1
|
Shim JM, Cho SE, Kang CK, Kang SG. Low myelin-related values in the fornix and thalamus of 7 Tesla MRI of major depressive disorder patients. Front Mol Neurosci 2023; 16:1214738. [PMID: 37635903 PMCID: PMC10447971 DOI: 10.3389/fnmol.2023.1214738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Abnormalities in myelin are believed to be one of the important causes of major depressive disorder, and it is becoming important to more accurately quantify myelin in in vivo magnetic resonance imaging of major depressive disorder patients. We aimed to investigate the difference in myelin concentration in the white matter and subcortical areas using new quantitative myelin-related maps of high-resolution 7 Tesla (7 T) magnetic resonance imaging between patients with major depressive disorder and healthy controls. Methods Myelin-related comparisons of the white matter and nearby subcortical regions were conducted between healthy controls (n = 36) and patients with major depressive disorder (n = 34). Smoothed quantitative ratio (sq-Ratio) myelin-related maps were created using the multi-echo magnetization-prepared two rapid gradient echoes (ME-MP2RAGE) sequence of the T1 and T2* images of 7 T magnetic resonance imaging. Differences in the myelin-related values of the regions of interest between the two groups were analyzed using a two-sample t-test, and multiple comparison corrections were performed using the false discovery rate. Results The average sq-Ratio myelin-related values were 2.62% higher in the white matter and 2.26% higher in the subcortical regions of the healthy controls group than in the major depressive disorder group. In the group analysis of the healthy control and major depressive disorder groups, the sq-Ratio myelin-related values were significantly different in the fornix area of the white matter (false discovery rate-corrected p = 0.012). In addition, significant differences were observed in both the left (false discovery rate-corrected p = 0.04) and right thalamus (false discovery rate-corrected p = 0.040) among the subcortical regions. Discussion The average sq-ratio myelin-related value and sq-ratio myelin-related values in the fornix of the white matter and both thalami were higher in the healthy controls group than in the major depressive disorder group. We look forward to replicating our findings in other populations using larger sample sizes.
Collapse
Affiliation(s)
- Jeong-Min Shim
- Department of Nano Science and Technology, Gachon University Graduate School, Seongnam, Republic of Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
2
|
Almaguer-Melian W, Mercerón-Martínez D, Bergado-Rosado J. A unique erythropoietin dosage induces the recovery of long-term synaptic potentiation in fimbria-fornix lesioned rats. Brain Res 2023; 1799:148178. [PMID: 36442648 DOI: 10.1016/j.brainres.2022.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Synapses can experience long-term enhancements in its efficacy transmission in an activity-dependent manner (LTP, Long-Term Potentiation). This could contribute to store the living experiences in memory. Consequently, loss of synaptic plasticity can lead to failures in memory encoding and storage. Hence, finding ways to restore synaptic function can help restore learning and memory ability. Erythropoietin (EPO) has shown beneficial effects in the brain as a neuroprotector, improving affected learning, memory, and synaptic plasticity among other. In the present study, using the fimbria-fornix lesion model, we address the question whether the administration of erythropoietin restores the synaptic capacity to produce long-lasting increases in their transmission efficiency. A series of experiments was designed in which a control group of healthy young animals and one of injured young animals were formed. A subgroup of injured animals was injected with EPO or the vehicle in which the EPO is diluted (Veh). EPO or Veh was administered 15 min before LTP induction. Our data show that EPO produces a recovery in LTP in the group of fimbria-fornix lesioned animals, which show a severe impairment in the maintenance of LTP. Furthermore, LTP in the injured animals that received EPO was similar to that of the healthy control animals. LTP is widely accepted as a cellular mechanism of memory. Restoring LTP by EPO might be a potential tool for the treatment of memory disturbing diseases like Alzheimeŕs disease. Ongoing clinical trials are evaluating a potential therapeutic effect of low sialic acid-EPO (NeuroEPO) on degenerative diseases.
Collapse
Affiliation(s)
- William Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - Daymara Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba
| | - Jorge Bergado-Rosado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba 4536534, Colombia.
| |
Collapse
|
3
|
Jia R, Yuan X, Zhang X, Song P, Han S, Wang S, Li Y, Zhang S, Zhao X, Zhang Y, Cheng J, Song X. Oxidative stress impairs cognitive function by affecting hippocampal fimbria volume in drug-naïve, first-episode schizophrenia. Front Neurosci 2023; 17:1153439. [PMID: 37139526 PMCID: PMC10149877 DOI: 10.3389/fnins.2023.1153439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Objective The aim of the present study was to explore influencing factors of cognitive impairments and their interrelationships in drug-naïve, first-episode schizophrenia (SCZ). Methods Patients with drug naïve, first episode SCZ and healthy controls (HCs) were enrolled. Cognitive function was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Serum levels of oxidative stress indices, including folate, superoxide dismutase (SOD), uric acid (UA) and homocysteine (Hcy), were determined after an overnight fast. Hippocampal subfield volumes were measured using FreeSurfer. Mediation models were conducted using the SPSS PROCESS v3.4 macro. A false discovery rate (FDR) correction was applied for multiple comparisons. Results Sixty-seven patients with SCZ and 65 HCs were enrolled in our study. The patient group had significantly lower serum levels of folate and SOD and higher serum levels of HCY compared with the HCs (all p < 0.05). The patient group had a significantly smaller volume of the whole hippocampus than the HC group (p < 0.05). We also found significant volume differences between the two groups in the following subfields: CA1, molecular layer, GC-ML-DG and fimbria (all p < 0.05, uncorrected). The partial correlation analysis controlling for age and sex showed that the fimbria volume in the patient group was significantly positively associated with NAB scores (r = 0.382, pFDR = 0.024); serum levels of SOD in the patient group showed a significantly positive correlation with fimbria volume (r = 0.360, pFDR = 0.036). Mediation analyses controlling for age and sex showed that the serum levels of SOD in patients with SCZ had significant indirect effects on the NAB scores which were mediated by the fimbria volume [indirect effect = 0.0565, 95% CI from the bootstrap test excluding zero (0.0066 to 0.0891)]. Conclusion Oxidative stress, a reduction in hippocampal subfield volumes and cognitive impairments occur in early SCZ. Oxidative stress impairs cognitive function by affecting hippocampal subfield volumes.
