (APL). However, its toxic side effects seriously limit its therapeutic application in the treatment of solid tumors. To detoxify the severe side effects of arsenic, herein we synthesized innovative 2D ultrathin As2Se3 nanosheets (As2Se3 NSs) with synergistic photothermal-triggered immunotherapy effects. As2Se3 NSs are biocompatible and biodegradable under physiological conditions and can release As(III) and Se(0). Furthermore, selenium increases the immunomodulatory efficacy of arsenic treatments, facilitating reprogramming of the tumor microenvironment by As2Se3 NSs by enhancing the infiltration of natural killer cells and effector tumor-specific CD8+ T cells. The synergistic combination of photothermal therapy and immunotherapy driven by As2Se3 NSs via a simple but effective all-in-one strategy achieved efficient anticancer effects, addressing the key limitations of As2O3 for solid tumor treatment. This work demonstrates not only the great potential of selenium for detoxifying arsenic but also the application of 2D As2Se3 nanosheets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zhang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Qin
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiming Chen
- School of Engineering, Vanderbilt University, Nashville 37235-0734, Tennessee, United States
| | - Xinyang Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenzhen Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiayi Li
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shengjin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijian Guo
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
3
|
Abuawad AK, Bozack AK, Navas-Acien A, Goldsmith J, Liu X, Hall MN, Ilievski V, Lomax-Luu AM, Parvez F, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. The Folic Acid and Creatine Trial: Treatment Effects of Supplementation on Arsenic Methylation Indices and Metabolite Concentrations in Blood in a Bangladeshi Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37015. [PMID: 36976258 PMCID: PMC10045040 DOI: 10.1289/ehp11270] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation. OBJECTIVE Our aim was to investigate the effects of supplementation with folic acid (FA), creatine, or the two combined on the concentrations of As metabolites and the primary methylation index (PMI: MMAs/InAs) and secondary methylation index (SMI: DMAs/MMAs) in blood in Bangladeshi adults having a wide range of folate status. METHODS In a randomized, double-blinded, placebo (PBO)-controlled trial, 622 participants were recruited independent of folate status and assigned to one of five treatment arms: a) PBO (n = 102 ), b) 400 μ g FA/d (400FA; n = 153 ), c) 800 μ g FA/d (800FA; n = 151 ), d) 3 g creatine/d (creatine; n = 101 ), or e) 3 g creatine + 400 μ g of FA / d (creatine + 400 FA ; n = 103 ) for 12 wk. For the following 12 wk, half of the FA participants were randomly switched to the PBO while the other half continued FA supplementation. All participants received As-removal water filters at baseline. Blood As (bAs) metabolites were measured at weeks 0, 1, 12, and 24. RESULTS At baseline, 80.3% (n = 489 ) of participants were folate sufficient (≥ 9 nmol / L in plasma). In all groups, bAs metabolite concentrations decreased, likely due to filter use; for example, in the PBO group, blood concentrations of MMAs (bMMAs) (geometric mean ± geometric standard deviation ) decreased from 3.55 ± 1.89 μ g / L at baseline to 2.73 ± 1.74 at week 1. After 1 wk, the mean within-person increase in SMI for the creatine + 400 FA group was greater than that of the PBO group (p = 0.05 ). The mean percentage decrease in bMMAs between baseline and week 12 was greater for all treatment groups compared with the PBO group [400FA: - 10.4 (95% CI: - 11.9 , - 8.75 ), 800FA: - 9.54 (95% CI: - 11.1 , - 7.97 ), creatine: - 5.85 (95% CI: - 8.59 , - 3.03 ), creatine + 400 FA : - 8.44 (95% CI: - 9.95 , - 6.90 ), PBO: - 2.02 (95% CI: - 4.03 , 0.04)], and the percentage increase in blood DMAs (bDMAs) concentrations for the FA-treated groups significantly exceeded that of PBO [400FA: 12.8 (95% CI: 10.5, 15.2), 800FA: 11.3 (95% CI: 8.95, 13.8), creatine + 400 FA : 7.45 (95% CI: 5.23, 9.71), PBO: - 0.15 (95% CI: - 2.85 , 2.63)]. The mean decrease in PMI and increase in SMI in all FA groups significantly exceeded PBO (p < 0.05 ). Data from week 24 showed evidence of a reversal of treatment effects on As metabolites from week 12 in those who switched from 800FA to PBO, with significant decreases in SMI [- 9.0 % (95% CI: - 3.5 , - 14.8 )] and bDMAs [- 5.9 % (95% CI: - 1.8 , - 10.2 )], whereas PMI and bMMAs concentrations continued to decline [- 7.16 % (95% CI: - 0.48 , - 14.3 ) and - 3.1 % (95% CI: - 0.1 , - 6.2 ), respectively] for those who remained on 800FA supplementation. CONCLUSIONS FA supplementation lowered bMMAs and increased bDMAs in a sample of primarily folate-replete adults, whereas creatine supplementation lowered bMMAs. Evidence of the reversal of treatment effects on As metabolites following FA cessation suggests short-term benefits of supplementation and underscores the importance of long-term interventions, such as FA fortification. https://doi.org/10.1289/EHP11270.
Collapse
Affiliation(s)
- Ahlam K. Abuawad
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Angela M. Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Hafey MJ, Aleksunes LM, Bridges CC, Brouwer KR, Chien HC, Leslie EM, Hu S, Li Y, Shen J, Sparreboom A, Sprowl J, Tweedie D, Lai Y. Transporters and Toxicity: Insights from the International Transporter Consortium Workshop 4. Clin Pharmacol Ther 2022; 112:527-539. [PMID: 35546260 DOI: 10.1002/cpt.2638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022]
Abstract
Over the last decade, significant progress been made in elucidating the role of membrane transporters in altering drug disposition, with important toxicological consequences due to changes in localized concentrations of compounds. The topic of "Transporters and Toxicity" was recently highlighted as a scientific session at the International Transporter Consortium (ITC) Workshop 4 in 2021. The current white paper is not intended to be an extensive review on the topic of transporters and toxicity but an opportunity to highlight aspects of the role of transporters in various toxicities with clinically relevant implications as covered during the session. This includes a review of the role of solute carrier transporters in anticancer drug-induced organ injury, transporters as key players in organ barrier function, and the role of transporters in metal/metalloid toxicity.
Collapse
Affiliation(s)
- Michael J Hafey
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | | | - Huan-Chieh Chien
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California, USA
| | - Elaine M Leslie
- Departments of Physiology and Lab Med and Path, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jinshan Shen
- Relay Therapeutics, Cambridge, Massachusetts, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| |
Collapse
|
5
|
Zhou JR, Kaur G, Ma Y, Arutyunov D, Lu X, Le XC, Leslie EM. Biliary excretion of arsenic by human HepaRG cells is stimulated by selenide and mediated by the multidrug resistance protein 2 (MRP2/ABCC2). Biochem Pharmacol 2021; 193:114799. [PMID: 34678219 DOI: 10.1016/j.bcp.2021.114799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated ∼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.
