1
|
Choi JA, Seo BR, Koh JY, Yoon YH. Protective effect of zinc against A2E-induced toxicity in ARPE-19 cells: Possible involvement of lysosomal acidification. Heliyon 2024; 10:e39100. [PMID: 39524844 PMCID: PMC11550603 DOI: 10.1016/j.heliyon.2024.e39100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
A key pathogenic mechanism of dry age-related macular degeneration (AMD) is lysosomal dysfunction in retinal pigment epithelium (RPE) cells, which results in the accumulation of lipofuscins such as A2E (N-retinylidene-N-retinylethanolamine) that further compromises lysosomal function. This vicious cycle leads to cell death and poor visual acuity. Here, we established an in vitro model of AMD by treating a human RPE cell line (ARPE-19) with A2E and examined whether raising zinc levels confers protective effects against lysosomal dysfunction and cytotoxicity. MTT assay showed that A2E induced apoptosis in ARPE-19 cells. pHrodo™ Red fluorescence staining showed that lysosomal pH increased in A2E-treated ARPE-19 cells. Treatment with a zinc ionophore (clioquinol) reduced A2E accumulation, restored lysosomal pH to the acidic range, and reduced A2E-induced cell death, all of which were reversed by the addition of a zinc chelator (TPEN). Consistent with the in vitro results, subretinal injections of A2E in mouse eyes resulted in the death of RPE cells as well as lysosomal dysfunction, all of which were reversed by co-treatment with clioquinol. Our results suggest that restoring the levels of intracellular zinc, especially in lysosomes, would be helpful in mitigating A2E-induced cytotoxic changes including lysosomal dysfunction in RPE cells in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jeong A. Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Ugarte M, Lawless C. Putative retina metal/metalloid-binding proteins: molecular functions, biological processes and retina disease associations. Metallomics 2024; 16:mfae045. [PMID: 39322243 PMCID: PMC11523097 DOI: 10.1093/mtomcs/mfae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
The mammalian retina contains high amounts of metals/metalloid-selenium. Their dyshomeostases are associated with certain retinal diseases. We carried out this bioinformatics study to identify the relationships between putative retinal metal/selenium binding proteins, their molecular functions, and biological processes. Identification of putative mouse metal/selenium binding proteins was based on known binding motifs, domains, patterns, and profiles. Annotations were obtained from Uniprot keywords 'metal binding', 'metal ion co-factors', 'selenium proteins'. Protein functions were estimated by associative frequency with key words in UniProt annotations. The raw data of five mouse proteomics PRIDE datasets (available to date) were downloaded and processed with Mascot against the mouse taxa of Uniprot (SwissProt/Trembl) and MaxQuant (version 1.6.10.43) for qualitative and quantitative datasets, respectively. Clinically relevant variants were evaluated using archives and aggregated information in ClinVar. The 438 proteins common to all the retina proteomics datasets were used to identify over-represented Gene Ontology categories. The putative mouse retinal metal/metalloid binding proteins identified are mainly involved in: (1) metabolic processes (enzymes), (2) homeostasis, (3) transport (vesicle mediated, transmembrane, along microtubules), (4) cellular localization, (5) regulation of signalling and exocytosis, (6) organelle organization, (7) (de)phosphorylation, and (8) complex assembly. Twenty-one proteins were identified as involved in response to light stimulus and/or visual system development. An association of metal ion binding proteins rhodopsin, photoreceptor specific nuclear receptor, calcium binding protein 4 with disease-related mutations in inherited retinal conditions was identified, where the mutations affected an area within or in close proximity to the metal binding site or domain. These findings suggest a functional role for the putative metal/metalloid binding site in retinal proteins in certain retinal disorders.
Collapse
Affiliation(s)
- Marta Ugarte
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Rm A.3034a Michael-Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Yuan W, Li J, Gao S, Sun W, Zhao F. Novel therapeutic targets for primary open-angle glaucoma identified through multicenter proteome-wide mendelian randomization. Front Pharmacol 2024; 15:1428472. [PMID: 39221148 PMCID: PMC11362091 DOI: 10.3389/fphar.2024.1428472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to identify novel therapeutic targets for primary open-angle glaucoma (POAG). Methods The summary-data-based Mendelian randomization (SMR) method was used to evaluate the genetic association between plasma proteins and POAG. Two sets of plasma protein quantitative trait loci (pQTLs) data considered exposures were obtained from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. The summary-level genome-wide association studies data for POAG were extracted from the latest Round 10 release of the FinnGen consortium (8,530 cases and 391,275 controls) and the UK Biobank (4,737 cases and 458,196 controls). Colocalization analysis was used to screen out pQTLs that share the same variant with POAG as drug targets identified. The two-sample Mendelian randomization, reverse causality testing and phenotype scanning were performed to further validate the main findings. Protein-protein interaction, pathway enrichment analysis and druggability assessment were conducted to determine whether the identified plasma proteins have potential as drug targets. Results After systematic analysis, this study identified eight circulating proteins as potential therapeutic targets for POAG. Three causal proteins with strong evidence of colocalization, ROBO1 (OR = 1.38, p = 1.48 × 10-4, PPH4 = 0.865), FOXO3 (OR = 0.35, p = 4.34 × 10-3, PPH4 = 0.796), ITIH3 (OR = 0.89, p = 2.76 × 10-4, PPH4 = 0.767), were considered tier one targets. Five proteins with medium support evidence of colocalization, NCR1 (OR = 1.25, p = 4.18 × 10-4, PPH4 = 0.682), NID1 (OR = 1.38, p = 1.54 × 10-3, PPH4 = 0.664), TIMP3 (OR = 0.91, p = 4.01 × 10-5, PPH4 = 0.659), SERPINF1 (OR = 0.81, p = 2.77 × 10-4, PPH4 = 0.59), OXT (OR = 1.17, p = 9.51 × 10-4, PPH4 = 0.526), were classified as tier two targets. Additional sensitivity analyses further validated the robustness and directionality of these findings. According to druggability assessment, Pimagedine, Resveratrol, Syringaresinol and Clozapine may potentially be important in the development of new anti-glaucoma agents. Conclusion Our integrated study identified eight potential associated proteins for POAG. These proteins play important roles in neuroprotection, extracellular matrix regulation and oxidative stress. Therefore, they have promising potential as therapeutic targets to combat POAG.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jun Li
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shang Gao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
4
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
5
|
Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease. Clin Exp Med 2024; 24:38. [PMID: 38367035 PMCID: PMC10874324 DOI: 10.1007/s10238-024-01302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Collapse
Affiliation(s)
- Lucy I Stiles
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kevin Ferrao
- Faculty of Life Sciences and Medicine, GKT School of Medical Education, King's College London, London, UK
| | - Kosha J Mehta
- Faculty of Life Sciences and Medicine, Centre for Education, King's College London, London, UK.