Collapse
Affiliation(s)
- Rufei Jia
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyun Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Peilun Song
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Wang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yajun Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Siwei Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xinyi Zhao
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jingliang Cheng, ;10
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
4
|
Xu J, Guan X, Wen J, Zhang M, Xu X. Polygenic hazard score modified the relationship between hippocampal subfield atrophy and episodic memory in older adults. Front Aging Neurosci 2022; 14:943702. [PMID: 36389062 PMCID: PMC9659745 DOI: 10.3389/fnagi.2022.943702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Understanding genetic influences on Alzheimer's disease (AD) may improve early identification. Polygenic hazard score (PHS) is associated with the age of AD onset and cognitive decline. It interacts with other risk factors, but the nature of such combined effects remains poorly understood. MATERIALS AND METHODS We examined the effect of genetic risk and hippocampal atrophy pattern on episodic memory in a sample of older adults ranging from cognitively normal to those diagnosed with AD using structural MRI. Participants included 51 memory unimpaired normal control (NC), 69 mild cognitive impairment (MCI), and 43 AD adults enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Hierarchical linear regression analyses examined the main and interaction effects of hippocampal subfield volumes and PHS, indicating genetic risk for AD, on a validated episodic memory composite score. Diagnosis-stratified models further assessed the role of PHS. RESULTS Polygenic hazard score moderated the relationship between right fimbria/hippocampus volume ratio and episodic memory, such that patients with high PHS and lower volume ratio had lower episodic memory composite scores [ΔF = 6.730, p = 0.011, ΔR 2 = 0.059]. This effect was also found among individuals with MCI [ΔF = 4.519, p = 0.038, ΔR 2 = 0.050]. In contrast, no interaction effects were present for those NC or AD individuals. A follow-up mediation analysis also indicated that the right fimbria/hippocampus volume ratio might mediate the link between PHS and episodic memory performance in the MCI group, whereas no mediation effects were present for those NC or AD individuals. CONCLUSION These findings suggest that the interaction between AD genetic risk and hippocampal subfield volume ratio increases memory impairment among older adults. Also, the results highlighted a potential pathway in which genetic risk affects memory by degrading hippocampal subfield volume ratio in cognitive decline subjects.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
5
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
6
|
Gisquet-Verrier P, Riccio DC. Revisiting systems consolidation and the concept of consolidation. Neurosci Biobehav Rev 2021; 132:420-432. [PMID: 34875279 DOI: 10.1016/j.neubiorev.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
For more than 50 years, knowledge of memory processes has been based on the consolidation hypothesis, which postulates that new memories require time to become stabilized. Two forms of the consolidation model exist. The Cellular Consolidation concept is based upon retrograde amnesia induced by amnesic treatments, the severity of which decreases as the learning to treatment increases over minutes or hours. In contrast, The Systems Consolidation model is based on post-training hippocampal lesions, which produce more severe retrograde amnesia when induced after days than after weeks. Except for the temporal parameters, Cellular and Systems Consolidation show many similarities. Here we propose that Systems consolidation, much as Cellular Consolidation (see Gisquet- Verrier and Riccio, 2018), can be explained in terms of a form of state-dependency. Accordingly, lesions of the hippocampus induce a change in the internal state of the animal, which disrupts retrieval processes. But the effect of contextual change is known to decrease with the length of the retention intervals, consistent with time-dependent retrograde amnesia. We provide evidence supporting this new view.
Collapse
Affiliation(s)
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
7
|
Hippocampal and non-hippocampal correlates of physically active lifestyle and their relation to episodic memory in older adults. Neurobiol Aging 2021; 109:100-112. [PMID: 34706317 DOI: 10.1016/j.neurobiolaging.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022]
Abstract
Aging is associated with compromised neurocognition. While aerobic exercise has been linked with cognitive resilience, findings regarding its relationship with brain morphology are inconsistent. Furthermore, the biological underpinnings of the relationship between aerobic activity and memory in the aging human brain are unclear. To investigate these issues, we examined hippocampal and non-hippocampal structural correlates of aerobically active lifestyle and cardiorespiratory fitness in older adults. We then examined structural pathways which may potentially mediate the association between active lifestyle and memory. Fifty participants (aged 65-80) underwent structural and diffusion MRI, memory evaluation, were examined for active lifestyle and cardiorespiratory fitness. Morphological features of the hippocampus and fornix, white matter lesions, and brain atrophy were assessed. Active lifestyle and cardiorespiratory fitness correlated with all neurocognitive measures. An exploratory mediation analysis revealed hippocampal and white matter lesions pathways linking active lifestyle and cardiorespiratory fitness with memory. Our results support a neuroprotective role of aerobic exercise on the aging brain and suggest plausible morphological pathways that may underlie the relationship between aerobic exercise and memory.
Collapse
|
8
|
Icariin Promotes Survival, Proliferation, and Differentiation of Neural Stem Cells In Vitro and in a Rat Model of Alzheimer's Disease. Stem Cells Int 2021; 2021:9974625. [PMID: 34257671 PMCID: PMC8249160 DOI: 10.1155/2021/9974625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) involves the degeneration of cholinergic neurons in the basal forebrain. Neural stem cell (NSC) transplantation has emerged as a promising therapeutic approach for treating AD. Icariin (ICA) is the main active component in Epimedium, a traditional Chinese herb. The purpose of the present study was to investigate the effects and mechanisms of ICA on the proliferation and differentiation of NSCs in the basal forebrain of a fimbria-fornix transection (FFT) rat model. In the present study, ICA promoted the survival, proliferation, and migration of NSCs in vitro. In FFT rats, ICA promoted the proliferation and differentiation of NSCs into neurons and increased the number of cholinergic neurons in the MS and VDB of the basal forebrain. These results suggest that combination therapy of ICA oral administration and NSC transplantation may provide a new potential and effective approach for AD therapy.
Collapse
|
9
|
Wang P, Zhou B, Yao H, Xie S, Feng F, Zhang Z, Guo Y, An N, Zhou Y, Zhang X, Liu Y. Aberrant Hippocampal Functional Connectivity Is Associated with Fornix White Matter Integrity in Alzheimer's Disease and Mild Cognitive Impairment. J Alzheimers Dis 2021; 75:1153-1168. [PMID: 32390630 DOI: 10.3233/jad-200066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older individuals, and amnestic mild cognitive impairment (aMCI) is currently considered the prodromal stage of AD. The hippocampus and fornix interact functionally and structurally, with the fornix being the major efferent white matter tract from the hippocampus. OBJECTIVE The main aim of this study was to examine the impairments present in subjects with AD or aMCI and the relationship of these impairments with the microstructure of the fornix and the functional connectivity (FC) and gray matter volume of the hippocampus. METHODS Forty-four AD, 34 aMCI, and 41 age- and gender-matched normal controls (NCs) underwent neuropsychological assessments and multimode MRI. We chose the bilateral hippocampi as the region of interest in which gray matter alterations and FC with the whole brain were assessed and the fornix body as the region of interest in which the microstructural integrity of the white matter was observed. We also evaluated the relationship among gray matter alterations, the abnormal FC of the hippocampus and the integrity of the fornix in AD/aMCIResults:Compared to the NC group, the AD and aMCI groups demonstrated decreased gray matter volume, reduced FC between the bilateral hippocampi and several brain regions in the default mode network and control network, and damaged integrity of the fornix body (decreased fractional anisotropy and increased diffusivity). We also found that left hippocampal FC with some regions, the integrity of the fornix body, and cognition ability were significantly correlated. Therefore, our findings suggest that damage to white matter integrity may partially explain the reduced resting-state FC of the hippocampus in AD and aMCI. CONCLUSION AD and aMCI are diseases of disconnectivity including not only functional but also structural disconnectivity. Damage to white matter integrity may partially explain the reduced resting-state FC in AD and aMCI. These findings have significant implications for diagnostics and modeling and provide insights for understanding the disconnection syndrome in AD.
Collapse
Affiliation(s)
- Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China.,Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Sangma Xie
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Feng Feng
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zengqiang Zhang
- Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Yan'e Guo
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ningyu An
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Nankai University, Tianjin, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Lam J, Lee J, Liu CY, Lozano AM, Lee DJ. Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction. Neuromodulation 2020; 24:171-186. [PMID: 33377280 DOI: 10.1111/ner.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Treatments for Alzheimer's disease are urgently needed given its enormous human and economic costs and disappointing results of clinical trials targeting the primary amyloid and tau pathology. On the other hand, deep brain stimulation (DBS) has demonstrated success in other neurological and psychiatric disorders leading to great interest in DBS as a treatment for Alzheimer's disease. MATERIALS AND METHODS We review the literature on 1) circuit dysfunction in Alzheimer's disease and 2) DBS for Alzheimer's disease. Human and animal studies are reviewed individually. RESULTS There is accumulating evidence of neural circuit dysfunction at the structural, functional, electrophysiological, and neurotransmitter level. Recent evidence from humans and animals indicate that DBS has the potential to restore circuit dysfunction in Alzheimer's disease, similarly to other movement and psychiatric disorders, and may even slow or reverse the underlying disease pathophysiology. CONCLUSIONS DBS is an intriguing potential treatment for Alzheimer's disease, targeting circuit dysfunction as a novel therapeutic target. However, further exploration of the basic disease pathology and underlying mechanisms of DBS is necessary to better understand how circuit dysfunction can be restored. Additionally, robust clinical data in the form of ongoing phase III clinical trials are needed to validate the efficacy of DBS as a viable treatment.