Collapse
Affiliation(s)
- Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Yingze Ma
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Denis Arutyunov
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada.
| |
Collapse
|
6
|
Kaur G, Javed W, Ponomarenko O, Shekh K, Swanlund DP, Zhou JR, Summers KL, Casini A, Wenzel MN, Casey JR, Cordat E, Pickering IJ, George GN, Leslie EM. Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells. Biochem Pharmacol 2020; 180:114141. [PMID: 32652143 DOI: 10.1016/j.bcp.2020.114141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
Over 200 million people worldwide are exposed to the human carcinogen, arsenic, in contaminated drinking water. In laboratory animals, arsenic and the essential trace element, selenium, can undergo mutual detoxification through the formation of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-, which undergoes biliary and fecal elimination. [(GS)2AsSe]-, formed in animal red blood cells (RBCs), sequesters arsenic and selenium, and slows the distribution of both compounds to peripheral tissues susceptible to toxic effects. In human RBCs, the influence of arsenic on selenium accumulation, and vice versa, is largely unknown. The study aims were to characterize arsenite (AsIII) and selenite (SeIV) uptake by human RBCs, to determine if SeIV and AsIII increase the respective accumulation of the other in human RBCs, and ultimately to determine if this occurs through the formation and sequestration of [(GS)2AsSe]-. 75SeIV accumulation was temperature and Cl--dependent, inhibited by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS) (IC50 1 ± 0.2 µM), and approached saturation at 30 µM, suggesting uptake is mediated by the erythrocyte anion-exchanger 1 (AE1 or Band 3, gene SLC4A1). HEK293 cells overexpressing AE1 showed concentration-dependent 75SeIV uptake. 73AsIII uptake by human RBCs was temperature-dependent, partly reduced by aquaglyceroporin 3 inhibitors, and not saturated. AsIII increased 75SeIV accumulation (in the presence of albumin) and SeIV increased 73AsIII accumulation in human RBCs. Near-edge X-ray absorption spectroscopy revealed the formation of [(GS)2AsSe]- in human RBCs exposed to both AsIII and SeIV. The sequestration of [(GS)2AsSe]- in human RBCs potentially slows arsenic distribution to susceptible tissues and could reduce arsenic-induced disease.
Collapse
Affiliation(s)
- Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Warda Javed
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Olena Ponomarenko
- Department of Geological Sciences, University of Saskatchewan, Canada
| | - Kamran Shekh
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Diane P Swanlund
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada
| | - Kelly L Summers
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Angela Casini
- School of Chemistry, Cardiff University, UK; Department of Chemistry, Technical University of Munich, Germany
| | | | - Joseph R Casey
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada
| | - Emmanuelle Cordat
- Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Canada; Department of Physiology, University of Alberta, Canada.
| |
Collapse
|
7
|
Kaur G, Ponomarenko O, Zhou JR, Swanlund DP, Summers KL, Dolgova NV, Antipova O, Pickering IJ, George GN, Leslie EM. Studies of selenium and arsenic mutual protection in human HepG2 cells. Chem Biol Interact 2020; 327:109162. [PMID: 32524993 DOI: 10.1016/j.cbi.2020.109162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Hundreds of millions of people worldwide are exposed to unacceptable levels of carcinogenic inorganic arsenic. Animal models have shown that selenium and arsenic are mutually protective through the formation and elimination of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-. Consistent with this, human selenium deficiency in arsenic-endemic regions is associated with arsenic-induced disease, leading to the initiation of human selenium supplementation trials. In contrast to the protective effect observed in vivo, in vitro studies have suggested that selenite increases arsenite cellular retention and toxicity. This difference might be explained by the rapid conversion of selenite to selenide in vivo. In the current study, selenite did not protect the human hepatoma (HepG2) cell line against the toxicity of arsenite at equimolar concentrations, however selenide increased the IC50 by 2.3-fold. Cytotoxicity assays of arsenite + selenite and arsenite + selenide at different molar ratios revealed higher overall mutual antagonism of arsenite + selenide toxicity than arsenite + selenite. Despite this protective effect, in comparison to 75Se-selenite, HepG2 cells in suspension were at least 3-fold more efficient at accumulating selenium from reduced 75Se-selenide, and its accumulation was further increased by arsenite. X-ray fluorescence imaging of HepG2 cells also showed that arsenic accumulation, in the presence of selenide, was higher than in the presence of selenite. These results are consistent with a greater intracellular availability of selenide relative to selenite for protection against arsenite, and the formation and retention of a less toxic product, possibly [(GS)2AsSe]-.
Collapse
Affiliation(s)
- Gurnit Kaur
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Olena Ponomarenko
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet R Zhou
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Diane P Swanlund
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly L Summers
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natalia V Dolgova
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elaine M Leslie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Li Z, Xu Y, Huang Z, Wei Y, Hou J, Long T, Wang F, Hu H, Duan Y, Guo H, Zhang X, Chen X, Yuan H, Wu T, Shen M, He M. Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113325. [PMID: 31614327 DOI: 10.1016/j.envpol.2019.113325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 05/18/2023]
Abstract
Associations between single metal and fasting blood glucose (FBG) levels have been reported in previous studies. However, the association between multi-metals exposure and FBG level are little known. To assess the joints of arsenic (As), nickel (Ni), cadmium (Cd), selenium (Se), and zinc (Zn) co-exposure on FBG levels, Bayesian kernel machine regression (BKMR) statistical method was used to estimate the potential joint associations between As, Ni, Cd, Se, and Zn co-exposure and FBG levels among 1478 community-based Chinese adults from two counties, Shimen (n = 696) and Huayuan (n = 782), with different exposure profiles in Hunan province of China. The metals levels were measured in spot urine (As, Ni, and Cd) and plasma (Se and Zn) using inductively coupled plasma-mass spectrometry, respectively. The exposure levels of all the five metals were significantly higher in Shimen area (median: As = 57.76 μg/L, Cd = 2.75 μg/L, Ni = 2.73 μg/L, Se = 112.67 μg/L, Zn = 905.68 μg/L) than those in Huayuan area (As = 41.14 μg/L, Cd = 2.22 μg/L, Ni = 1.88 μg/L, Se = 65.59 μg/L, Zn = 819.18 μg/L). The BKMR analyses showed a significantly positive over-all effect of the five metals on FBG levels when metals concentrations were all above the 50th percentile while a statistically negative over-all effect when metals concentrations were all under the 50th percentile in Shimen area. However, a totally opposite over-all effect of the mixture of the five metals on FBG levels was found in Huayuan area. BKMR also revealed a non-linear exposure-effect of Zn on FBG levels in Huayuan area. In addition, interaction effects of As and Se on FBG level were observed. The relationship between single or combined metals exposure and FBG was different against different exposure profiles. Potential interaction effects of As and Se on FBG levels may exist.
Collapse
Affiliation(s)
- Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Hou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hong Yuan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Su CT, Hsieh RL, Chung CJ, Huang PT, Lin YC, Ao PL, Shiue HS, Chen WJ, Huang SR, Lin MI, Mu SC, Hsueh YM. Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. ENVIRONMENTAL RESEARCH 2019; 171:52-59. [PMID: 30654249 DOI: 10.1016/j.envres.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Inefficient arsenic methylation capacity has been associated with developmental delay in preschool children. Selenium has antioxidant and anti-inflammatory properties that protect experimental animals from chemically induced neurotoxicity. The present study was designed to explore whether plasma selenium levels affects arsenic methylation capacity related to developmental delay in preschool children. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 178 children with a developmental delay and 88 children without a delay were recruited. High-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry were used to determine urinary arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV). Plasma selenium levels were measured by inductively coupled plasma mass spectrometry. As results, plasma selenium concentration was significantly inversely associated with the odds ratio (OR) of developmental delay. Plasma selenium concentration was positively associated with arsenic methylation capacity [percentage of inorganic arsenic and percentage of MMAV (MMAV%) decreased, and percentage of DMAV (DMAV%) increased]. High plasma selenium concentration and high DMA% significantly and additively interacted to decrease the OR of developmental delay; the OR and 95% confidence interval were 0.40 (0.18-0.90). This is the first study to show a combined dose-response effect of plasma selenium concentration and that efficient arsenic methylation capacity decreased the OR of developmental delay in preschool children.