| |
Collapse
|
6
|
Donato L, Mordà D, Scimone C, Alibrandi S, D’Angelo R, Sidoti A. Bridging Retinal and Cerebral Neurodegeneration: A Focus on Crosslinks between Alzheimer-Perusini's Disease and Retinal Dystrophies. Biomedicines 2023; 11:3258. [PMID: 38137479 PMCID: PMC10741418 DOI: 10.3390/biomedicines11123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In the early stages of Alzheimer-Perusini's disease (AD), individuals often experience vision-related issues such as color vision impairment, reduced contrast sensitivity, and visual acuity problems. As the disease progresses, there is a connection with glaucoma and age-related macular degeneration (AMD) leading to retinal cell death. The retina's involvement suggests a link with the hippocampus, where most AD forms start. A thinning of the retinal nerve fiber layer (RNFL) due to the loss of retinal ganglion cells (RGCs) is seen as a potential AD diagnostic marker using electroretinography (ERG) and optical coherence tomography (OCT). Amyloid beta fragments (Aβ), found in the eye's vitreous and aqueous humor, are also present in the cerebrospinal fluid (CSF) and accumulate in the retina. Aβ is known to cause tau hyperphosphorylation, leading to its buildup in various retinal layers. However, diseases like AD are now seen as mixed proteinopathies, with deposits of the prion protein (PrP) and α-synuclein found in affected brains and retinas. Glial cells, especially microglial cells, play a crucial role in these diseases, maintaining immunoproteostasis. Studies have shown similarities between retinal and brain microglia in terms of transcription factor expression and morphotypes. All these findings constitute a good start to achieving better comprehension of neurodegeneration in both the eye and the brain. New insights will be able to bring the scientific community closer to specific disease-modifying therapies.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
- Department of Veterinary Sciences, University of Messina, 98122 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.), 90139 Palermo, Italy;
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122 Messina, Italy; (L.D.); (C.S.); (R.D.); (A.S.)
| |
Collapse
|
7
|
Hosseinpour Mashkani SM, Bishop DP, Raoufi-Rad N, Adlard PA, Shimoni O, Golzan SM. Distribution of Copper, Iron, and Zinc in the Retina, Hippocampus, and Cortex of the Transgenic APP/PS1 Mouse Model of Alzheimer's Disease. Cells 2023; 12:cells12081144. [PMID: 37190053 DOI: 10.3390/cells12081144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
A mis-metabolism of transition metals (i.e., copper, iron, and zinc) in the brain has been recognised as a precursor event for aggregation of Amyloid-β plaques, a pathological hallmark of Alzheimer's disease (AD). However, imaging cerebral transition metals in vivo can be extremely challenging. As the retina is a known accessible extension of the central nervous system, we examined whether changes in the hippocampus and cortex metal load are also mirrored in the retina. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualise and quantify the anatomical distribution and load of Cu, Fe, and Zn in the hippocampus, cortex, and retina of 9-month-old Amyloid Precursor Protein/Presenilin 1 (APP/PS1, n = 10) and Wild Type (WT, n = 10) mice. Our results show a similar metal load trend between the retina and the brain, with the WT mice displaying significantly higher concentrations of Cu, Fe, and Zn in the hippocampus (p < 0.05, p < 0.0001, p < 0.01), cortex (p < 0.05, p = 0.18, p < 0.0001) and the retina (p < 0.001, p = 0.01, p < 0.01) compared with the APP/PS1 mice. Our findings demonstrate that dysfunction of the cerebral transition metals in AD is also extended to the retina. This could lay the groundwork for future studies on the assessment of transition metal load in the retina in the context of early AD.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Newsha Raoufi-Rad
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - S Mojtaba Golzan
- Vision Science Group, Graduate School of Health (GSH), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
8
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Zhang K, Ma R, Feng L, Liu P, Cai S, Tong C, Zheng J. Albumin alleviated esketamine-induced neuronal apoptosis of rat retina through downregulation of Zn2+-dependent matrix metalloproteinase 9 during the early development. BMC Neurosci 2022; 23:66. [PMID: 36384553 PMCID: PMC9670403 DOI: 10.1186/s12868-022-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Aims Esketamine upregulates Zn2+-dependent matrix metalloproteinase 9 (MMP9) and increases the neuronal apoptosis in retinal ganglion cell layer during the early development. We aimed to test whether albumin can alleviate esketamine-induced apoptosis through downregulating Zn2+-dependent MMP9. Methods We investigate the role of Zn2+ in esketamine-induced neuronal apoptosis by immunofluorescence. MMP9 protein expression and enzyme activity were investigated by zymography in situ., western blot and immunofluorescence. Whole-mount retinas from P7 Sprague-Dawley rats were used. Results We demonstrated that esketamine exposure increased Zn2+ in the retinal GCL during the early development. Zn2+-dependent MMP9 expression and enzyme activity up-regulated, which eventually aggravated apoptosis. Albumin effectively down-regulated MMP9 expression and activity via binding of free zinc, ultimately protected neurons from apoptosis. Meanwhile albumin treatment promoted activated microglia into multi-nucleated macrophagocytes and decreased the inflammation. Conclusion Albumin alleviates esketamine-induced neuronal apoptosis through decreasing Zn2+ accumulation in GCL and downregulating Zn2+-dependent MMP9. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00753-5.
Collapse
|
10
|
Wang M, Wang WX. Meeting Zn Needs during Medaka Eye Development: Nanoscale Visualization of Retina by Expansion Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15780-15790. [PMID: 36266765 DOI: 10.1021/acs.est.2c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Fish eyes require high Zn levels to support their early development. Although numerous studies have been conducted on the nutritional and toxic effects of Zn on the eye, the Zn requirement for retinal cell development is still debatable. Moreover, due to the complexity of the retinal structure, it is difficult to clearly visualize each retinal layer and accurately separate cell morphology in vivo by conventional methods. In the present study, we for the first time have achieved nanoscale imaging of retinal anatomy affected by dietary and waterborne Zn exposure by novel expansion microscopy. We demonstrated that the fish retina showed different developmental strategies in response to dietary and aqueous Zn exposures. Excess dietary Zn produced toxicity to retinal photoreceptor cells, resulting in a reduction in cell number and cell area, and this toxicity became severe with biological development. In contrast, waterborne Zn in the natural environment probably failed to meet the Zn requirements of retinal development. Overall, our results indicated that during early development, the Zn requirement of the fish eyes was sensitive, and oversupplementation led to impaired photoreceptor cell development. Our study has provided new perspectives using the powerful and novel expansion microscopy technique in toxicity assessment, enabling ultra-clear visualization of small but complex organ development.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
11
|
Márquez García A, Salazar V, Lima Pérez L. Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina. Microsc Res Tech 2022; 85:3382-3390. [PMID: 35836361 DOI: 10.1002/jemt.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.
Collapse
Affiliation(s)
- Asarí Márquez García
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela.,Universidad de Granada-Junta de Andalucía de Genómica e investigación Oncológica, Granada, Spain
| | - Víctor Salazar
- Servicio de Microscopía de Luz, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| | - Lucimey Lima Pérez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| |
Collapse
|
12
|
KOÇYİĞİT E, ACAR TEK N. The Role of Omega-3 and Antioxidant Nutrients in Age-Related Macular Degeneration: A Review Article. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.810526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss worldwide. The cause of the disease is not well explained; studies previse a multifactorial etiology. Various results of studies suggest that omega-3 fatty acids may have beneficial effects in AMD. Besides the omega-3, clinical evidence showed that specific micronutrients (antioxidant vitamins and minerals) protect against AMD. The definition of risk factors for the development and progression of AMD is important for understanding the causes of the disorder and for the determination of its prevention strategies. In this study, the relationship between omega 3 and antioxidant nutrients and the incidence and progression of AMD were evaluated.