Collapse
Affiliation(s)
- Jordan Lam
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Justin Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Charles Y Liu
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Andres M Lozano
- Division of Neurological Surgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Darrin J Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| |
Collapse
|
11
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Calderón-Peña R, Bergado JA. Amygdala stimulation ameliorates memory impairments and promotes c-Fos activity in fimbria-fornix-lesioned rats. Synapse 2020; 74:e22179. [PMID: 32621298 DOI: 10.1002/syn.22179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
Recently we provided data showing that amygdala stimulation can ameliorate spatial memory impairments in rats with lesion in the fimbria-fornix (FF). The mechanisms for this improvement involve early gene expression and synthesis of BDNF, MAP-2, and GAP43 in the hippocampus and prefrontal cortex. Now we have studied which brain structures are activated by the amygdala using c-Fos as a marker of neural activation. First, we studied neuronal activation after tetanic stimulation to the amygdala in intact rats. We then carried out a second study in FF-lesioned rats in which the amygdala was stimulated 15 min after daily spatial memory training in the water maze. Our results showed that amygdala stimulation produces widespread brain activation, that includes cortical, thalamic, and brain stem structures. Activation was particularly intense in the dentate gyrus and the prefrontal cortex. Training in the water maze increased c-Fos positive nuclei in the dentate gyrus of the hippocampus and in medial prefrontal cortex. Amygdala stimulation to trained FF-lesioned rats induced an increase of neural activity in the dentate gyrus and medial prefrontal cortex relative to the FF-lesioned, but not stimulated group, like the c-Fos activity seen in trained control rats. Based on these and previous results we explain the mechanisms of amygdala reinforcement of neural plasticity and the partial recovery of spatial memory deficits.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - William Almaguer-Melian
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Esteban Alberti-Amador
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | - Jorge A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Montería, Colombia
| |
Collapse
|
13
|
Rowland NC, Sammartino F, Tomaszczyk JC, Lozano AM. Deep Brain Stimulation of the Fornix: Engaging Therapeutic Circuits and Networks in Alzheimer Disease. Neurosurgery 2018; 63 Suppl 1:1-5. [PMID: 27399356 DOI: 10.1227/neu.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nathan C Rowland
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Francesco Sammartino
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jennifer C Tomaszczyk
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Zhu H, Yan H, Tang N, Li X, Pang P, Li H, Chen W, Guo Y, Shu S, Cai Y, Pei L, Liu D, Luo MH, Man H, Tian Q, Mu Y, Zhu LQ, Lu Y. Impairments of spatial memory in an Alzheimer's disease model via degeneration of hippocampal cholinergic synapses. Nat Commun 2017; 8:1676. [PMID: 29162816 PMCID: PMC5698429 DOI: 10.1038/s41467-017-01943-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Choline acetyltransferase neurons in the vertical diagonal band of Broca (vChATs) degenerate in the early stage of Alzheimer’s disease (AD). Here, we report that vChATs directly innervate newly generated immature neurons (NGIs) in the dorsal hippocampus (dNGIs) of adult mice and regulate both the dNGIs survival and spatial pattern separation. In a mouse model that exhibits amyloid-β plaques similar to AD patients, cholinergic synaptic transmission, dNGI survival and spatial pattern separation are impaired. Activation of vChATs with theta burst stimulation (TBS) that alleviates the decay in cholinergic synaptic transmission effectively protects against spatial pattern separation impairments in the AD mice and this protection was completely abolished by inhibiting the dNGIs survival. Thus, the impairments of pattern separation-associated spatial memory in AD mice are in part caused by degeneration of cholinergic synaptic transmission that modulates the dNGIs survival. Cholinergic neurons in the diagonal band of Broca degenerate early in Alzheimer’s disease. Here the authors show that in healthy mice, these cholinergic inputs innervate newborn neurons in the hippocampus, and that loss of this innervation in an Alzheimer’s disease model leads to impairments in spatial memory.
Collapse
Affiliation(s)
- Houze Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huanhuan Yan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Tang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Pang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Guo
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu Shu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You Cai
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Pei
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
| | - Dan Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hengye Man
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Biology, Boston University, 5 Cummington St, Boston, MA, 02215, USA
| | - Qing Tian
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacol Biochem Behav 2017; 161:62-67. [PMID: 28943199 DOI: 10.1016/j.pbb.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Willis L, Quintero EM, Nelson M, Granholm AC. Regulation of Trophic Factor Expression by Innervating Target Regions in Intraocular Double Transplants. Cell Transplant 2017; 14:21-29. [DOI: 10.3727/000000005783983313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Trophic factors have been found to play a significant role both in long-term survival processes and in more rapid and dynamic processes in the brain and spinal cord. However, little is known regarding the regulation of expression of growth factors, and how these proteins interact on a cell-to-cell basis. We have studied protein levels of one growth factor known to affect the noradrenergic innervation of the hippocampal formation, namely brain-derived neurotrophic factor (BDNF). The purpose of the present study was to determine if appropriate innervation or contact between the LC noradrenergic neurons and their target, the hippocampus, affects expression of this growth factor in either brain region. Fetal brain stem tissue, containing the LC, and hippocampal formation were dissected from embryonic day 17 rat fetuses and transplanted together or alone into the anterior chamber of the eye of adult Fisher 344 rats. The tissue was grown together for 6 weeks, after which the animals were sacrificed and ELISAs for BDNF were undertaken. Transplantation to the anterior chamber of the eye increased the expression of BDNF in the hippocampal but not the brain stem tissue, compared with levels observed in fetal and adult rats in vivo. In addition, double grafting with hippocampal tissue more than tripled BDNF levels in brain stem grafts and doubled BDNF levels in the hippocampal portion of double grafts compared with hippocampal single grafts. Triple grafts containing basal forebrain, hippocampus, and brain stem LC tissue increased brain stem and hippocampal BDNF levels even further. Colchicine treatment of LC-hippocampal double grafts gave rise to a significant decrease in hippocampal BDNF levels to levels seen in single hippocampal grafts, while only a partial reduction of BDNF levels was seen in the brain stem portion of the same double grafts treated with colchicine. The findings suggest that an appropriate hippocampal innervation or contact with its target tissues is essential for regulation of BDNF expression in the brain stem, and that retrograde transport of BDNF can occur between double grafted fetal tissues in oculo.