Collapse
Affiliation(s)
- Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Pai-Tsang Huang
- Department of Occupational Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shiau-Rung Huang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Lynch VJ, Oglesbee D, Graziano JH, Kibriya MG, Gamble MV, Ahsan H. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet 2019; 15:e1007984. [PMID: 30893314 PMCID: PMC6443193 DOI: 10.1371/journal.pgen.1007984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 04/01/2019] [Accepted: 01/23/2019] [Indexed: 12/02/2022] Open
Abstract
Inorganic arsenic (iAs) is a carcinogen, and exposure to iAs via food and water is a global public health problem. iAs-contaminated drinking water alone affects >100 million people worldwide, including ~50 million in Bangladesh. Once absorbed into the blood stream, most iAs is converted to mono-methylated (MMA) and then di-methylated (DMA) forms, facilitating excretion in urine. Arsenic metabolism efficiency varies among individuals, in part due to genetic variation near AS3MT (arsenite methyltransferase; 10q24.32). To identify additional arsenic metabolism loci, we measured protein-coding variants across the human exome for 1,660 Bangladeshi individuals participating in the Health Effects of Arsenic Longitudinal Study (HEALS). Among the 19,992 coding variants analyzed exome-wide, the minor allele (A) of rs61735836 (p.Val101Met) in exon 3 of FTCD (formiminotransferase cyclodeaminase) was associated with increased urinary iAs% (P = 8x10-13), increased MMA% (P = 2x10-16) and decreased DMA% (P = 6x10-23). Among 2,401 individuals with arsenic-induced skin lesions (an indicator of arsenic toxicity and cancer risk) and 2,472 controls, carrying the low-efficiency A allele (frequency = 7%) was associated with increased skin lesion risk (odds ratio = 1.35; P = 1x10-5). rs61735836 is in weak linkage disequilibrium with all nearby variants. The high-efficiency/major allele (G/Valine) is human-specific and eliminates a start codon at the first 5´-proximal Kozak sequence in FTCD, suggesting selection against an alternative translation start site. FTCD is critical for catabolism of histidine, a process that generates one-carbon units that can enter the one-carbon/folate cycle, which provides methyl groups for arsenic metabolism. In our study population, FTCD and AS3MT SNPs together explain ~10% of the variation in DMA% and support a causal effect of arsenic metabolism efficiency on arsenic toxicity (i.e., skin lesions). In summary, this work identifies a coding variant in FTCD associated with arsenic metabolism efficiency, providing new evidence supporting the established link between one-carbon/folate metabolism and arsenic toxicity.
Collapse
Affiliation(s)
- Brandon L. Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Samantha Dean
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md. Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Vincent J. Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
| | - Mary V. Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, IL, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL United States of America
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
- Institute for Population and Precision Health, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
11
|
Sarpong-Kumankomah S, Gibson MA, Gailer J. Organ damage by toxic metals is critically determined by the bloodstream. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Bjørklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R. Effects of arsenic toxicity beyond epigenetic modifications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:955-965. [PMID: 28484874 DOI: 10.1007/s10653-017-9967-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
Worldwide chronic arsenic (As) poisoning by arsenic-contaminated groundwater is one of the most threatening public health problems. Chronic inorganic As (inAs) exposure has been associated with various forms of cancers and numerous other pathological effects in humans, collectively known as arsenicosis. Over the past decade, evidence indicated that As-induced epigenetic modifications have a role in the adverse effects on human health. The main objective of this article is to review the evidence on epigenetic modifications induced by arsenicals. The epigenetic components play a crucial role in the regulation of gene expression, at both transcriptional and posttranscriptional levels. We synthesized the large body of existing research on arsenic exposure and epigenetic mechanisms of health outcomes with an emphasis on recent publications. Changes in patterns of DNA methylation, histone posttranslational modifications, and microRNAs have been repeatedly observed after inAs exposure in laboratory studies and in studies of human populations. Such alterations have the potential to disturb cellular homeostasis, resulting in the modulation of key pathways in the As-induced carcinogenesis. The present article reviews recent data on As-induced epigenetic effects and concludes that it is time for heightened awareness of pathogenic arsenic exposure, particularly for pregnant women and children, given the potential for a long-lasting disturbed cellular homeostasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Riaz Uddin
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
13
|
Tocopherol and selenite modulate the transplacental effects induced by sodium arsenite in hamsters. Reprod Toxicol 2017; 74:204-211. [DOI: 10.1016/j.reprotox.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
14
|
Hsueh YM, Su CT, Shiue HS, Chen WJ, Pu YS, Lin YC, Tsai CS, Huang CY. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem Toxicol 2017. [PMID: 28634111 DOI: 10.1016/j.fct.2017.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Shiuan Tsai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Urology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu City, Taiwan.
| |
Collapse
|
15
|
Yang D, Lv Z, Zhang H, Liu B, Jiang H, Tan X, Lu J, Baiyun R, Zhang Z. Activation of the Nrf2 Signaling Pathway Involving KLF9 Plays a Critical Role in Allicin Resisting Against Arsenic Trioxide-Induced Hepatotoxicity in Rats. Biol Trace Elem Res 2017; 176:192-200. [PMID: 27561292 DOI: 10.1007/s12011-016-0821-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/12/2016] [Indexed: 01/03/2023]
Abstract
Arsenic trioxide (As2O3) is both the most prevalent, naturally occurring inorganic arsenical threatening human health and an efficient therapeutic for acute promyelocytic leukemia. Regretfully, As2O3-treated cancer patients often suffer from hepatotoxicity. While effective antioxidant and anticarcinogenic actions of allicin have previously been demonstrated, studies indicating how allicin affects As2O3-induced hepatotoxicity and arsenic accumulation are lacking. Our study, for the first time, elaborates potential details of the hepatoprotective mechanisms of allicin against As2O3-induced liver injury. Wistar rats were administrated allicin (30 mg/kg) 1 h before As2O3 (3 mg/kg) by daily gavage for 2 weeks. Our results indicate that allicin ameliorated As2O3-induced liver dysfunction, oxidative stress, and arsenic accumulation in the liver. Meanwhile, allicin decreased NF-κB level and upregulated expression of proteins reduced by As2O3 including nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1, nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1, and Krüppel-like factor 9 (KLF9). In addition, allicin promoted B cell lymphoma-extra large expression and suppressed B cell lymphoma-2-associated X protein levels regulated by As2O3. However, neither allicin nor As2O3 affected cytochrome P450 2E1 mRNA expression. In conclusion, allicin attenuated As2O3-induced hepatotoxicity by activating the Nrf2 signaling pathway involving KLF9 to inhibit oxidative stress and apoptosis. Our findings elucidate a detailed mechanism by which allicin provides protection against As2O3-induced liver injury and support its potential role as an adjunctive therapy for patients suffering from chronic arsenic exposure.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Haili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Biying Liu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xiao Tan
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Jingjing Lu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Ruiqi Baiyun
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
16
|
Poór M, Németi B, Gregus Z. Effects of phosphate binders on the gastrointestinal absorption of arsenate and of an SGLT2 inhibitor drug on the urinary excretion of arsenite in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:179-187. [PMID: 28068585 DOI: 10.1016/j.etap.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/29/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Arsenate (AsV) and arsenite (AsIII) are typical sources of acute and chronic arsenic poisoning. Therefore, reducing inner exposure to these arsenicals is a rational objective. Because AsV mimics phosphate, phosphate binder drugs may decrease the intestinal AsV absorption. Indeed, lanthanum and aluminium salts and sevelamer removed AsV from solution in vitro, especially at acidic pH. In mice gavaged with AsV, lanthanum chloride, lanthanum carbonate and aluminium hydroxide given orally also lowered the urinary excretion and tissue levels of AsV and its metabolites, indicating that they decreased the gastrointestinal AsV absorption. As some glucose transporters may carry AsIII, the effect of the SGLT2 inhibitor dapagliflozin was investigated in AsIII-injected mice. While producing extreme glucosuria, dapagliflozin barely affected the urinary excretion and tissue concentrations of AsIII and its metabolites. Thus, phosphate binders (especially lanthanum compounds) can reduce the gastrointestinal absorption of AsV; however, SGLT2 inhibition cannot diminish the renal reabsorption of AsIII.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary
| | - Balázs Németi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary
| | - Zoltán Gregus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary.