Collapse
|
13
|
Golcs Á, Kovács K, Vezse P, Bezúr L, Huszthy P, Tóth T. A cuvette-compatible Zn 2+sensing tool for conventional spectrofluorometers prepared by copolymerization of macrocyclic fluoroionophores on quartz glass surface. Methods Appl Fluoresc 2022; 10. [PMID: 35545091 DOI: 10.1088/2050-6120/ac6ecb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
We report here the development of a surface-modified quartz glass sheet, which affords an opportunity for converting conventional spectrofluorometers to ion-selective optochemical sensors by placing it diagonally into a photometric cuvette. Moreover, we describe a generalizable technique, which allows the usage of any polymerizable ionophores for developing multiple-use fluorescent chemosensors of various selectivity. A fluorescent bis(acridino)-crown ether containing allyl groups was photocatalytically copolymerized with a methacrylate-acrylamide-based monomer mixture to obtain an ion-selective sensor membrane layer on the surface of the cuvette-compatible glass sheet. This glass membrane-based direct optode enabled the analysis of Zn2+above a lower limit of detection of 2.2×10-7mol·L-1with an excellent reusability. Limiting factors, like pH and competing ionic or organic agents were thoroughly investigated. Moreover, spiked river-water samples were measured to demonstrate applicability. The proposed sensor placed in any conventional spectrofluorometer provides an innovative method for perturbation-free analysis of Zn2+for all the chemists in need of a fast, easy-to-use, portable and regenerable analyzer without the requirement of an analyte-specific instrumentation.
Collapse
Affiliation(s)
- Ádám Golcs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| | - Korinna Kovács
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| | - Panna Vezse
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| | - László Bezúr
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| | - Péter Huszthy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| | - Tünde Tóth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., Budapest, 1111, HUNGARY
| |
Collapse
|
14
|
Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp Ther Med 2022; 23:324. [DOI: 10.3892/etm.2022.11253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
|
15
|
Yang Y, Wu J, Wu D, Wei Q, Zhong T, Yang J, Yang X, Zeng M, Zhong X. Intravitreal brimonidine inhibits form-deprivation myopia in guinea pigs. EYE AND VISION 2021; 8:27. [PMID: 34256866 PMCID: PMC8278638 DOI: 10.1186/s40662-021-00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/10/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022]
Abstract
Background The use of ocular hypotensive drugs has been reported to attenuate myopia progression. This study explores whether brimonidine can slow myopia progression in the guinea pig form-deprivation (FD) model. Methods Three-week-old pigmented male guinea pigs (Cavia porcellus) underwent monocular FD and were treated with 3 different methods of brimonidine administration (eye drops, subconjunctival or intravitreal injections). Four different concentrations of brimonidine were tested for intravitreal injection (2 μg/μL, 4 μg/μL, 20 μg/μL, 40 μg/μL). All treatments continued for a period of 21 days. Tonometry, retinoscopy, and A-scan ultrasonography were used to monitor intraocular pressure (IOP), refractive error and axial length (AL), respectively. On day 21, guinea pigs were sacrificed for RNA sequencing (RNA-seq) to screen for associated transcriptomic changes. Results The myopia model was successfully established in FD animals (control eye vs. FD eye, respectively: refraction at day 20, 0.97 ± 0.18 D vs. − 0.13 ± 0.38 D, F = 6.921, P = 0.02; AL difference between day 0 and day 21, 0.29 ± 0.04 mm vs. 0.45 ± 0.03 mm, F = 11.655, P = 0.004). Among the 3 different brimonidine administration methods, intravitreal injection was the most effective in slowing myopia progression, and 4 μg/μL was the most effective among the four different concentrations of brimonidine intravitreal injection tested. The AL and the refraction of the brimonidine intravitreal injection group was significantly shorter or more hyperopic than those of other 2 groups. Four μg/μL produced the smallest difference in AL and spherical equivalent difference values. FD treatment significantly increased the IOP. IOP was significantly lower at 1 day after intravitreal injections which was the lowest in FD eye of intravitreal injection of brimonidine. At day 21, gene expression analyses using RNA-seq showed upregulation of Col1a1 and Mmp2 expression levels by intravitreal brimonidine. Conclusions Among the 3 different administration methods, intravitreal injection of brimonidine was the most effective in slowing myopia progression in the FD guinea pig model. Intravitreal brimonidine at 4 μg/μL significantly reduced the development of FD myopia in guinea pigs. Expression levels of the Col1a1 and Mmp2 genes were significantly increased in the retinal tissues of the FD-Inj-Br group. Supplementary Information The online version contains supplementary material available at 10.1186/s40662-021-00248-0.
Collapse
|
16
|
Dziedziak J, Kasarełło K, Cudnoch-Jędrzejewska A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants (Basel) 2021; 10:antiox10111743. [PMID: 34829613 PMCID: PMC8614766 DOI: 10.3390/antiox10111743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are ophthalmic neurodegenerative diseases responsible for irreversible vision loss in the world population. Only a few therapies can be used to slow down the progression of these diseases and there are no available treatment strategies for reversing the degeneration of the neural retina. In AMD, the pathological process causes the malfunction and damage of the retinal pigmented epithelium and photoreceptors in the macula. In glaucoma, damage of the retinal ganglion cells and their axons is observed and treatment strategies are limited to intraocular pressure lowering. Therefore, other prophylactic and/or therapeutic methods are needed. Oxidative stress is involved in the neurodegenerative process accompanying both AMD and glaucoma; therefore, the use of antioxidant agents would clearly be beneficial, which is supported by the decreased prevalence and progression of AMD in patients adherent to a diet naturally rich in antioxidants. Dietary antioxidants are easily available and their use is based on the natural route of administration. Many preclinical studies both in vitro and using animal models of retinal degeneration showed the efficacy of dietary antioxidants, which was further proved in clinical trials. Resveratrol is beneficial both in AMD and glaucoma animal models, but confirmed only among AMD patients. For AMD, carotenoids and omega-3 fatty acids were also proved to be sufficient in preventing neurodegeneration. For glaucoma, coenzyme Q10 and alpha-lipoic acid showed efficacy for decreasing retinal ganglion cell loss and inhibiting the accompanying destructive processes. Interestingly, the benefits of vitamins, especially vitamin E was not confirmed, neither in preclinical nor in clinical studies.