Collapse
Affiliation(s)
- L. Willis
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425
| | - E. M. Quintero
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425
| | - M. Nelson
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425
| | - A.-Ch. Granholm
- Department of Physiology and Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
17
|
Yoo SW, Lee I. Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior. eLife 2017; 6. [PMID: 28169828 PMCID: PMC5308889 DOI: 10.7554/elife.21543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/06/2017] [Indexed: 01/04/2023] Open
Abstract
How visual scene memory is processed differentially by the upstream structures of the hippocampus is largely unknown. We sought to dissociate functionally the lateral and medial subdivisions of the entorhinal cortex (LEC and MEC, respectively) in visual scene-dependent tasks by temporarily inactivating the LEC and MEC in the same rat. When the rat made spatial choices in a T-maze using visual scenes displayed on LCD screens, the inactivation of the MEC but not the LEC produced severe deficits in performance. However, when the task required the animal to push a jar or to dig in the sand in the jar using the same scene stimuli, the LEC but not the MEC became important. Our findings suggest that the entorhinal cortex is critical for scene-dependent mnemonic behavior, and the response modality may interact with a sensory modality to determine the involvement of the LEC and MEC in scene-based memory tasks. DOI:http://dx.doi.org/10.7554/eLife.21543.001
Collapse
Affiliation(s)
- Seung-Woo Yoo
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Khalsa SS, Kumar R, Patel V, Strober M, Feusner JD. Mammillary body volume abnormalities in anorexia nervosa. Int J Eat Disord 2016; 49:920-929. [PMID: 27414055 PMCID: PMC5064812 DOI: 10.1002/eat.22573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Several case reports of Wernicke's Encephalopathy in anorexia nervosa (AN) caused by thiamine deficiency have described mammillary body (MB) injury, but systematic studies are lacking. Here we evaluated whether underweight and weight-restored individuals with AN demonstrate evidence of abnormal MB morphology, via retrospective examination of a previously collected data set. METHOD Using standard-resolution T1-weighted magnetic resonance imaging at 3 Tesla, we measured MB volume and fornix area in a cross-sectional study of 12 underweight AN, 20 weight-restored AN, and 30 age- and sex-matched healthy comparisons. Because of the small size of these structures, a manual tracing approach was necessary to obtain accurate measurements. A blinded expert rater manually traced MB and fornix structures in each participant. RESULTS We observed significantly smaller MB volumes in the underweight AN group. However, the weight-restored AN group exhibited significantly larger MB volumes. The right fornix was smaller in the weight-restored AN group only. DISCUSSION These findings suggest the possibility that MB volume and fornix area could represent potential biomarkers of acute weight loss and restoration, respectively. Verification of this finding through prospective studies evaluating MB morphology, cognition, and thiamine levels longitudinally across individual illness trajectories might be warranted. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:920-929).
Collapse
Affiliation(s)
- Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, 74136,Faculty of Community Medicine, University of Tulsa, Tulsa, OK, 74104,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA,Corresponding author:
| | - Rajesh Kumar
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Vandan Patel
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jamie D. Feusner
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Rajkumar R, Kumar JR, Dawe GS. Priming locus coeruleus noradrenergic modulation of medial perforant path-dentate gyrus synaptic plasticity. Neurobiol Learn Mem 2016; 138:215-225. [PMID: 27400867 DOI: 10.1016/j.nlm.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
Priming phenomenon, in which an earlier exposure to a stimulus or condition alters synaptic plasticity in response to a subsequent stimulus or condition, known as a challenge, is an example of metaplasticity. In this review, we make the case that the locus coeruleus noradrenergic system-medial perforant path-dentate gyrus pathway is a neural ensemble amenable to studying priming-challenge effects on synaptic plasticity. Accumulating evidence points to a tyrosine hydroxylase-dependent priming effect achieved by pharmacological (nicotine and antipsychotics) or physiological (septal theta driving) manipulations of the locus coeruleus noradrenergic system that can facilitate noradrenaline-induced synaptic plasticity in the dentate gyrus of the hippocampus. The evidence suggests the hypothesis that behavioural experiences inducing tyrosine hydroxylase expression in the locus coeruleus may be sufficient to prime this form of metaplasticity. We propose exploring this phenomenon of priming and challenge physiologically, to determine whether behavioural experiences are sufficient to prime the locus coeruleus, enabling subsequent pharmacological or behavioural challenge conditions that increase locus coeruleus firing to release sufficient noradrenaline to induce long-lasting potentiation in the dentate gyrus. Such an approach may contribute to unravelling mechanisms underlying this form of metaplasticity and its importance in stress-related mnemonic processes.
Collapse
Affiliation(s)
- Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore.
| |
Collapse
|
20
|
Park JC, Ma J, Jeon WK, Han JS. Fructus mume extracts alleviate cognitive impairments in 5XFAD transgenic mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:54. [PMID: 26852239 PMCID: PMC4744392 DOI: 10.1186/s12906-016-1033-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
Background Fructus mume (F. mume) has been used as a traditional treatment for ulcer, cough, and digestive problems for many years in Asian countries. Previous studies have demonstrated that F. mume extracts alleviate cognitive deficits in rats with chronic cerebral hypoperfusion and in mice with scopolamine treatments. The present experiment was conducted to examine the effects of F. mume on cognitive impairments in 5XFAD transgenic mice with five familial Alzheimer’s disease (AD) mutations. Methods F. mume was administered daily to 5XFAD mice at 12 weeks of age and continued for 90 days. Cognitive function was evaluated using a spatial memory version of the Morris water maze task, the object/location novelty recognition test, and contextual fear conditioning at 24 weeks of age. To elucidate the possible mechanisms underlying the memory improving effects of F. mume in 5XFAD mice, we examined alterations in hippocampal cholinergic function. Results Vehicle-treated 5XFAD mice exhibited hippocampus-dependent memory impairments compared with non-transgenic littermates, which was reversed in F. mume-treated 5XFAD mice. In addition, reduced hippocampal choline acetyltransferase (ChAT) levels in 5XFAD mice were reversed by F. mume treatment, indicating that F. mume enhances the effects of cholinergic neuronal function. Conclusions F. mume may have therapeutic effects on cognitive impairments in AD.
Collapse
|
21
|
Fornix Microstructure and Memory Performance Is Associated with Altered Neural Connectivity during Episodic Recognition. J Int Neuropsychol Soc 2016; 22:191-204. [PMID: 26888616 PMCID: PMC4762064 DOI: 10.1017/s1355617715001216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The purpose of this study was to assess whether age-related differences in white matter microstructure are associated with altered task-related connectivity during episodic recognition. METHODS Using functional magnetic resonance imaging and diffusion tensor imaging from 282 cognitively healthy middle-to-late aged adults enrolled in the Wisconsin Registry for Alzheimer's Prevention, we investigated whether fractional anisotropy (FA) within white matter regions known to decline with age was associated with task-related connectivity within the recognition network. RESULTS There was a positive relationship between fornix FA and memory performance, both of which negatively correlated with age. Psychophysiological interaction analyses revealed that higher fornix FA was associated with increased task-related connectivity amongst the hippocampus, caudate, precuneus, middle occipital gyrus, and middle frontal gyrus. In addition, better task performance was associated with increased task-related connectivity between the posterior cingulate gyrus, middle frontal gyrus, cuneus, and hippocampus. CONCLUSIONS The findings indicate that age has a negative effect on white matter microstructure, which in turn has a negative impact on memory performance. However, fornix microstructure did not significantly mediate the effect of age on performance. Of interest, dynamic functional connectivity was associated with better memory performance. The results of the psychophysiological interaction analysis further revealed that alterations in fornix microstructure explain-at least in part-connectivity among cortical regions in the recognition memory network. Our results may further elucidate the relationship between structural connectivity, neural function, and cognition.
Collapse
|
22
|
Abstract
The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system.
Collapse
Affiliation(s)
- Masahiro Akiyama
- a Faculty of Medicine and Graduate School of Comprehensive Human Sciences; Department of Physiological Chemistry ; University of Tsukuba ; Tennodai, Tsukuba , Japan
| | | |
Collapse
|
23
|
Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model. Exp Neurol 2015; 271:215-27. [PMID: 26079645 DOI: 10.1016/j.expneurol.2015.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 11/22/2022]
Abstract
LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes.