| |
Collapse
|
17
|
Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL. Reproductive and Developmental Toxicity of Arsenic in Rodents: A Review. Int J Toxicol 2016; 25:319-31. [PMID: 16940004 DOI: 10.1080/10915810600840776] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal injection in early gestation. Oral gavage of inorganic arsenic at maternally toxic doses caused reduced fetal body weight and increased resorptions. Recently, arsenic reproductive and developmental toxicity has been studied in situations more similar to human exposures and using broader endpoints, such as behavioral changes and gene expression. For the general population, exposure to arsenic is mostly oral, particularly via drinking water, repeated and prolonged over time. In mice and rats, methylated or inorganic arsenic via drinking water or by repeated oral gavage induced male and female reproductive and developmental toxicities. Furthermore, at nonmaternally toxic levels, inorganic arsenic given to pregnant dams via drinking water affected fetal brain development and postnatal behaviors. However, arsenic given by repeated oral gavage to pregnant mice and rats was not morphologically teratogenic. In this review of arsenic reproductive and developmental toxicity in rats and mice, the authors summarize recent in vivo studies and discuss possible underlying mechanisms. The influences of folate, selenium, zinc, and arsenic methylation on arsenic reproductive and developmental toxicity are also discussed.
Collapse
Affiliation(s)
- Amy Wang
- Department of Biomedical Sciences and Pathobiology, Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| | | | | | | | | |
Collapse
|
18
|
Sumedha NC, Miltonprabu S. Retracted: Cardiac mitochondrial oxidative stress and dysfunction induced by arsenic and
its amelioration by diallyl trisulphide. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00097h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Naorem Chanu Sumedha
- Department of Zoology, Annamalai University, Annamalai Nagar-608002, Tamilnadu, India. Fax: +91 04144-238080; Tel: +91 04144-238282, +91 9842325222
| | - Selvaraj Miltonprabu
- Department of Zoology, Annamalai University, Annamalai Nagar-608002, Tamilnadu, India. Fax: +91 04144-238080; Tel: +91 04144-238282, +91 9842325222
| |
Collapse
|
19
|
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. ENVIRONMENT INTERNATIONAL 2014; 69:148-58. [PMID: 24853282 DOI: 10.1016/j.envint.2014.04.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and selenium (Se) are unusual metalloids as they both induce and cure cancer. They both cause carcinogenesis, pathology, cytotoxicity, and genotoxicity in humans, with reactive oxygen species playing an important role. While As induces adverse effects by decreasing DNA methylation and affecting protein 53 expression, Se induces adverse effects by modifying thioredoxin reductase. However, they can react with glutathione and S-adenosylmethionine by forming an As-Se complex, which can be secreted extracellularly. We hypothesize that there are two types of interactions between As and Se. At low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase. This review is to summarize their toxicity mechanisms and the interaction between As and Se toxicity, and to provide suggestions for future investigations.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Li-Ping Pu
- Suzhou Health College, Suzhou, Jiangsu 215000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Zhang W, Liu Y, Ge M, Jing J, Chen Y, Jiang H, Yu H, Li N, Zhang Z. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats. Nutr Res Pract 2014; 8:220-6. [PMID: 24741408 PMCID: PMC3988513 DOI: 10.4162/nrp.2014.8.2.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUD/OBEJECTIVES Arsenic, which causes human carcinogenicity, is ubiquitous in the environment. This study was designed to evaluate modulation of arsenic induced cancer by resveratrol, a phytoalexin found in vegetal dietary sources that has antioxidant and chemopreventive properties, in arsenic trioxide (As2O3)-induced Male Wistar rats. MATERIALS/METHODS Adult rats received 3 mg/kg As2O3 (intravenous injection, iv.) on alternate days for 4 days. Resveratrol (8 mg/kg) was administered (iv.) 1 h before As2O3 treatment. The plasma and homogenization enzymes associated with oxidative stress of rat kidneys were measured, the kidneys were examined histologically and trace element contents were assessed. RESULTS Rats treated with As2O3 had significantly higher oxidative stress and kidney arsenic accumulation; however, pretreatment with resveratrol reversed these changes. In addition, prior to treatment with resveratrol resulted in lower blood urea nitrogen, creatinine and insignificant renal tubular epithelial cell necrosis. Furthermore, the presence of resveratrol preserved the selenium content (0.805 ± 0.059 µg/g) of kidneys in rats treated with As2O3. However, resveratrol had no effect on zinc level in the kidney relative to As2O3-treated groups. CONCLUSIONS Our data show that supplementation with resveratrol alleviated nephrotoxicity by improving antioxidant capacity and arsenic efflux. These findings suggest that resveratrol has the potential to protect against kidney damage in populations exposed to arsenic.
Collapse
Affiliation(s)
- Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiang Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongxiang Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
The Protective Role of Resveratrol against Arsenic Trioxide-Induced Cardiotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:407839. [PMID: 24327821 PMCID: PMC3847954 DOI: 10.1155/2013/407839] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022]
Abstract
Arsenic trioxide (As2O3) shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Unfortunately, limiting the application of this effective agent to APL patients is severe cardiotoxicity. Resveratrol, the natural food-derived polyphenolic compound, is well known for its antioxidant properties and protects the cardiovascular system. But the potential role of resveratrol against As2O3 in heart via nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) is unclear. The present study evaluated the effects of pretreatment with resveratrol and As2O3 on oxidative stress and cardiac dysfunction in rat. In the present study, resveratrol decreased As2O3-induced reactive oxygen species generation, oxidative DNA damage, and pathological alterations. In addition, cardiac dysfunction parameters, intracellular calcium and arsenic accumulation, glutathione redox ratio, and cAMP deficiency levels were observed in As2O3-treated rats; these changes were attenuated by resveratrol. Furthermore, resveratrol significantly prohibited the downregulation of both Nrf2 and HO-1 gene expressions that were downregulated by As2O3, whereas resveratrol did not alter As2O3-induced nitric oxide formation. Thus, the protective role of resveratrol against As2O3-induced cardiotoxicity is implemented by the maintenance of redox homeostasis (Nrf2-HO-1 pathway) and facilitating arsenic efflux. Our findings suggest coadministration with resveratrol, and As2O3 might provide a novel therapeutic strategy for APL.
Collapse
|
22
|
Zhang W, Yao C, Ge M, Xue J, Ma D, Liu Y, Liu J, Zhang Z. Attenuation of arsenic retention by resveratrol in lung of arsenic trioxide-exposed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:35-39. [PMID: 23545367 DOI: 10.1016/j.etap.2013.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
Arsenic trioxide (As2O3) is an important environmental toxin. In this study, the effect of resveratrol on As2O3-induced lung injury in rats is evaluated. The results showed that pre-treatment with resveratrol protected As2O3-induced lung injury by the maintenance of glutathione redox system and decrease in arsenic retention. These suggest supplement with resveratrol may alleviate lung injury in the individuals with chronic exposure to arsenic.