Collapse
|
17
|
Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 2021; 128:262-276. [PMID: 33866034 DOI: 10.1016/j.actbio.2021.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Contact lenses are widely used for visual corrections. However, while wearing contact lenses, eyes typically face discomforts (itching, irritation, burning, etc.) due to foreign object sensation, lack of oxygen permeability, and tear film disruption as opposed to a lack of wetting agents. Eyes are also prone to ocular infections such as bacterial keratitis (BK) and fungal keratitis (FK) and inflammatory events such as contact lens-related acute red eye (CLARE), contact lens peripheral ulcer (CLPU), and infiltrative keratitis (IK) caused by pathogenic bacterial and fungal strains that contaminate contact lenses. Therefore, a good design of contact lenses should adequately address the need for wetting, the supply of antioxidants, and antifouling and antimicrobial efficacy. Here, we developed multifunctional gallic acid (GA), phytomolecules-coated zinc oxide nanoparticles (ZN), and phytomolecules-coated zinc oxide nanoparticles + gallic acid + tobramycin (ZGT)-coated contact lenses using a sonochemical technique. The coated contact lenses exhibited significant antibacterial (>log10 5.60), antifungal, and antibiofilm performance against BK-causing multidrug resistant bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia. coli) and FK-related pathogenic fungal strains (Candida albicans, Aspergillus fumigatus, and Fusarium solani). The gallic acid, tobramycin, and phytomolecules-coated zinc oxide nanoparticles have different functionalities (-OH, -NH2, -COOH, -COH, etc.) that enhanced wettability of the coated contact lenses as compared to that of uncoated ones and further enabled them to exhibit remarkable antifouling property by prohibiting adhesion of platelets and proteins. The coated contact lenses also showed significant antioxidant activity by scavenging DPPH and good cytocompatibility to human corneal epithelial cells and keratinocytes cell lines. STATEMENT OF SIGNIFICANCE: • Multifunctional coated lenses were developed with an efficient sonochemical approach. • Lens surface was modified with nanocoatings of ZnO nanoparticles, gallic acid, and tobramycin. • This synergistic combination endowed the lenses with remarkable antimicrobial activity. • Coated lenses also showed noteworthy antifouling and biofilm inhibition activities. • Coated lenses showed good antioxidant, biocompatibility, and wettability characteristics.
Collapse
|
18
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
19
|
Heesterbeek TJ, Rouhi-Parkouhi M, Church SJ, Lechanteur YT, Lorés-Motta L, Kouvatsos N, Clark SJ, Bishop PN, Hoyng CB, den Hollander AI, Unwin RD, Day AJ. Association of plasma trace element levels with neovascular age-related macular degeneration. Exp Eye Res 2020; 201:108324. [PMID: 33098886 PMCID: PMC7773981 DOI: 10.1016/j.exer.2020.108324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Although the triggers causing angiogenesis in the context of neovascular age-related macular degeneration (nAMD) are not fully understood, oxidative stress is likely involved. Oxidative stress in the eye can occur through exposure of macular tissues to sunlight and local or systemic exposure to oxidative stressors associated with environmental or lifestyle factors. Because trace elements have been implicated as regulators of oxidative stress and cellular antioxidant defense mechanisms, we hypothesized that they may play a role as a risk factor, modifying the progression toward nAMD. Herein, we determined whether levels of human plasma trace elements are different in 236 individuals with nAMD compared to 236 age-matched controls without AMD. Plasma levels of 16 trace elements including arsenic, barium, calcium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, lead, antimony, selenium, vanadium and zinc were measured using inductively coupled plasma mass spectrometry. Associations of trace elements with demographic, environmental and lifestyle factors and AMD-associated genetic variants were assessed. Elevated levels of barium and cadmium and reduced levels of chromium were observed in nAMD patients compared to controls. Mean plasma concentrations of barium were 1.35 μg/L (standard deviation [SD] 0.71) in nAMD and 1.15 μg/L (SD 0.63) in controls (P = 0.001). Mean levels of chromium were 0.37 μg/L (SD 0.22) in nAMD and 0.46 μg/L (SD 0.34) in controls (P = 0.001). Median levels for cadmium, which were not normally distributed, were 0.016 μg/L (interquartile range [IQR] 0.001-0.026) in nAMD and 0.012 μg/L (IQR 0.001-0.022) in controls (P = 0.002). Comparison of the Spearman's correlation coefficients between nAMD patients and controls identified a difference in correlations for 8 trace elements. Cadmium levels were associated with the smoking status (P < 0.001), while barium levels showed a trend of association with the usage of antihypertensive drugs. None of the AMD-associated genetic variants were associated with any trace element levels. In conclusion, in this case-control study we detected elevated plasma levels of barium and cadmium and reduced plasma levels of chromium in nAMD patients. An imbalance in plasma trace elements, which is most likely driven by environmental and lifestyle factors, might have a role in the pathogenesis of AMD. These trace elements may be incorporated as biomarkers into models for prediction of disease risk and progression. Additionally, population-based preventive strategies to decrease Cd exposure, especially by the cessation of smoking, could potentially reduce the burden of nAMD. Future studies are warranted to investigate whether supplementation of Cr would have a beneficial effect on nAMD.
Collapse
Affiliation(s)
- Thomas J Heesterbeek
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mansour Rouhi-Parkouhi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK
| | - Stephanie J Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Yara T Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nikolaos Kouvatsos
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK; Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK; Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, CityLabs 1.0 (3rd Floor), Nelson Street, Manchester, M13 9NQ, UK
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Kircheva N, Dobrev S, Nikolova V, Angelova S, Dudev T. Zinc and Its Critical Role in Retinitis pigmentosa: Insights from DFT/SMD Calculations. Inorg Chem 2020; 59:17347-17355. [DOI: 10.1021/acs.inorgchem.0c02664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
21
|
Emri E, Kortvely E, Dammeier S, Klose F, Simpson D, den Hollander AI, Ueffing M, Lengyel I. A Multi-Omics Approach Identifies Key Regulatory Pathways Induced by Long-Term Zinc Supplementation in Human Primary Retinal Pigment Epithelium. Nutrients 2020; 12:E3051. [PMID: 33036197 PMCID: PMC7601425 DOI: 10.3390/nu12103051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.
Collapse
Affiliation(s)
- Eszter Emri
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Elod Kortvely
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Sascha Dammeier
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - David Simpson
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| | | | - Anneke I. den Hollander
- Departments of Ophthalmology and Genetics, Radboud University Medical Center, 6525EX Nijmegen, The Netherlands;
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tubingen, D-72076 Tubingen, Germany; (S.D.); (F.K.); (M.U.)
| | - Imre Lengyel
- Wellcome Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, Belfast BT97BL, Northern Ireland, UK; (E.E.); (D.S.)
| |
Collapse
|
22
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|
23
|
Lenahan C, Sanghavi R, Huang L, Zhang JH. Rhodopsin: A Potential Biomarker for Neurodegenerative Diseases. Front Neurosci 2020; 14:326. [PMID: 32351353 PMCID: PMC7175229 DOI: 10.3389/fnins.2020.00326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal alterations have recently been associated with numerous neurodegenerative diseases. Rhodopsin is a G-protein coupled receptor found in the rod cells of the retina. As a biomarker associated with retinal thinning and degeneration, it bears potential in the early detection and monitoring of several neurodegenerative diseases. In this review article, we summarize the findings of correlations between rhodopsin and several neurodegenerative disorders as well as the potential of a novel technique, cSLO, in the quantification of rhodopsin.