Collapse
|
24
|
Vann SD, Nelson AJD. The mammillary bodies and memory: more than a hippocampal relay. PROGRESS IN BRAIN RESEARCH 2015; 219:163-85. [PMID: 26072239 PMCID: PMC4498492 DOI: 10.1016/bs.pbr.2015.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Although the mammillary bodies were one of the first neural structures to be implicated in memory, it has long been assumed that their main function was to act primarily as a hippocampal relay, passing information on to the anterior thalamic nuclei and from there to the cingulate cortex. This view not only afforded the mammillary bodies no independent role in memory, it also neglected the potential significance of other, nonhippocampal, inputs to the mammillary bodies. Recent advances have transformed the picture, revealing that projections from the tegmental nuclei of Gudden, and not the hippocampal formation, are critical for sustaining mammillary body function. By uncovering a role for the mammillary bodies that is independent of its subicular inputs, this work signals the need to consider a wider network of structures that form the neural bases of episodic memory.
Collapse
|
25
|
Almaguer-Melian W, Mercerón-Martínez D, Pavón-Fuentes N, Alberti-Amador E, Leon-Martinez R, Ledón N, Delgado Ocaña S, Bergado Rosado JA. Erythropoietin Promotes Neural Plasticity and Spatial Memory Recovery in Fimbria-Fornix-Lesioned Rats. Neurorehabil Neural Repair 2015; 29:979-88. [PMID: 25847024 DOI: 10.1177/1545968315572389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Erythropoietin (EPO) upregulates the mitogen activated protein kinase (MAPK) cascade, a central signaling pathway in cellular plastic mechanisms, and is critical for normal brain development. OBJECTIVE We hypothesized that EPO could modulate the plasticity mechanisms supporting spatial memory recovery in fimbria-fornix-transected animals. METHODS Fimbria-fornix was transected in 3 groups of rats. Seven days later, EPO was injected daily for 4 consecutive days within 10 minutes after training on a water maze task. RESULTS Our results show that EPO injections 10 minutes after training produced a substantial spatial memory recovery in fimbria-fornix-lesioned animals. In contrast, an EPO injection shortly after fimbria-fornix lesion surgery does not promote spatial-memory recovery. Neither does daily EPO injection 5 hours after the water maze performance. EPO, on the other hand, induced the expression of plasticity-related genes like arc and bdnf, but this effect was independent of training or lesion. CONCLUSIONS This finding supports our working hypothesis that EPO can modulate transient neuroplastic mechanisms triggered by training in lesioned animals. Consequently, we propose that EPO administration can be a useful trophic factor to promote neural restoration when given in combination with training.
Collapse
Affiliation(s)
| | | | | | | | | | - Nuris Ledón
- Centro de Inmunología Molecular, La Habana, Cuba
| | | | | |
Collapse
|
26
|
Dillingham CM, Erichsen JT, O'Mara SM, Aggleton JP, Vann SD. Fornical and nonfornical projections from the rat hippocampal formation to the anterior thalamic nuclei. Hippocampus 2015; 25:977-92. [PMID: 25616174 PMCID: PMC4737193 DOI: 10.1002/hipo.22421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/24/2022]
Abstract
The hippocampal formation and anterior thalamic nuclei form part of an interconnected network thought to support memory. A central pathway in this mnemonic network comprises the direct projections from the hippocampal formation to the anterior thalamic nuclei, projections that, in the primate brain, originate in the subicular cortices to reach the anterior thalamic nuclei by way of the fornix. In the rat brain, additional pathways involving the internal capsule have been described, linking the dorsal subiculum to the anteromedial thalamic nucleus, as well as the postsubiculum to the anterodorsal thalamic nucleus. Confirming such pathways is essential in order to appreciate how information is transferred from the hippocampal formation to the anterior thalamus and how it may be disrupted by fornix pathology. Accordingly, in the present study, pathway tracers were injected into the anterior thalamic nuclei and the dorsal subiculum of rats with fornix lesions. Contrary to previous descriptions, projections from the subiculum to the anteromedial thalamic nucleus overwhelmingly relied on the fornix. Dorsal subiculum projections to the majority of the anteroventral nucleus also predominantly relied on the fornix, although postsubicular inputs to the lateral dorsal part of the anteroventral nucleus, as well as to the anterodorsal and laterodorsal thalamic nuclei, largely involved a nonfornical pathway, via the internal capsule. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jonathan T Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Nowrangi MA, Rosenberg PB. The fornix in mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2015; 7:1. [PMID: 25653617 PMCID: PMC4301006 DOI: 10.3389/fnagi.2015.00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/02/2015] [Indexed: 01/15/2023] Open
Abstract
The fornix is an integral white matter bundle located in the medial diencephalon and is part of the limbic structures. It serves a vital role in memory functions and as such has become the subject of recent research emphasis in Alzheimer's disease (AD) and mild cognitive impairment (MCI). As the characteristic pathological processes of AD progress, structural and functional changes to the medial temporal lobes and other regions become evident years before clinical symptoms are present. Though gray matter atrophy has been the most studied, degradation of white matter structures especially the fornix may precede these and has become detectable with use of diffusion tensor imaging (DTI) and other complimentary imaging techniques. Recent research utilizing DTI measurement of the fornix has shown good discriminability of diagnostic groups, particularly early and preclinical, as well as predictive power for incident MCI and AD. Stimulating and modulating fornix function by the way of DBS has been an exciting new area as pharmacological therapeutics has been slow to develop.
Collapse
Affiliation(s)
- Milap A Nowrangi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
28
|
Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model. PLoS One 2014; 9:e100873. [PMID: 24963809 PMCID: PMC4071009 DOI: 10.1371/journal.pone.0100873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
Objective Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention. Materials and Methods For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra “experimental group”) or water (sFlt-1 “positive control”) until weaning. The mFc group (“negative control”) received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI). MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis. Results Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes. Conclusion Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.
Collapse
|
29
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
30
|
Rhodehouse BC, Mayo JN, Beard RS, Chen CH, Bearden SE. Opening of the blood-brain barrier before cerebral pathology in mild hyperhomocysteinemia. PLoS One 2013; 8:e63951. [PMID: 23696861 PMCID: PMC3655957 DOI: 10.1371/journal.pone.0063951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for cognitive impairment. The purpose of this study was to determine the temporal pattern of cerebral pathology in a mouse model of mild HHcy, because understanding this time course provides the basis for understanding the mechanisms involved. C57Bl/6 mice with heterozygous deletion cystathionine β-synthase (cbs+/−; Het) were used as a model of mild HHcy along with their wild-type littermates (cbs+/+; WT). Mice were ‘young’ (5.3±0.2 months of age) and ‘old’ (16.6±0.9 months of age). Blood-brain barrier (BBB) permeability was quantified from Evans blue and sodium fluorescein extravasation. Microvascular architecture was assessed by z-stack confocal microscopy. Leukoaraiosis was measured from Luxol fast blue stained slides of paraffin brain sections. Inflammation was quantified using standard antibody-based immunohistochemical techniques. Cognitive function was assessed using the Morris water maze. BBB permeability was significantly greater in Het vs. WT mice at all ages (p<0.05). There were no differences in microvascular architecture among the groups. Compared with all other groups, old Het mice had significantly greater leukoaraiosis, inflammation in the fornix, and cognitive impairment (p<0.05). In mild HHcy, increased permeability of the BBB precedes the onset of cerebral pathology. This new paradigm may play a role in the progression of disease in HHcy.