Collapse
Affiliation(s)
- Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Németi B, Gregus Z. Reduction of Dimethylarsinic Acid to the Highly Toxic Dimethylarsinous Acid by Rats and Rat Liver Cytosol. Chem Res Toxicol 2013; 26:432-43. [DOI: 10.1021/tx300505v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Balázs Németi
- Department
of Pharmacology and Pharmacotherapy, Toxicology
Section, University of Pécs, Medical
School, Pécs, Hungary
| | - Zoltán Gregus
- Department
of Pharmacology and Pharmacotherapy, Toxicology
Section, University of Pécs, Medical
School, Pécs, Hungary
| |
Collapse
|
24
|
Zhang W, Xue J, Ge M, Yu M, Liu L, Zhang Z. Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide. Food Chem Toxicol 2012; 51:87-92. [PMID: 23023136 DOI: 10.1016/j.fct.2012.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/07/2012] [Accepted: 09/19/2012] [Indexed: 01/11/2023]
Abstract
Arsenic trioxide (As(2)O(3)) is an environmental pollutant and potent toxicant to humans. However, it also shows substantial anti-cancer activity in individuals with acute promyelocytic leukemia (APL). Unfortunately, As(2)O(3)-treated leukemia patients suffer hepatotoxicity. Resveratrol has been demonstrated to have efficient antioxidant and antineoplastic activities. The study that how As(2)O(3) in combination with resveratrol affects hepatotoxicity and arsenic accumulation in the liver is lacking, and the present study tackles this question. Wistar rats were injected with 3mg/kg As(2)O(3) on alternate days; resveratrol (8mg/kg) was administered 1h before As(2)O(3). Rats were killed on the 8th day to determine histological liver damage, the antioxidant enzymes in serum, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), and arsenic accumulation in the liver. In the resveratrol+As(2)O(3) group, activities of superoxide dismutase, catalase in serum and GSH/GSSG were significantly increased, histopathological effects were reduced, and arsenic accumulation markedly decreased in the liver, compared with the As(2)O(3)-treated group. Thus, resveratrol attenuated As(2)O(3)-induced hepatotoxicity by decreasing oxidative stress and arsenic accumulation in the liver. These data suggest that use of resveratrol as post-remission therapy of APL and adjunctive therapy in patients with chronic exposure to arsenic may decrease arsenic hepatotoxicity.
Collapse
Affiliation(s)
- Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
25
|
Canet MJ, Hardwick RN, Lake AD, Kopplin MJ, Scheffer GL, Klimecki WT, Gandolfi AJ, Cherrington NJ. Altered arsenic disposition in experimental nonalcoholic fatty liver disease. Drug Metab Dispos 2012; 40:1817-24. [PMID: 22699396 DOI: 10.1124/dmd.112.046177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is represented by a spectrum of liver pathologies ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Liver damage sustained in the progressive stages of NAFLD may alter the ability of the liver to properly metabolize and eliminate xenobiotics. The purpose of the current study was to determine whether NAFLD alters the disposition of the environmental toxicant arsenic. C57BL/6 mice were fed either a high-fat or a methionine-choline-deficient diet to model simple steatosis and NASH, respectively. At the conclusion of the dietary regimen, all mice were given a single oral dose of either sodium arsenate or arsenic trioxide. Mice with NASH excreted significantly higher levels of total arsenic in urine (24 h) compared with controls. Total arsenic in the liver and kidneys of NASH mice was not altered; however, NASH liver retained significantly higher levels of the monomethyl arsenic metabolite, whereas dimethyl arsenic was retained significantly less in the kidneys of NASH mice. NASH mice had significantly higher levels of the more toxic trivalent form in their urine, whereas the pentavalent form was preferentially retained in the liver of NASH mice. Moreover, hepatic protein expression of the arsenic biotransformation enzyme arsenic (3+ oxidation state) methyltransferase was not altered in NASH animals, whereas protein expression of the membrane transporter multidrug resistance-associated protein 1 was increased, implicating cellular transport rather than biotransformation as a possible mechanism. These results suggest that NASH alters the disposition of arsenical species, which may have significant implications on the overall toxicity associated with arsenic in NASH.
Collapse
Affiliation(s)
- Mark J Canet
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, Sultana R, Sultana R, Islam T, Levy D, Mey JL, van Geen A, Khan K, Kline J, Ahsan H, Graziano JH. Arsenic exposure and motor function among children in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1665-70. [PMID: 21742576 PMCID: PMC3226503 DOI: 10.1289/ehp.1103548] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/08/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Several reports indicate that drinking water arsenic (WAs) and manganese (WMn) are associated with children's intellectual function. Very little is known, however, about possible associations with other neurologic outcomes such as motor function. METHODS We investigated the associations of WAs and WMn with motor function in 304 children in Bangladesh, 8-11 years of age. We measured As and Mn concentrations in drinking water, blood, urine, and toenails. We assessed motor function with the Bruininks-Oseretsky test, version 2, in four subscales-fine manual control (FMC), manual coordination (MC), body coordination (BC), and strength and agility-which can be summarized with a total motor composite score (TMC). RESULTS Log-transformed blood As was associated with decreases in TMC [β = -3.63; 95% confidence interval (CI): -6.72, -0.54; p < 0.01], FMC (β = -1.68; 95% CI: -3.19, -0.18; p < 0.05), and BC (β = -1.61; 95% CI: -2.72, -0.51; p < 0.01), with adjustment for sex, school attendance, head circumference, mother's intelligence, plasma ferritin, and blood Mn, lead, and selenium. Other measures of As exposure (WAs, urinary As, and toenail As) also were inversely associated with motor function scores, particularly TMC and BC. Square-transformed blood selenium was positively associated with TMC (β = 3.54; 95% CI: 1.10, 6.0; p < 0.01), FMC (β = 1.55; 95% CI: 0.40, 2.70; p < 0.005), and MC (β = 1.57; 95% CI: 0.60, 2.75; p < 0.005) in the unadjusted models. Mn exposure was not significantly associated with motor function. CONCLUSION Our research demonstrates an adverse association of As exposure and a protective association of Se on motor function in children.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu H, Krishnamohan M, Lam PKS, Ng JC. Urinary arsenic speciation profiles in mice subchronically exposed to low concentrations of sodium arsenate in drinking water. Kaohsiung J Med Sci 2011; 27:417-23. [DOI: 10.1016/j.kjms.2011.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/18/2010] [Indexed: 10/17/2022] Open
|
28
|
Pilsner JR, Hall MN, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV. Associations of plasma selenium with arsenic and genomic methylation of leukocyte DNA in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:113-8. [PMID: 21205583 PMCID: PMC3018489 DOI: 10.1289/ehp.1001937] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 09/15/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Global hypomethylation of DNA is thought to constitute an early event in some cancers and occurs in response to arsenic (As) exposure and/or selenium (Se) deficiency in both in vitro and animal models. In addition, antagonism between As and Se, whereby each reduces toxicity of the other, has been well documented in animal models. Se status may therefore modify the health effects of As in As-exposed populations. OBJECTIVE The primary objectives of our study were to test the hypothesis that Se deficiency is associated with genomic hypomethylation of lymphocyte DNA and to determine whether Se levels are associated with blood As (bAs) and urinary As (uAs) concentrations in adults exposed to As-contaminated groundwater in Bangladesh. A secondary objective was to explore the relationships between plasma Se and As metabolites. DESIGN We assessed plasma Se concentrations, As metabolite profiles in blood and urine, and genomic methylation of leukocyte DNA in a cross-sectional study of 287 adults. RESULTS After adjustment for potential confounders, we observed an inverse association between Se (micrograms per liter) and genomic DNA methylation (disintegrations per minute per 1-µg/L increase in Se): β = 345.6; 95% confidence interval (CI), 59-632. Se concentrations were inversely associated with total As concentrations (micrograms per liter) in blood (β = -0.04; 95% CI, -0.08 to -0.01) and urine (β = -20.1; 95% CI, -29.3 to -10.9). Se levels were negatively associated with the percentage of monomethylarsinic acid (β = -0.59; 95% CI, -1.04 to -0.13) and positively associated with the percentage of dimethylarsinic acid (β = 0.53; 95% CI, 0.04 to 1.01) in blood. CONCLUSIONS Our results suggest that Se is inversely associated with genomic DNA methylation. The underlying mechanisms and implications of this observation are unclear and warrant further investigation. In addition, Se may influence bAs and uAs concentrations, as well as relative proportions of As metabolites in blood.