Collapse
Affiliation(s)
- Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Rajvee Sanghavi
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Lei Huang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
24
|
Moshirpour M, Nakashima AS, Sehn N, Smith VM, Thackray SE, Dyck RH, Antle MC. Examination of Zinc in the Circadian System. Neuroscience 2020; 432:15-29. [PMID: 32087262 DOI: 10.1016/j.neuroscience.2020.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Abstract
Zinc is a trace element that is essential for a large number of biological and biochemical processes in the body. In the nervous system zinc is packaged into synaptic vesicles by the ZnT3 transporter, and synaptic release of zinc can influence the activity of postsynaptic cells, either directly through its own cognate receptors, or indirectly by modulating activation of receptors for other neurotransmitters. Here, we explore the anatomical and functional aspects of zinc in the circadian system. Melanopsin-containing retinal ganglion cells in the mouse retina were found to colocalize ZnT3, indicating that they can release zinc at their synaptic targets. While the master circadian clock in the hamster suprachiasmatic nucleus (SCN) was found to contain, at best, sparse zincergic input, the intergeniculate leaflet (IGL) of hamsters and mice were found to have prominent zincergic input. Levels of zinc in these areas were not affected by time of day. Additionally, IGL zinc staining persisted following enucleation, indicating other prominent sources of zinc instead of, or in addition to, the retina. Neither enhancement nor chelation of free zinc at either the SCN or IGL altered circadian responses to phase-shifting light in hamsters. Finally, entrainment, free-running, and circadian responses to light were explored in mice lacking the ZnT3 gene. In every aspect explored, the ZnT3 knockout mice were not significantly different from their wildtype counterparts. These findings highlight the presence of zinc in areas critical for circadian functioning but have yet to identify a role for zinc in these areas.
Collapse
Affiliation(s)
- Mahtab Moshirpour
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amy S Nakashima
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Sehn
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Victoria M Smith
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah E Thackray
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard H Dyck
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
26
|
Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019; 543:114-121. [DOI: 10.1016/j.jcis.2019.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
|
27
|
Nutrients for Prevention of Macular Degeneration and Eye-Related Diseases. Antioxidants (Basel) 2019; 8:antiox8040085. [PMID: 30986936 PMCID: PMC6523787 DOI: 10.3390/antiox8040085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
The risk of macular degeneration can be reduced through the consumption of antioxidant-rich foods, supplements, and nutraceutical formulas. This review focuses on the antioxidants, vitamins, and minerals that have been reported for reducing the risk of macular degeneration and other eye-related diseases. Antioxidants including anthocyanins, carotenoids, flavonoids, and vitamins have been shown to reduce the risk of eye-related diseases. Anthocyanins extracted from berries are powerful antioxidants. Cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin are anthocyanin aglycones detected in berries, currants, and other colored fruits and vegetables. β-Carotene, as well as xanthophyll lutein and zeaxanthin, have been reported to reduce the risk of macular degeneration. Flavonoids from plants help in the prevention of eye-related diseases through anti-inflammatory mechanisms. A combination of these antioxidants, vitamins, and minerals possess a synergistic effect on the prevention or risk reduction of macular degeneration. Formulas have been developed as dietary supplements to cater to the high demand from consumers and patients with eye problems. Many of the formulated dietary supplements that are sold in the market have been clinically proven for their efficacy to treat eye diseases. Although the bioactivities in the supplement capsules or tablets have been scientifically established for reducing risks of several diseases, which include macular degeneration and other eye-related diseases, knowledge on the right dosage, efficacy, and bioavailability of antioxidants, vitamins, and minerals is important for consumers. The information may help them make the best decision in choosing the right dietary supplements and nutraceuticals following the evidence-based recommended dosages and reference intakes for improving general health and preventing eye-related diseases. This review covers the potential causal factors involved in eye diseases, clinically proven treatments, and controversial findings on the antioxidants in the prevention of macular degeneration. Future studies should consider multiethnic and multicenter trials for eliminating potential bias in research.
Collapse
|
28
|
Pao PJ, Emri E, Abdirahman SB, Soorma T, Zeng HH, Hauck SM, Thompson RB, Lengyel I. The effects of zinc supplementation on primary human retinal pigment epithelium. J Trace Elem Med Biol 2018. [PMID: 29523386 DOI: 10.1016/j.jtemb.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Population-based and interventional studies have shown that elevated zinc levels can reduce the progression to advanced age-related macular degeneration. The objective of this study was to assess whether elevated extracellular zinc has a direct effect on retinal pigment epithelial cells (RPE), by examining the phenotype and molecular characteristics of increased extracellular zinc on human primary RPE cells. Monolayers of human foetal primary RPE cells were grown on culture inserts and maintained in medium supplemented with increasing total concentrations of zinc (0, 75, 100, 125 and 150 μM) for up to 4 weeks. Changes in cell viability and differentiation as well as expression and secretion of proteins were investigated. RPE cells developed a confluent monolayer with cobblestone morphology and transepithelial resistance (TER) >200 Ω*cm2 within 4 weeks. There was a zinc concentration-dependent increase in TER and pigmentation, with the largest effects being achieved by the addition of 125 μM zinc to the culture medium, corresponding to 3.4 nM available (free) zinc levels. The cells responded to addition of zinc by significantly increasing the expression of Retinoid Isomerohydrolase (RPE65) gene; cell pigmentation; Premelanosome Protein (PMEL17) immunoreactivity; and secretion of proteins including Apolipoprotein E (APOE), Complement Factor H (CFH), and High-Temperature Requirement A Serine Peptidase 1 (HTRA1) without an effect on cell viability. This study shows that elevated extracellular zinc levels have a significant and direct effect on differentiation and function of the RPE cells in culture, which may explain, at least in part, the positive effects seen in clinical settings. The results also highlight that determining and controlling of available, as opposed to total added, zinc will be essential to be able to compare results obtained in different laboratories.
Collapse
Affiliation(s)
- Po-Jung Pao
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Eszter Emri
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| | - Safiya Bishar Abdirahman
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom.
| | - Talha Soorma
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom.
| | - Hui-Hui Zeng
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, United States.
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health(GmbH), Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, United States.
| | - Imre Lengyel
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1 V9EL, United Kingdom; Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, United Kingdom.
| |
Collapse
|
29
|
Hohberger B, Chaudhri MA, Michalke B, Lucio M, Nowomiejska K, Schlötzer-Schrehardt U, Grieb P, Rejdak R, Jünemann AGM. Levels of aqueous humor trace elements in patients with open-angle glaucoma. J Trace Elem Med Biol 2018; 45:150-155. [PMID: 29173472 DOI: 10.1016/j.jtemb.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/01/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE Trace elements might play a role in the complex multifactorial pathogenesis of open-angle glaucoma. The aim of this study was to analyze concentrations of trace elements in aqueous humor samples of patients with primary open-angle glaucoma (POAG) and pseudoexfoliation glaucoma (PEXG). PATIENTS AND METHODS Thirty-three aqueous humor samples were obtained from patients undergoing cataract surgery: 12 patients with POAG (age 65.3±10.50, female 8, male 4), 10 patients with PEXG (age 65.9±11.27, female 6, male 4) and 11 patients without glaucoma (age 69.5±13.70, female 7, male 4) serving as controls. Aqueous humor levels of cadmium, iron, manganese, cobalt, copper and zinc were measured by Flow-Injection-Inductively-Coupled-Plasma-Mass-Spectrometry (FI-ICP-MS). RESULTS From the statistical evaluation, we observed that patients with POAG had significantly higher aqueous humor levels of zinc (p=0.006) compared to controls. Increased aqueous humor levels of zinc were also observed in patients with PEXG in relation to control (p=0.0006). For iron we observed a significantly reduction in PEXG compared to control (p=0.002) and a significant difference between POAG and PEXG (p=0.0091). No significant differences were observed in aqueous humor levels of manganese, cobalt, copper, cadmium between glaucoma and control patients. No differences were seen for iron (POAG vs. controls). Analysis of trace element ratios was added. CONCLUSION Significant differences in aqueous humor levels of zinc and iron between glaucoma and control patients support the hypothesis that these trace elements are involved in the pathogenesis of open-angle glaucoma.