Collapse
Affiliation(s)
- Bryce C. Rhodehouse
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Jamie N. Mayo
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Richard S. Beard
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Cheng-Hung Chen
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Shawn E. Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
- ISU Biomedical Research Institute, Idaho State University, Pocatello, Idaho, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lhx8 promote differentiation of hippocampal neural stem/progenitor cells into cholinergic neurons in vitro. In Vitro Cell Dev Biol Anim 2012; 48:603-9. [PMID: 23150137 DOI: 10.1007/s11626-012-9562-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
Lhx8, also named L3, is a recently identified member of the LIM homeobox gene family. Previously, we found acetylcholinesterase (AChE)-positive cells in fimbria-fornix (FF) transected rat hippocampal subgranular zone (SGZ). In the present study, we detected choline acetyltransferase (ChAT)-positive cholinergic cells in hippocampal SGZ after FF transaction, and these ChAT-positive cells were double labeled by Lhx8. Then we overexpressed Lhx8 during neural differentiation of hippocampal neural stem/progenitor cells on adherent conditions using lentivirus Lenti6.3-Lhx8. The result indicated that overexpression of Lhx8 did not affect the proportion of MAP2-positive neurons, but increased the proportion of ChAT-positive cells in vitro. These results suggested that FF-transected hippocampal niche promoted the ChAT/Lhx8-positive cholinergic neurons generation in rodent hippocampus, and Lhx8 was not associated with the MAP2-positive neurons differentiation on adherent conditions, but played a role in the specification of cholinergic neurons derived from hippocampal neural stem/progenitor cells in vitro.
Collapse
|
32
|
Lipponen A, Woldemichael BT, Gurevicius K, Tanila H. Artificial theta stimulation impairs encoding of contextual fear memory. PLoS One 2012; 7:e48506. [PMID: 23133638 PMCID: PMC3486864 DOI: 10.1371/journal.pone.0048506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz) and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.
Collapse
Affiliation(s)
- Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
33
|
Hattori T, Sato R, Aoki S, Yuasa T, Mizusawa H. Different patterns of fornix damage in idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol 2012; 33:274-9. [PMID: 22081679 PMCID: PMC7964782 DOI: 10.3174/ajnr.a2780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE The fornix contains efferent fibers of the hippocampus and is in close contact with the corpus callosum. Part of the fornix is directly attached to the corpus callosum, and another part is suspended from the corpus callosum via the septum pellucidum. DTI can be used to evaluate the morphology and microstructural integrity of the fornix. We examined the pattern of fornix damage in patients with iNPH or AD. MATERIALS AND METHODS We enrolled 22 patients with iNPH, 20 with AD, and 20 healthy controls. DTI data were obtained. The morphology (volume, length, and mean cross-sectional area) and FA values of the fornix were evaluated by using tract-specific analysis and compared among groups. RESULTS The volume, cross-sectional area, and FA value of the fornix were significantly smaller in patients with iNPH than in controls, whereas the length was significantly greater. In patients with AD, the volume, mean cross-sectional area, and FA value of the fornix were significantly smaller than those in controls, whereas the length was not altered. The fornix was significantly longer in patients with iNPH than in patients with AD, whereas the volume and cross-sectional areas were significantly smaller. CONCLUSIONS Our results suggest that the different pathogeneses of these diseases lead to fornix damage through different mechanisms: through mechanical stretching due to lateral ventricular enlargement and corpus callosum deformation in patients with iNPH, and through degeneration secondary to hippocampal atrophy in patients with AD.
Collapse
Affiliation(s)
- T Hattori
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
34
|
Zhang X, Jin G, Li W, Zou L, Shi J, Qin J, Tian M, Li H. Ectopic neurogenesis in the forebrain cholinergic system-related areas of a rat dementia model. Stem Cells Dev 2011; 20:1627-38. [PMID: 21142974 DOI: 10.1089/scd.2010.0285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lesions to the fimbria fornix (FiFx) plus cingulate bundle (CB), the principal routes of communication of forebrain cholinergic regions, produce lasting impairment of spatial learning and memory in mice. We report that extensive neurogenesis takes place in the FiFx, CB, and basalis magnocellularis following FiFx plus CB transection. Immunofluorescence revealed that nestin-expressing cells were present in all 3 areas following lesion; the majority of nestin-positive cells were also positive for 5-bromo-2-deoxy-uridine, a marker of DNA synthesis. Nestin-positive proliferative cells were almost entirely absent from unlesioned tissue. Neurospheres cultured in vitro from lesioned FiFx displayed the characteristics of neural stem cells--proliferation, expression of embryonic markers, and multipotential differentiation into neurons, astrocytes, and oligodendrocytes. At early stages after transection, a small number of immature and migrating doublecortin-immunopositive neurons were detected in lesioned FiFx, where neuronal cell bodies are normally absent. At later stages, postlesion immature neurons developed into β-tubulin III-positive mature neurons. Lentivirus labeling assay implied that the injury-induced neurogenesis in FiFx may be from local neurogenic astrocytes but not from dentate gyrus. These results demonstrate that insult to cholinergic tracts can stimulate neural stem cell proliferation and neuronal regeneration not only in innervated regions but also in the projection pathways themselves. Ectopic neurogenesis in cholinergic system-related areas provides an additional mechanism for repair of cholinergic innervation following damage.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy and Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong City, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao LH, Ding YX, Zhang L, Li L. Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria-fornix transected rats. Eur J Pharmacol 2010; 647:68-74. [PMID: 20826142 DOI: 10.1016/j.ejphar.2010.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 08/21/2010] [Indexed: 11/29/2022]
Abstract
Cornel iridoid glycoside (CIG) is a main component extracted from a traditional Chinese herb Cornus officinalis. Our previous study found that CIG improved neurological function in cerebral ischemic rats. The aim of this study was to investigate the therapeutic benefit of CIG in rats with fimbria-fornix transection (FFT) and explore the underlying molecular mechanisms. CIG (20, 60 and 180 mg/kg) or vehicle was intragastrically administered once daily to rats, starting immediately after the surgery and lasting for 4 weeks. Morris water maze and step-through tests showed that the memory deficits seen in FFT rats were significantly improved by CIG treatment. Immunohistochemical analysis showed that CIG treatment attenuated the loss of neurons in hippocampus. To elucidate the memory-improving mechanism of CIG, the neurotrophic factors, synaptic proteins and Bcl-2 family proteins in hippocampus were measured by Western blot analysis. FFT reduced hippocampal protein levels of nerve growth factor (NGF), tyrosine receptor kinase A (Trk A), brain-derived neurotrophic factor (BDNF), synaptophysin (SYP) and B-cell lymphoma-2 (Bcl-2), but not levels of tyrosine receptor kinase B (Trk B) and growth-associated protein 43 (GAP-43). FFT also elevated cytochorome C (Cyt c) and bcl-2-associated X protein (Bax). Administration of CIG to FFT rats significantly elevated the expression of NGF, TrkA, BDNF, SYP, GAP-43 and Bcl-2, and decreased the expression of Cyt c and Bax. These results indicated that CIG effectively counteracted cognitive impairments caused by fimbria-fornix lesions, and the mechanisms might be related to promoting neuronal survival and providing a beneficial environment for brain repair.
Collapse
Affiliation(s)
- Li-hong Zhao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, PR China
| | | | | | | |
Collapse
|
36
|
Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O. Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist 2010; 16:357-73. [DOI: 10.1177/1073858410371513] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Among the 23 members of the fibroblast growth factor (FGF) family, FGF-2 is the most abundant one in the central nervous system. Its impact on neural cells has been profoundly investigated by in vitro and in vivo studies as well as by gene knockout analyses during the past 2 decades. Key functions of FGF-2 in the nervous system include roles in neurogenesis, promotion of axonal growth, differentiation in development, and maintenance and plasticity in adulthood. From a clinical perspective, its prominent role for the maintenance of lesioned neurons (e.g., ischemia and following transection of fiber tracts) is of particular relevance. In the unlesioned brain, FGF-2 is involved in synaptic plasticity and processes attributed to learning and memory. The focus of this review is on the expression of FGF-2 and its receptors in the hippocampal formation and the physiological and pathophysiological roles of FGF-2 in this region during development and adulthood.