Collapse
Affiliation(s)
| | | | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Habibul Ahsan
- Department of Health Studies
- Department of Medicine and
- Human Genetics and Cancer Research Center, University of Chicago, Chicago, Illinois, USA
| | | | | | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Joseph H. Graziano
- Department of Environmental Health Sciences
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | |
Collapse
|
29
|
Hughes MF, Edwards BC, Herbin-Davis KM, Saunders J, Styblo M, Thomas DJ. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice. Toxicol Appl Pharmacol 2010; 249:217-23. [PMID: 20887743 DOI: 10.1016/j.taap.2010.09.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022]
Abstract
Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes formation of mono-, di-, and tri-methylated metabolites of inorganic arsenic. Distribution and retention of arsenic were compared in adult female As3mt knockout mice and wild-type C57BL/6 mice using a regimen in which mice received daily oral doses of 0.5mg of arsenic as arsenate per kilogram of body weight. Regardless of genotype, arsenic body burdens attained steady state after 10 daily doses. At steady state, arsenic body burdens in As3mt knockout mice were 16 to 20 times greater than in wild-type mice. During the post dosing clearance period, arsenic body burdens declined in As3mt knockout mice to ~35% and in wild-type mice to ~10% of steady-state levels. Urinary concentration of arsenic was significantly lower in As3mt knockout mice than in wild-type mice. At steady state, As3mt knockout mice had significantly higher fractions of the body burden of arsenic in liver, kidney, and urinary bladder than did wild-type mice. These organs and lung had significantly higher arsenic concentrations than did corresponding organs from wild-type mice. Inorganic arsenic was the predominant species in tissues of As3mt knockout mice; tissues from wild-type mice contained mixtures of inorganic arsenic and its methylated metabolites. Diminished capacity for arsenic methylation in As3mt knockout mice prolongs retention of inorganic arsenic in tissues and affects whole body clearance of arsenic. Altered retention and tissue tropism of arsenic in As3mt knockout mice could affect the toxic or carcinogenic effects associated with exposure to this metalloid or its methylated metabolites.
Collapse
Affiliation(s)
- Michael F Hughes
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | |
Collapse
|
30
|
High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: A critical review. Anal Chim Acta 2010; 671:9-26. [DOI: 10.1016/j.aca.2010.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/06/2010] [Accepted: 05/08/2010] [Indexed: 11/21/2022]
|
31
|
Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, Le XC, Creed JT, Maeda N, Hughes MF, Thomas DJ. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 2010; 22:1713-20. [PMID: 19691357 DOI: 10.1021/tx900179r] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [(73)As]-arsenate. Mice were radioassayed for up to 96 h after dosing; tissues were collected at 2 and 24 h after dosing. At 2 and 24 h after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 h after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [(73)As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 h after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 h, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in the metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals.
Collapse
Affiliation(s)
- Zuzana Drobna
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jahromi EZ, Gailer J. Probing bioinorganic chemistry processes in the bloodstream to gain new insights into the origin of human diseases. Dalton Trans 2009:329-36. [PMID: 20023963 DOI: 10.1039/b912941n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the context of elucidating the origin of human diseases, past poisoning epidemics have revealed that exceedingly small doses of inorganic environmental pollutants can result in dramatic effects on human health. Today, numerous organic and inorganic pollutants have been quantified in human blood, but the interpretation of these concentrations remains--from a public health point of view--problematic. Conversely, the biomolecular origin for several grievous human diseases is essentially unknown. Taken together and viewed in the context of recent bioinorganic research findings, the established human blood concentrations of toxic metals and metalloids may be functionally connected with the etiology of specific human diseases. To unravel the underlying biomolecular mechanisms, and taking into account the basic flow of dietary matter through mammalian organisms, a better understanding of the bioinorganic chemistry of toxic metals and metalloid compounds in the bloodstream is emerging as a promising avenue for future research. To this end, the concerted application of modern proteomic methodologies, synchrotron-based X-ray absorption spectroscopy and established spectroscopic techniques will contribute to better define the role that blood-based bioinorganic chemistry-related processes play in the origin of human diseases. The application of this and other modern proteomic methodologies could contribute to a better understanding of the role that blood-based bioinorganic chemistry-related processes play in the origin and etiology of human diseases.
Collapse
Affiliation(s)
- Elham Zeini Jahromi
- Department of Chemistry and BSc Environmental Science Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
33
|
Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:254-60. [PMID: 19270796 PMCID: PMC2649228 DOI: 10.1289/ehp.11872] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/25/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arsenic methylation relies on folate-dependent one-carbon metabolism and facilitates urinary As elimination. Clinical manifestations of As toxicity vary considerably among individuals and populations, and poor methylation capacity is thought to confer greater susceptibility. OBJECTIVE After determining that folate deficiency, hyperhomocysteinemia, and low urinary creatinine are associated with reduced As methylation, and that As exposure is associated with increased genomic methylation of leukocyte DNA, we asked whether these factors are associated with As-induced skin lesion risk among Bangladeshi adults. METHODS We conducted a nested case-control study of 274 cases who developed lesions 2 years after recruitment, and 274 controls matched to cases for sex, age, and water As. RESULTS The odds ratios and 95% confidence intervals (CIs) for development of skin lesions for participants who had low folate (< 9 nmol/L), hyperhomocysteinemia (men, > 11.4 micromol/L; women, > 10.4 micromol/L), or hypomethylated leukocyte DNA at recruitment (< median) were 1.8 (95% CI, 1.1-2.9), 1.7 (95% CI, 1.1-2.6), and 1.8 (95% CI, 1.2-2.8), respectively. Compared with the subjects in the first quartile, those in the third and fourth quartiles for urinary creatinine had a 0.4-fold decrease in the odds of skin lesions (p < 0.01). CONCLUSIONS These results suggest that folate deficiency, hyperhomocysteinemia, and low urinary creatinine, each associated with decreased As methylation, are risk factors for As-induced skin lesions. The increased DNA methylation associated with As exposure previously observed, and confirmed among controls in this study, may be an adaptive change because hypomethylation of leukocyte DNA is associated with increased risk for skin lesions.