Collapse
Affiliation(s)
- Bettina Hohberger
- Department of Ophthalmology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany,.
| | - M Anwar Chaudhri
- Institute of Surface Science and Corrosion (LKO), Department of Materials Science and Engineering, Technische Fakultät, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen, Germany,.
| | - Bernhard Michalke
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany,.
| | - Marianna Lucio
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany,.
| | - Katarzyna Nowomiejska
- Department of General Ophthalmology, Medical University of Lublin, Aleje Racławickie 1, 20-950 Lublin, Poland,.
| | | | - Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland,.
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Aleje Racławickie 1, 20-950 Lublin, Poland,.
| | - Anselm G M Jünemann
- Department of Ophthalmology, University of Rostock, Doberaner Straße 140, 18057 Rostock, Germany,.
| |
Collapse
|
30
|
Abstract
The eye is susceptible to adverse toxic effects by direct application, inadvertent ocular contact, or systemic exposure to chemicals or their metabolites. Although the albino rat is a less than ideal model for ocular toxicity studies, it has gained popularity for specific applications and may be the first species in which the ocular toxicity of a systemically administered xenobiotic becomes evident. This chapter reviews the embryology, anatomy, and physiology of the eye and associated glands and describes common nonneoplastic and neoplastic lesions encountered in laboratory rats.
Collapse
|
31
|
Zinc Protects Oxidative Stress-Induced RPE Death by Reducing Mitochondrial Damage and Preventing Lysosome Rupture. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6926485. [PMID: 29348791 PMCID: PMC5733978 DOI: 10.1155/2017/6926485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
Zinc deficiency is known to increase the risk of the development of age-related macular degeneration (AMD), although the underlying mechanism remains poorly defined. In this study, we investigated the effect of zinc on retinal pigment epithelium (RPE) survival and function under oxidative conditions. Zinc level was 5.4 μM in normal culture conditions (DMEM/F12 with 10% FCS) and 1.5 μM in serum-free medium (DMEM/F12). Under serum-free culture conditions, the treatment of RPE cells with oxidized photoreceptor outer segment (oxPOS) significantly increased intracellular ROS production, reduced ATP production, and promoted RPE death compared to oxPOS-treated RPE under normal culture condition. Serum deprivation also reduced RPE phagocytosis of oxPOS and exacerbated oxidative insult-induced cathepsin B release from lysosome, an indicator of lysosome rupture. The addition of zinc in the serum-free culture system dose dependently reduced ROS production, recovered ATP production, and reduced oxidative stress- (oxPOS- or 4-HNE) induced cell death. Zinc supplementation also reduced oxidative stress-mediated cathepsin B release in RPE cells. Our results suggest that zinc deficiency sensitizes RPE cells to oxidative damage, and zinc supplementation protects RPE cells from oxidative stress-induced death by improving mitochondrial function and preventing lysosome rupture.
Collapse
|
32
|
Hurst J, Vitkute M, Hofmann K, Müller S, Löscher M, Bartz-Schmidt KU, Spitzer MS, Schnichels S, Januschowski K. Comparison of Different Cell Culture Media in the Model of the Isolated and Superfused Bovine Retina: Investigating the Limits of More Physiological Perfusion Solutions. Curr Eye Res 2017; 43:232-243. [PMID: 29111831 DOI: 10.1080/02713683.2017.1387668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The isolated superfused retina is a standardized tool in ophthalmological research. However, stable electroretinogram (ERG) responses can only be obtained for around eight hours; therefore, limiting its use. The aim of this study was to evaluate the short-term potential of different cell culture media and to promote long-term testing based on the results obtained. MATERIALS AND METHODS For the experimental procedure bovine retinae were prepared and perfused with the standard Sickel solution and an ERG was performed. After recording stable a- or b-waves, different media (Dulbecco's Modified Eagle's Medium (DMEM), MACS, and Neurobasal) were superfused for 45 minutes. ERG recovery was monitored overall for 75 minutes. Analysis of the mRNA expression of Thy-1, GFAP, Bax/Bcl-2-ratio, Rhodopsin, and Opsin via qRT-PCR was performed directly after ERG recording on the same retina. RESULTS None of the tested media had a negative effect on a-wave amplitudes, although b-wave amplitudes decreased (DMEM) or increased (MACS and Neurobasal) compared to the standard solution (Sickel) after 45 minutes of exposure. However, after 75 minutes of wash-out, no difference to the standard solution alone could be observed. Exposure to different media either had no effect or decreased the Opsin and Rhodopsin mRNA levels. Thy-1 expression was strongly diminished in DMEM and MACS (by 2-3-fold), whereas incubation in Neurobasal medium led to a slight increase compared to incubation with the standard solution. Furthermore, the Bax/Bcl-2 ratio indicated an anti-apoptotic effect (Bax/Bcl-2 = 0.16; p < 0.05) for Neurobasal. CONCLUSION Neurobasal medium displayed the best electrophysiological properties in the short-term and may be applicable for stable long-term escalation testing.
Collapse
Affiliation(s)
- José Hurst
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Milda Vitkute
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Kathleen Hofmann
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Sebastian Müller
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Marina Löscher
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | | | - Martin S Spitzer
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany.,b Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Schnichels
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Kai Januschowski
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany.,c Eye Hospital , Sulzbach , Saar , Germany
| |
Collapse
|
33
|
García M, Álvarez L, Fernández Á, González-Iglesias H, Escribano J, Fernández-Vega B, Villota E, Fernández-Vega Cueto L, Fernández-Vega Á, Coca-Prados M. Metallothionein polymorphisms in a Northern Spanish population with neovascular and dry forms of age-related macular degeneration. Ophthalmic Genet 2017. [PMID: 28635422 DOI: 10.1080/13816810.2017.1288825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND To elucidate the potential role of single nucleotide polymorphisms (SNPs) in the metallothionein (MT) genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS A total of 130 unrelated Northern Spanish natives diagnosed with AMD (46 dry, 35 neovascular, and 49 mixed) and 96 healthy controls, matched by age and ethnicity, were enrolled in a case-control study. DNA was isolated from peripheral blood and genotyped for 14 SNPs located at 5 MT genes (MT1A: rs11076161, rs 11640851, rs8052394, and rs7196890; MT1B: rs8052334, rs964372, and rs7191779; MT1M: rs2270836 and rs9936741; MT2A: rs28366003, rs1610216, rs10636, and rs1580833; MT3: rs45570941) using TaqMan probes. The association study was performed using the HaploView 4.0 software. RESULTS The allelic and genotypic frequencies analysis revealed that rs28366003 at MT2A gene is significantly associated with dry AMD. The frequency of genotype AG was significantly higher in dry AMD than in control cases (p = 2.65 × 10-4; AG vs. AA) conferring more than ninefold increased risk to dry AMD (OR = 9.39, 95% CI: 2.11-41.72), whereas the genotype AA confers disease protection (OR = 0.82, 95% CI: 0.71-0.95). No statistically significant differences were observed between AMD subjects and controls in the rest of the 14 SNPs analyzed. CONCLUSIONS The present study is the first to investigate the potential association of SNPs at MT genes with susceptibility to AMD. We found a significant association of SNP rs28366003 at MT2A gene with susceptibility to the dry form of AMD in a Northern Spanish population.