Collapse
Affiliation(s)
- Sabrina Zechel
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sandra Werner
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | - Klaus Unsicker
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
37
|
Aggleton JP, O'Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 2010; 31:2292-307. [PMID: 20550571 PMCID: PMC2936113 DOI: 10.1111/j.1460-9568.2010.07251.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review charts recent advances from a variety of disciplines that create a new perspective on why the multiple hippocampal–anterior thalamic interconnections are together vital for human episodic memory and rodent event memory. Evidence has emerged for the existence of a series of parallel temporal–diencephalic pathways that function in a reciprocal manner, both directly and indirectly, between the hippocampal formation and the anterior thalamic nuclei. These extended pathways also involve the mammillary bodies, the retrosplenial cortex and parts of the prefrontal cortex. Recent neuropsychological findings reveal the disproportionate importance of these hippocampal–anterior thalamic systems for recollective rather than familiarity-based recognition, while anatomical studies highlight the precise manner in which information streams are kept separate but can also converge at key points within these pathways. These latter findings are developed further by electrophysiological stimulation studies showing how the properties of the direct hippocampal–anterior thalamic projections are often opposed by the indirect hippocampal projections via the mammillary bodies to the thalamus. Just as these hippocampal–anterior thalamic interactions reflect an interdependent system, so it is also the case that pathology in one of the component sites within this system can induce dysfunctional changes to distal sites both directly and indirectly across the system. Such distal effects challenge more traditional views of neuropathology as they reveal how extensive covert pathology might accompany localised overt pathology, and so impair memory.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3AT, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Kitanishi T, Sakai J, Kojima S, Saitoh Y, Inokuchi K, Fukaya M, Watanabe M, Matsuki N, Yamada MK. Activity-dependent localization in spines of the F-actin capping protein CapZ screened in a rat model of dementia. Genes Cells 2010; 15:737-47. [PMID: 20545768 DOI: 10.1111/j.1365-2443.2010.01411.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actin reorganization in dendritic spines is hypothesized to underlie neuronal plasticity. Actin-related proteins, therefore, might serve as useful markers of plastic changes in dendritic spines. Here, we utilized memory deficits induced by fimbria-fornix transection (FFT) in rats as a dementia model to screen candidate memory-associated molecules by using a two-dimensional gel method. Comparison of protein profiles between the transected and control sides of hippocampi after unilateral FFT revealed a reduction in the F-actin capping protein (CapZ) signal on the FFT side. Subsequent immunostaining of brain sections and cultured hippocampal neurons revealed that CapZ localized in dendritic spines and the signal intensity in each spine varied widely. The CapZ content decreased after suppression of neuronal firing by tetrodotoxin treatment in cultured neurons, indicating rapid and activity-dependent regulation of CapZ accumulation in spines. To test input specificity of CapZ accumulation in vivo, we delivered high-frequency stimuli to the medial perforant path unilaterally in awake rats. This path selectively inputs to the middle molecular layer of the dentate gyrus, where CapZ immunoreactivity increased. We conclude that activity-dependent, synapse-specific regulation of CapZ redistribution might be important in both maintenance and remodeling of synaptic connections in neurons receiving specific spatial and temporal patterns of inputs.
Collapse
|
39
|
Experimental Studies on the Role(s) of Serotonin in Learning and Memory Functions. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1569-7339(10)70094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Viel TA, Lima Caetano A, Nasello AG, Lancelotti CL, Nunes VA, Araujo MS, Buck HS. Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1–40 peptide in rats. Neurobiol Aging 2008; 29:1805-14. [PMID: 17570564 DOI: 10.1016/j.neurobiolaging.2007.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/07/2007] [Accepted: 04/23/2007] [Indexed: 11/17/2022]
Abstract
Although numerous inflammation pathways have been implicated in Alzheimer's disease, the involvement of the kallikrein-kinin system is still under investigation. We anatomically localized and quantified the density of kinin B(1) and B(2) receptors binding sites in the rat brain after the infusion of amyloid-beta (Abeta) peptide in the right lateral brain ventricle for 5 weeks. The conditioned avoidance test showed a significant reduction of memory consolidation in rats infused with Abeta (68.6+/-20.9%, P<0.05) when compared to control group (90.8+/-4.1%; infused with vehicle). Autoradiographic studies performed in brain samples of both groups using [(125)I]HPP-[des-Arg(10)]-Hoe-140 (150pM, 90min, 25 degrees C) showed a significant increase in density of B(1) receptor binding sites in the ventral hippocampal commissure (1.23+/-0.07fmol/mg), fimbria (1.31+/-0.05fmol/mg), CA1 and CA3 hippocampal areas (1.05+/-0.03 and 1.24+/-0.02fmol/mg, respectively), habenular nuclei (1.30+/-0.04fmol/mg), optical tract (1.30+/-0.05fmol/mg) and internal capsule (1.26+/-0.05fmol/mg) in Abeta group. For B(2) receptors ([(125)I]HPP-Hoe-140, 200pM, 90min, 25 degrees C), a significant increase in density of binding sites was observed in optical tract (2.04+/-0.08fmol/mg), basal nucleus of Meynert (1.84+/-0.18fmol/mg), lateral septal nucleus - dorsal and intermediary portions (1.66+/-0.29fmol/mg), internal capsule (1.74+/-0.19fmol/mg) and habenular nuclei (1.68+/-0.11fmol/mg). In control group, none of these nuclei showed [(125)I]HPP-Hoe-140 labeling. This significant increase in densities of kinin B(1) and B(2) receptors in animals submitted to Abeta infusion was observed mainly in brain regions related to cognitive behavior, suggesting the involvement of the kallikrein-kinin system in Alzheimer's disease in vivo.
Collapse
Affiliation(s)
- Tania Araujo Viel
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
41
|
Harati H, Barbelivien A, Cosquer B, Majchrzak M, Cassel JC. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task. Neuroscience 2008; 153:72-83. [DOI: 10.1016/j.neuroscience.2008.01.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 11/16/2022]
|
42
|
Dumont J, Petrides M, Sziklas V. Functional dissociation between fornix and hippocampus in spatial conditional learning. Hippocampus 2008; 17:1170-9. [PMID: 17879374 DOI: 10.1002/hipo.20353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Do lesions of the fornix or the hippocampus impair the performance of spatial conditional associative learning tasks, and to what extent does damage to these brain structures result in comparable deficits in this type of spatial behavior? The available evidence is not clear. In the present study, rats with lesions of the fornix, hippocampus, and normal control animals were trained on two spatial-visual conditional learning tasks in which they had to form arbitrary associations between visual stimuli and the context in which these stimuli were embedded. In one condition, rats were required to choose stimulus X in place A and stimulus Y in place B, and there was no overlap in the contents of the two scenes. In the other condition, the animal approached the same scene from two different directions and had to select stimulus X when the scene was viewed from perspective A and to select stimulus Y when the scene was viewed from perspective B. Rats with fornix transection were able to learn both conditional tasks at a rate comparable to that of normal control animals, but rats with hippocampal damage were severely impaired under both conditions. The findings extend the range of tasks known to be sensitive to damage of the hippocampus. In addition, the results argue that the fornix is not necessary for the acquisition of certain spatial conditional learning tasks and that this brain structure cannot be used as an indicator of hippocampal dysfunction under all learning situations.