Collapse
Affiliation(s)
| | | | - Habibul Ahsan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Joseph H. Graziano
- Department of Environmental Health Sciences
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences
- Address correspondence to M.V. Gamble, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 60 Haven Ave., B1, New York, NY 10032 USA. Telephone: (212) 305-7949. Fax: (212) 305-3857. E-mail:
| |
Collapse
|
34
|
Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV. Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 2007; 86:1179-86. [PMID: 17921400 DOI: 10.1093/ajcn/86.4.1179] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Studies in cell culture and animal models indicate that arsenic exposure induces modifications in DNA methylation, including genome-wide DNA hypomethylation. It is not known whether arsenic exposure influences genomic DNA methylation in human populations chronically exposed to arsenic-contaminated drinking water. OBJECTIVE The objective of this study was to determine whether arsenic is associated with genomic hypomethylation of peripheral blood leukocyte (PBL) DNA in Bangladeshi adults who are chronically exposed to arsenic. We also investigated whether arsenic-induced alterations in DNA methylation may be influenced by folate nutritional status. DESIGN PBL DNA methylation and concentrations of plasma folate, plasma arsenic, and urinary arsenic were assessed in 294 adults in Araihazar, Bangladesh. Genomic PBL DNA methylation was measured by using a [(3)H]-methyl incorporation assay. RESULTS Urinary arsenic, plasma arsenic, and plasma folate were positively associated with the methylation of PBL DNA (P = 0.009, 0.03, and 0.03, respectively). Stratification of participants by folate nutritional status [<9 nmol/L (n = 190) or >or=9 nmol/L (n = 104)] showed that the associations between arsenic exposure and methylation of PBL DNA were restricted to persons with folate concentrations >or= 9 nmol/L. CONCLUSIONS Contrary to our a priori hypothesis, arsenic exposure was positively associated with genomic PBL DNA methylation in a dose-dependent manner. This effect is modified by folate, which suggests that arsenic-induced increases in DNA methylation cannot occur in the absence of adequate folate. The underlying mechanisms and physiologic implications of increased genomic DNA methylation are unclear, and they warrant further study.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 60 Haven Avenue, B1, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, Factor-Litvak P, Levy D, Alam S, Islam M, Parvez F, Ahsan H, Graziano JH. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 2007; 86:1202-9. [PMID: 17921403 PMCID: PMC2042963 DOI: 10.1093/ajcn/86.4.1202] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chronic arsenic exposure currently affects >100 million persons worldwide. Methylation of ingested inorganic arsenic (InAs) to monomethylarsonic (MMAs) and dimethylarsinic (DMAs) acids relies on folate-dependent one-carbon metabolism and facilitates urinary arsenic elimination. OBJECTIVE We hypothesized that folic acid supplementation to arsenic-exposed Bangladeshi adults would increase arsenic methylation and thereby lower total blood arsenic. DESIGN In this randomized, double-blind, placebo-controlled trial, we evaluated blood concentrations of total arsenic, InAs, MMAs, and DMAs in 130 participants with low plasma folate (<9 nmol/L) before and after 12 wk of supplementation with folic acid (400 microg/d) or placebo. RESULTS MMAs in blood was reduced by a mean +/- SE of 22.24 +/- 2.86% in the folic acid supplementation group and by 1.24 +/- 3.59% in the placebe group (P < 0.0001). There was no change in DMAs in blood; DMAs is rapidly excreted in urine as evidenced by an increase in urinary DMAs (P = 0.0099). Total blood arsenic was reduced by 13.62% in the folic acid supplementation group and by 2.49% in the placebo group (P = 0.0199). CONCLUSIONS Folic acid supplementation to participants with low plasma concentrations of folate lowered blood arsenic concentrations, primarily by decreasing blood MMAs and increasing urinary DMAs. Therapeutic strategies to facilitate arsenic methylation, particularly in populations with folate deficiency or hyperhomocysteinemia or both, may lower blood arsenic concentrations and thereby contribute to the prevention of arsenic-induced illnesses.
Collapse
Affiliation(s)
- Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Palus J, Lewińska D, Dziubałtowska E, Wasowicz W, Gromadzińska J, Rydzyński K, Stańczyk M, Arkusz J, Trzcinka-Ochocka M, Stepnik M. Genotoxic effects in C57Bl/6J mice chronically exposed to arsenate in drinking water and modulation of the effects by low-selenium diet. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:1843-60. [PMID: 16952904 DOI: 10.1080/15287390600631490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In C57Bl/6J mice chronically exposed to arsenate in drinking water at 50, 200, or 500 microg As/L, genotoxic effects in bone-marrow cells using micronucleus test and in peripheral blood leukocytes using the comet assay were determined after 3, 6 or 12 mo. To assess the modulating role of selenium in development of the effects, the animals were fed a specially prepared low-selenium diet and were supplemented with sodium selenite (200 microg Se/L) in drinking water (supplemented groups) or were without Se supplementation (nonsupplemented groups). Measurements of glutathione peroxidase activity in erythrocytes and plasma as well as selenium concentration in plasma were performed after 3, 6, and 12 mo and showed a marked decrease in values in animals in non-Se supplemented compared to Se-supplemented groups. After 3 mo of arsenic exposure in the Se-supplemented animals the level of DNA fragmentation (without Endo III and Fpg enzymes) did not differ from the control; however, increased oxidative damage of purine and pyrimidine bases was observed. In groups not supplemented with Se, an increase of DNA fragmentation was observed; however, the levels of oxidative DNA damage in these groups did not differ from the control. None of the positive effects observed in the comet assay after 3 mo was related to arsenate concentration. The levels of DNA damage after 6 and 12 mo of exposure to arsenic as well as the frequency of micronuclei after 3, 6, and 12 mo did not differ significantly between exposed and control animals, irrespective of Se supplementation status.
Collapse
Affiliation(s)
- Jadwiga Palus
- Nofer Institute of Occupational Medicine, Łódź, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Manley SA, George GN, Pickering IJ, Glass RS, Prenner EJ, Yamdagni R, Wu Q, Gailer J. The seleno bis(S-glutathionyl) arsinium ion is assembled in erythrocyte lysate. Chem Res Toxicol 2006; 19:601-7. [PMID: 16608173 DOI: 10.1021/tx0503505] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately 75 million people are currently exposed to arsenic concentrations in drinking water, which is associated with the development of internal cancers. One way to ameliorate this undesirable situation is to remove arsenic (arsenite and arsenate) from drinking water. An alternative approach is the development of an inexpensive palliative dietary supplement that promotes the excretion of intestinally absorbed arsenite from the body. To this end, the simultaneous administration of New Zealand white rabbits with arsenite and selenite resulted in the biliary excretion of the seleno-bis (S-glutathionyl) arsinium ion, [(GS)2AsSe]-. This apparent detoxification mechanism has been recently extended to environmentally relevant doses [Gailer, J., Ruprecht, L., Reitmeir, P., Benker, B., and Schramel, P. (2004) Appl. Organometal. Chem. 18, 670-675]. The site of formation of this excretory product in the organism, however, is unknown. To investigate if [(GS)2AsSe]- is formed in rabbit blood, we added arsenite and selenite and analyzed blood aliquots using arsenic and selenium X-ray absorption spectroscopy. The characteristic arsenic and selenium X-ray absorption spectra of [(GS)2AsSe]- were detected within 2 min after addition and comprised 95% of the blood selenium 30 min after addition. To elucidate if erythrocytes are involved in the biosynthesis of [(GS)2AsSe]- in blood, arsenite and 77Se-selenite were added to rabbit erythrocyte lysate and the obtained solution was analyzed by 77Se NMR spectroscopy (273 K). This resulted in a 77Se NMR signal with a chemical shift identical to that of synthetic [(GS)2AsSe]- added to lysate. Combined, these results demonstrate that [(GS)2AsSe]- is rapidly formed in blood and that erythrocytes are an important site for the in vivo formation of this toxicologically important metabolite.