Collapse
Affiliation(s)
- Montserrat García
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Lydia Álvarez
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Ángela Fernández
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain
| | - Héctor González-Iglesias
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Julio Escribano
- c Laboratory of Human Molecular Genetics, Faculty of Medicine/Institute of Investigation in Neurological Disabilities (IDINE) , University of Castilla-La Mancha , Albacete , Spain
| | - Beatriz Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Eva Villota
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Luis Fernández-Vega Cueto
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Álvaro Fernández-Vega
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain
| | - Miguel Coca-Prados
- a Fernández-Vega University Institute, Foundation of Ophthalmological Investigation, University of Oviedo , Oviedo , Spain.,b Department of Neurodegenerative Eye Disease , Fernández-Vega Ophthalmological Institute , Oviedo , Spain.,d Department of Ophthalmology and Visual Science , Yale University School of Medicine , New Haven , Connecticut , USA
| |
Collapse
|
34
|
Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A 2017; 114:E209-E218. [PMID: 28049831 DOI: 10.1073/pnas.1616811114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.
Collapse
|
35
|
Castro PL, Dominguez D, José Caballero M, Izquierdo M. Histochemical localization of zinc in the retina cells of gilthead sea bream (sparus aurata) fed different presentations of zinc. Synapse 2016; 71. [DOI: 10.1002/syn.21947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2016] [Accepted: 11/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro Luis Castro
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n; Telde 35214 Spain
| | - David Dominguez
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n; Telde 35214 Spain
| | - María José Caballero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n; Telde 35214 Spain
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria Crta. Taliarte s/n; Telde 35214 Spain
| |
Collapse
|
36
|
Horvát G, Budai-Szűcs M, Berkó S, Szabó-Révész P, Soós J, Facskó A, Maroda M, Mori M, Sandri G, Bonferoni MC, Caramella C, Csányi E. Comparative study of nanosized cross-linked sodium-, linear sodium- and zinc-hyaluronate as potential ocular mucoadhesive drug delivery systems. Int J Pharm 2015; 494:321-8. [DOI: 10.1016/j.ijpharm.2015.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 11/26/2022]
|
37
|
Kim YH, Kwak KA, Kim TS, Seok JH, Roh HS, Lee JK, Jeong J, Meang EH, Hong JS, Lee YS, Kang JS. Retinopathy Induced by Zinc Oxide Nanoparticles in Rats Assessed by Micro-computed Tomography and Histopathology. Toxicol Res 2015; 31:157-63. [PMID: 26191382 PMCID: PMC4505346 DOI: 10.5487/tr.2015.31.2.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023] Open
Abstract
Nanotechnology has advanced at an extremely rapid pace over the past several years in numerous fields of research. However, the uptake of nanoparticles (NPs) into the body after administration through various routes may pose a risk to human health. In this study, we investigated the potential ocular toxicity of 20-nm, negatively- charged zinc oxide (ZnO) NPs in rats using micro-computed tomography (micro-CT) and histopathological assessment. Animals were divided into four groups as control group, ZnO NPs treatment group (500 mg/kg/day), control recovery group, and ZnO NPs treatment and recovery group. Ocular samples were prepared from animals treated for 90 days (10 males and 10 females, respectively) and from recovery animals (5 males and 5 females, respectively) sacrificed at 14 days after final treatment and were compared to age-matched control animals. Micro-CT analyses represented the deposition and distribution of foreign materials in the eyes of rats treated with ZnO NPs, whereas control animals showed no such findings. X-ray fluorescence spectrometry and energy dispersive spectrometry showed the intraocular foreign materials as zinc in treated rats, whereas control animals showed no zinc signal. Histopathological examination revealed the retinopathy in the eyes of rats treated with ZnO NPs. Neuronal nuclei expression was decreased in neurons of the ganglion cell layer of animals treated with ZnO NPs compared to the control group. Taken together, treatment with 20-nm, negatively-charged ZnO NPs increased retinopathy, associated with local distribution of them in ocular lesions.
Collapse
Affiliation(s)
- Young Hee Kim
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| | - Kyung A Kwak
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| | - Tae Sung Kim
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongwon, Korea
| | - Ji Hyeon Seok
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongwon, Korea
| | - Hang Sik Roh
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongwon, Korea
| | - Jong-Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongwon, Korea
| | - Jayoung Jeong
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongwon, Korea
| | - Eun Ho Meang
- Health Care Research Laboratory, Korea Testing and Research Institute, Seoul, Korea
| | - Jeong-Sup Hong
- Health Care Research Laboratory, Korea Testing and Research Institute, Seoul, Korea
| | - Yun Seok Lee
- Department of Health Administration, Namseoul University, Cheonan, Korea
| | - Jin Seok Kang
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| |
Collapse
|
38
|
Park HS, Shin SS, Meang EH, Hong JS, Park JI, Kim SH, Koh SB, Lee SY, Jang DH, Lee JY, Sun YS, Kang JS, Kim YR, Kim MK, Jeong J, Lee JK, Son WC, Park JH. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine 2014; 9 Suppl 2:79-92. [PMID: 25565828 PMCID: PMC4279770 DOI: 10.2147/ijn.s57926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnO(SM20(-))) NPs in Sprague Dawley rats for 90 days. METHODS The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. RESULTS No rats died during the test period. However, ZnO(SM20(-)) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. CONCLUSION A ZnO(SM20(-)) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution.
Collapse
Affiliation(s)
- Hark-Soo Park
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Sung-Sup Shin
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Eun Ho Meang
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jeong-sup Hong
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jong-Il Park
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Su-Hyon Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Sang-Bum Koh
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Seung-Young Lee
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Dong-Hyouk Jang
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jong-Yun Lee
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Yle-Shik Sun
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jin Seok Kang
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Korea
| | - Jayoung Jeong
- National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | - Jong-Kwon Lee
- National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | - Woo-Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Park HS, Kim SJ, Lee TJ, Kim GY, Meang E, Hong JS, Kim SH, Koh SB, Hong SG, Sun YS, Kang JS, Kim YR, Kim MK, Jeong J, Lee JK, Son WC, Park JH. A 90-day study of sub-chronic oral toxicity of 20 nm positively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine 2014; 9 Suppl 2:93-107. [PMID: 25565829 PMCID: PMC4279754 DOI: 10.2147/ijn.s57927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The study reported here was conducted to determine the systemic oral toxicity and to find the no-observed-adverse-effect level of 20 nm positively charged zinc oxide (ZnOSM20(+)) nanoparticles in Sprague Dawley rats for 90 days. Methods For the 90-day toxicity study, the high dose was set as 500 mg per kg of body weight (mg/kg) and the middle and low dose were set to 250 mg/kg and 125 mg/kg, respectively. The rats were held for a 14-day recovery period after the last administration, to observe for the persistence or reduction of any toxic effects. A distributional study was also carried out for the systemic distribution of ZnOSM20(+) NPs. Results No rats died during the test period. There were no significant clinical changes due to the test article during the experimental period in functional assessment, body weight, food and water consumption, ophthalmological testing, urine analysis, necropsy findings, or organ weights, but salivation was observed immediately after administration in both sexes. The total red blood cell count was increased, and hematocrit, albumin, mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration were decreased significantly compared with control in both 500 mg/kg groups. Total protein and albumin levels were decreased significantly in both sexes in the 250 and 500 mg/kg groups. Histopathological studies revealed acinar cell apoptosis in the pancreas, inflammation and edema in stomach mucosa, and retinal atrophy of the eye in the 500 mg/kg group. Conclusion There were significant parameter changes in terms of anemia in the hematological and blood chemical analyses in the 250 and 500 mg/kg groups. The significant toxic change was observed to be below 125 mg/kg, so the no-observed-adverse-effect level was not determined, but the lowest-observed-adverse-effect level was considered to be 125 mg/kg in both sexes and the target organs were found to be the pancreas, eye, and stomach.
Collapse
Affiliation(s)
- Hark-Soo Park
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Seon-Ju Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Taek-Jin Lee
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Geon-Yong Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - EunHo Meang
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jeong-Sup Hong
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Su-Hyon Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Sang-Bum Koh
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Seung-Guk Hong
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Yle-Shik Sun
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Korea
| | - Jin Seok Kang
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan, Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Korea
| | - Jayoung Jeong
- National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | - Jong-Kwon Lee
- National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | - Woo-Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
40
|
Park SJ, Lee JH, Woo SJ, Kang SW, Park KH. Five heavy metallic elements and age-related macular degeneration: Korean National Health and Nutrition Examination Survey, 2008-2011. Ophthalmology 2014; 122:129-37. [PMID: 25225109 DOI: 10.1016/j.ophtha.2014.07.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To investigate the association between age-related macular degeneration (AMD) and 5 heavy metallic elements (lead, mercury, cadmium, manganese, and zinc). DESIGN A cross-sectional study using a complex, stratified, multistage, probability cluster survey. PARTICIPANTS Participants of the Korean National Health and Nutrition Examination Survey from 2008 to 2011. METHODS Using a standardized protocol, AMD was determined by fundus photograph grading. Blood concentrations of lead, mercury, cadmium, manganese, and zinc were measured. Associations between AMD and these 5 elements were estimated using logistic regression analyses (LRAs). The distributions of the 5 metallic elements in blood were analyzed, and the same set of LRAs estimating the association between AMD and logarithmic-transformed blood concentrations of the 5 elements were also conducted. MAIN OUTCOME MEASURES Association between AMD and 5 heavy metals. RESULTS Lead was positively associated with both early AMD and late AMD in all LRAs. Mercury and cadmium also had a positive association with late AMD in all LRAs, but not with early AMD. In contrast, manganese and zinc had an inverse association with late AMD in all LRAs. Manganese and zinc were not associated with early AMD. Using logarithmic-transformed blood concentrations for each metallic element, the LRAs showed similar results compared with those of the LRAs using nontransformed blood concentrations, despite the skewed distribution of these metallic elements in the blood. CONCLUSIONS This study suggests that the toxic heavy metals (lead, mercury, and cadmium) may negatively influence late AMD, whereas essential heavy metals (manganese and zinc) may favorably influence late AMD. Lead may widely affect the pathogenesis of both early and late AMD.
Collapse
Affiliation(s)
- Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Hyun Lee
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Woong Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | | |
Collapse
|
41
|
Zinc and Zinc Chelators Modify Taurine Transport in Rat Retinal Cells. Neurochem Res 2014; 39:2234-9. [DOI: 10.1007/s11064-014-1425-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 11/26/2022]
|
42
|
Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS. Anal Bioanal Chem 2014; 406:2343-8. [PMID: 24500754 DOI: 10.1007/s00216-014-7617-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022]
Abstract
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.
Collapse
|
43
|
|
44
|
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 2014; 136-137:29-49. [PMID: 24388876 DOI: 10.1016/j.mad.2013.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy.
| | - Laura Costarelli
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Marco Malavolta
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Rita Ostan
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Elisa Cevenini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Daniela Monti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
45
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|
46
|
Ugarte M, Grime GW, Osborne NN. Distribution of trace elements in the mammalian retina and cornea by use of particle-induced X-ray emission (PIXE): localisation of zinc does not correlate with that of metallothioneins. Metallomics 2014; 6:274-8. [DOI: 10.1039/c3mt00271c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
47
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
48
|
Nan R, Tetchner S, Rodriguez E, Pao PJ, Gor J, Lengyel I, Perkins SJ. Zinc-induced self-association of complement C3b and Factor H: implications for inflammation and age-related macular degeneration. J Biol Chem 2013; 288:19197-210. [PMID: 23661701 PMCID: PMC3696691 DOI: 10.1074/jbc.m113.476143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2013] [Revised: 04/30/2013] [Indexed: 11/08/2022] Open
Abstract
The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μM zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μM zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μM zinc and even more so at >100 μM zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients.
Collapse
Affiliation(s)
- Ruodan Nan
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart Tetchner
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Elizabeth Rodriguez
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Po-Jung Pao
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Imre Lengyel
- the Department of Ocular Biology and Therapeutics, UCL
Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Stephen J. Perkins
- From the Department of Structural and Molecular Biology,
Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
49
|
Zocher M, Bippes CA, Zhang C, Müller DJ. Single-molecule force spectroscopy of G-protein-coupled receptors. Chem Soc Rev 2013; 42:7801-15. [PMID: 23799399 DOI: 10.1039/c3cs60085h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
The applicability of single-molecule force spectroscopy (SMFS) to characterize membrane proteins in vitro is developing rapidly and opening a wide range of fascinating possibilities to study how intra- and intermolecular interactions determine their structural stability and functional state. In particular, understanding how molecular interactions contribute to the functional state of G-protein-coupled receptors (GPCRs) is of importance because they mediate most of our physiological responses and act as therapeutic targets for a broad spectrum of diseases. In our review we focus on SMFS to characterize GPCRs embedded in their physiologically relevant membranes and exposed to physiologically relevant conditions. SMFS uses a molecularly sharp stylus to grasp the terminal end of a GPCR and to quickly unfold the receptor while recording interaction forces. The positional accuracy of SMFS localizes these interactions to structural segments of the GPCR whereas the sensitivity of SMFS enables their stabilizing interaction forces to be quantified. To further investigate the kinetic, energetic and mechanical properties of the structural segments, dynamic SMFS (DFS) probes their stability over a wide range of loading rates. These parameters provide insight into the energy landscape that provides information on the structural and functional properties of the GPCRs. Selected highlights exemplify the application of SMFS to characterize inter- and intramolecular interactions, which change the properties of GPCRs in relation to their functional state (e.g., ligand binding), diseased state (e.g., mutation), or lipid environment such as cholesterol.
Collapse
Affiliation(s)
- Michael Zocher
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
50
|
Shukolyukov SA. Rhodopsin, Zn2+, and retinitis pigmentosa: a Short tale requiring continuation. BIOCHEMISTRY (MOSCOW) 2013; 78:660-6. [DOI: 10.1134/s0006297913060114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|