Collapse
Affiliation(s)
- Shawn A Manley
- Department of Chemistry, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Németi B, Csanaky I, Gregus Z. Effect of an inactivator of glyceraldehyde-3-phosphate dehydrogenase, a fortuitous arsenate reductase, on disposition of arsenate in rats. Toxicol Sci 2005; 90:49-60. [PMID: 16322075 DOI: 10.1093/toxsci/kfj058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The environmentally prevalent arsenate (AsV) is reduced in the body to the much more toxic arsenite (AsIII). Recently, we have demonstrated that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the reduction of AsV in the presence of glutathione, yet the role of GAPDH in AsV reduction in vivo is unknown. Therefore, we examined the effect of (S)-alpha-cholorhydrin (ACH), which forms a GAPDH-inhibitory metabolite, on the reduction of AsV in rats. These studies confirmed the in vitro role of GAPDH as an AsV reductase, inasmuch as 3 h after administration of ACH (100 or 200 mg/kg, ip) to rats both the cytosolic GAPDH activity and the AsV-reducing activity dramatically fell in the liver, moderately decreased in the kidneys, and remained unchanged in the muscle. Moreover, the AsV-reducing activity closely correlated with the GAPDH activity in the hepatic cytosols of control and ACH-treated rats. Two confounding effects of ACH (i.e., a slight fall in hepatic glutathione levels and a rise in urinary AsV excretion) prompted us to examine its influence on the disposition of injected AsV (50 micromol/kg, iv) in rats with ligated bile duct as well as in rats with ligated bile duct and renal pedicles. These experiments demonstrated that the hepatic retention of AsV significantly increased, and the combined levels of AsV metabolites (i.e., AsIII plus methylated arsenicals) in the liver decreased in response to ACH; however, ACH failed to delay the disappearance of AsV from the blood of rats with blocked excretory routes. Thus, the GAPDH inactivator ACH inhibits AsV reduction by the liver, but not by the whole body, probably because the impaired hepatic reduction is compensated for by hepatic and extrahepatic AsV-reducing mechanisms spared by ACH. It is most likely that ACH inhibits hepatic AsV reduction predominantly by inactivating GAPDH in the liver; however, a slight ACH-induced glutathione depletion may also contribute. While this study seems to support the conclusion that GAPDH in the liver is involved in AsV reduction in rats, confirmation of the in vivo role of GAPDH as an AsV reductase is desirable.
Collapse
Affiliation(s)
- Balázs Németi
- Department of Pharmacology and Pharmacotherapy, Toxicology Section,University of Pécs, Medical School, Pécs, Hungary
| | | | | |
Collapse
|
39
|
Zakharyan RA, Tsaprailis G, Chowdhury UK, Hernandez A, Aposhian HV. Interactions of Sodium Selenite, Glutathione, Arsenic Species, and Omega Class Human Glutathione Transferase. Chem Res Toxicol 2005; 18:1287-95. [PMID: 16097802 DOI: 10.1021/tx0500530] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human monomethylarsenate reductase [MMA(V) reductase] and human glutathione S-transferase omega 1-1 (hGSTO1-1) [because MMA(V) reductase and hGSTO1-1 are identical proteins, the authors will utilize the designation "hGSTO1-1"] are identical proteins that catalyze the reduction of arsenate, monomethylarsenate [MMA(V)], and dimethylarsenate [DMA(V)]. Sodium selenite (selenite) inhibited the reduction of each of these substrates by the enzyme in a concentration-dependent manner. The kinetics indicated a noncompetitive inhibition of the MMA(V), DMA(V), or arsenate reducing activity of hGSTO1-1. The inhibition of the MMA(V) reducting activity of hGSTO1-1 by selenite was reversed by 1 mM DL-dithiothreitol (DTT) but not by reduced glutathione (GSH), which is a required substrate for the enzyme. Neither superoxide anion nor hydrogen peroxide was involved in the selenite inhibition of hGSTO1-1. MALDI-TOF and MS/MS analysis demonstrated that five molecules of GSH were bound to one monomer of hGSTO1-1. Four of the five cysteines of the monomer were glutathionylated. Cys-32 in the active center, however, exists mostly in the sulfhydryl form since it was alkylated consistently by iodoacetamide. MALDI-TOF mass spectra analysis of hGSTO1-1 after reaction with GSH and sodium selenite indicated that selenium was integrated into hGSTO1-1 molecules. Three selenium were found to be covalently bonded to the monomer of hGSTO1-1 with three molecules of GSH. It is proposed that the reaction products of the reduction of selenite inhibited the activity of hGSTO1-1 by reacting with disulfides of glutathionylated cysteines to form bis (S-cysteinyl)selenide and S-selanylcysteine and had little or no interaction with the sulfhydryl of Cys-32 in the active site of the enzyme.
Collapse
Affiliation(s)
- Robert A Zakharyan
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, Arizona 85721-0106, USA
| | | | | | | | | |
Collapse
|
40
|
Csanaky I, Gregus Z. Role of glutathione in reduction of arsenate and of γ-glutamyltranspeptidase in disposition of arsenite in rats. Toxicology 2005; 207:91-104. [PMID: 15590125 DOI: 10.1016/j.tox.2004.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/03/2004] [Accepted: 09/03/2004] [Indexed: 01/08/2023]
Abstract
Arsenate (AsV), the environmentally prevalent form of arsenic, is converted sequentially in the body to arsenite (AsIII), monomethylarsonic acid (MMAsV), monomethylarsonous acid (MMAsIII), and dimethylarsinic acid (DMAsV) and some trimethylated metabolites. Although the biliary excretion of arsenic in rats is known to be glutathione (GSH)-dependent, involving transport of arsenic-GSH conjugates, the role of GSH in the reduction of AsV to the more toxic AsIII in vivo has not been defined. Therefore, we studied how the fate of AsV is influenced by buthionine sulfoximine (BSO), which depletes GSH in tissues. Control and BSO-treated rats were given AsV (50 micromol/kg, i.v.) and arsenic metabolites in bile, urine, blood and tissues were analysed by HPLC-HG-AFS. BSO increased retention of AsV in blood and tissues and decreased appearance of AsIII in blood, bile (by 96%) and urine (by 63%). The biliary excretion of MMAsIII was also nearly abolished, the appearance of MMAsIII and MMAsV in the blood was delayed and the renal concentrations of these monomethylated arsenicals were decreased by BSO. Interestingly, appearance of DMAsV in blood and urine remained unchanged and the concentrations of this metabolite in the kidneys and muscle were even increased in response to BSO. To test the role of gamma-glutamyltranspeptidase (GGT) in arsenic disposition, the effect of the of the GGT inhibitor acivicin was investigated in rats injected with AsIII (50 micromol/kg, i.v.). Acivicin lowered the hepatic and renal GGT activities and increased the biliary as well as urinary excretion of GSH, but failed to alter the disposition (i.e. blood and tissue concentrations, biliary and urinary excretion) of AsIII and its metabolites. In conclusion, shortage of GSH decreases not only the hepatobiliary transport of arsenic, but also reduction of AsV and the formation of monomethylated arsenic, while not hindering the production of dimethylated arsenic. While GSH plays an important role in the disposition and toxicity of arsenic, GGT, which hydrolyses GSH and GSH conjugates, apparently does not influence the fate of the GSH-reactive trivalent arsenicals in rats.
Collapse
Affiliation(s)
- Iván Csanaky
- Toxicology Section, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7643 Pécs, Hungary
| | | |
Collapse
|
41
|
Rossman TG, Uddin AN. Selenium prevents spontaneous and arsenite-induced mutagenesis. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Francesconi KA, Kuehnelt D. Determination of arsenic species: A critical review of methods and applications, 2000–2003. Analyst 2004; 129:373-95. [PMID: 15116227 DOI: 10.1039/b401321m] [Citation(s) in RCA: 362] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We review recent research in the field of arsenic speciation analysis with the emphasis on significant advances, novel applications and current uncertainties.
Collapse
Affiliation(s)
- Kevin A Francesconi
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, 8010 Graz, Austria
| | | |
Collapse
|
43
|
Gailer J, Ruprecht L, Reitmeir P, Benker B, Schramel P. Mobilization of exogenous and endogenous selenium to bile after the intravenous administration of environmentally relevant doses of arsenite to rabbits. Appl Organomet Chem 2004. [DOI: 10.1002/aoc.655] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|