Collapse
Affiliation(s)
- J Dumont
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
43
|
Oswald BB, Maddox SA, Powell DA. Impairments in trace EB conditioning by knife-cut lesions to the fornix in rabbits: Reversal by galantamine. Neurobiol Learn Mem 2007; 88:369-80. [PMID: 17613252 DOI: 10.1016/j.nlm.2007.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/08/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Previous work in our laboratory demonstrated that galantamine, a cholinesterase inhibitor and weak cholinergic agonist, facilitated classical trace eyeblink conditioning in healthy, young rabbits [Simon, B. B., Knuckley, B., & Powell, D. A. (2004). Galantamine facilitates acquisition of a trace-conditioned eyeblink response in healthy, young rabbits. Learning & Memory, 11(1), 116-122.]. The current study investigated the effects of galantamine (0.0 or 3.0mg/kg) in rabbits sustaining knife-cut lesions to the fimbria-fornix, a major projection pathway connecting the hippocampus to cortical and subcortical brain structures involved in the formation of long-term memories. Two experiments were conducted. Experiment one assessed the effects of knife-cut lesions to the fornix or sham surgeries on trace eyeblink (EB) conditioning. Results indicate that fornix lesions significantly retarded EB conditioning when trace parameters were employed. Experiment 2 assessed whether treatment with galantamine would reverse the deficits caused by fornix damage. Results indicate that 3.0mg/kg GAL reversed trace EB conditioning deficits in animals with fornix knife-cut lesions. These findings suggest that galantamine may provide benefit in the reversal of cognitive dysfunction following certain types of brain damage, especially damage involving hippocampal structures.
Collapse
Affiliation(s)
- Barbara B Oswald
- Shirley L. Buchanan Neuroscience Laboratory (151A), WJB Dorn VA Medical Center, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | | | | |
Collapse
|
44
|
Ypsilanti AR, Girão da Cruz MT, Burgess A, Aubert I. The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiol Aging 2007; 29:1666-79. [PMID: 17507114 DOI: 10.1016/j.neurobiolaging.2007.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 02/10/2007] [Accepted: 04/04/2007] [Indexed: 01/19/2023]
Abstract
Cholinergic deficits occur in the aged hippocampus and they are significant in Alzheimer's disease. Using stereological and biochemical approaches, we characterized the cholinergic septohippocampal pathway in old (24 months) and young adult (3 months) rats. The total length of choline acetyltransferase (ChAT)-positive fibers in the dorsal hippocampus was significantly decreased by 32% with aging (F((1,9))=20.94, p=0.0014), along with the levels of synaptophysin, a presynaptic marker. No significant changes were detected in ChAT activity or in the amounts of ChAT protein, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin related kinase receptor (Trk) A, TrkB, or p75 neurotrophin receptor (p75(NTR)) in the aged dorsal hippocampus. The number and size of ChAT-positive neurons and the levels of ChAT activity, NGF and BDNF were not statistically different in the septum of aged and young adult rats. This study suggests that substantial synaptic loss and cholinergic axonal degeneration occurs during aging and reinforces the importance of therapies that can protect axons and promote their growth in order to restore cholinergic neurotransmission.
Collapse
Affiliation(s)
- Athéna Rebecca Ypsilanti
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Muller C, Herberth H, Cosquer B, Kelche C, Cassel JC, Schimchowitsch S. Structural and functional recovery elicited by combined putrescine and aminoguanidine treatment after aspirative lesion of the fimbria-fornix and overlying cortex in the adult rat. Eur J Neurosci 2007; 25:1949-60. [PMID: 17439484 DOI: 10.1111/j.1460-9568.2007.05474.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Damage to the adult CNS often causes permanent deficits. Based on a lesion model of septohippocampal pathway aspiration in the rat, we attempted to promote neuronal cell survival and post-traumatic recovery by using a pharmacological treatment combining aminoguanidine and putrescine (AGP). The functional recovery was followed over 15 weeks before morphological analysis. AGP treatment produced a persistent attenuation (approximately 50%) of the lesion-induced hyperactivity, a reduction (approximately 60%) in the sensorimotor impairments and an improved performance in the water-maze task which did not, however, rely upon improved memory capabilities. AGP weakened the lesion-induced decrease in ChAT-positive neurons in the medial septum and the extent of thalamic retrograde necrosis (by approximately 30% in each case) and resulted in a partial cholinergic reinnervation of the dentate gyrus. These promising results support the idea that coadministration of putrescine and aminoguanidine might become a potent way to foster structural and functional recovery (or compensation) in the adult mammalian CNS after injury.
Collapse
Affiliation(s)
- Christophe Muller
- Laboratoire de Neurosciences Comportementales et Cognitives, LINC UMR 7191, GDR 2905 CNRS, IFR 37, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
46
|
Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. ACTA ACUST UNITED AC 2006; 99:221-31. [PMID: 16646157 DOI: 10.1016/j.jphysparis.2005.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regeneration potential of the adult mammalian central nervous system (CNS) is very modest, due to, among other factors, the presence of either a glial scar, or myelin-associated regeneration inhibitors such as Nogo-A, MAG and OMgp, which all interact with the same receptor (NgR). After a brief review of the key proteins (Rho and PKC) implicated in NgR-mediated signalling cascades, we will tackle the implications of cAMP and Arginase I in overcoming myelin growth-inhibitory influence, and then will focus on the effects of polyamines and aminoguanidine to propose (and to briefly support this proposal by our own preliminary data) that their association might be a potent way to enable functionally-relevant regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- Sarah Schimchowitsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 CNRS--Université Louis Pasteur, IFR 37 Neurosciences, Strasbourg, France
| | | |
Collapse
|
47
|
Fletcher BR, Calhoun ME, Rapp PR, Shapiro ML. Fornix lesions decouple the induction of hippocampal arc transcription from behavior but not plasticity. J Neurosci 2006; 26:1507-15. [PMID: 16452674 PMCID: PMC6675482 DOI: 10.1523/jneurosci.4441-05.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The immediate-early gene (IEG) Arc is transcribed after behavioral and physiological treatments that induce synaptic plasticity and is implicated in memory consolidation. The relative contributions of neuronal activity and learning-related plasticity to the behavioral induction of Arc remain to be defined. To differentiate the contributions of each, we assessed the induction of Arc transcription in rats with fornix lesions that impair hippocampal learning yet leave cortical connectivity and neuronal firing essentially intact. Arc expression was assessed after exploration of novel environments and performance of a novel water maze task during which normal rats learned the spatial location of an escape platform. During the same task, rats with fornix lesions learned to approach a visible platform but did not learn its spatial location. Rats with fornix lesions had normal baseline levels of hippocampal Arc mRNA, but unlike normal rats, expression was not increased in response to water maze training. The integrity of signaling pathways controlling Arc expression was demonstrated by stimulation of the medial perforant path, which induced normal synaptic potentiation and Arc in rats with fornix lesions. Together, the results demonstrate that Arc induction can be decoupled from behavior and is more likely to indicate the engagement of synaptic plasticity mechanisms than synaptic or neuronal activity per se. The results further imply that fornix lesions may impair memory in part by decoupling neuronal activity from signaling pathways required for long-lasting hippocampal synaptic plasticity.
Collapse
|
48
|
Almaguer-Melian W, Rosillo JC, Frey JU, Bergado JA. Subcortical deafferentation impairs behavioral reinforcement of long-term potentiation in the dentate gyrus of freely moving rats. Neuroscience 2006; 138:1083-8. [PMID: 16426765 DOI: 10.1016/j.neuroscience.2005.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/17/2005] [Accepted: 12/01/2005] [Indexed: 11/29/2022]
Abstract
Long-term potentiation is a form of neural functional plasticity which has been related with memory formation and recovery of function after brain injury. Previous studies have shown that a transient early-long-term potentiation can be prolonged by direct stimulation of distinct brain areas, or behavioral stimuli with a high motivational content. The basolateral amygdala and other subcortical structures, like the medial septum and the locus coeruleus, are involved in mediating the reinforcing effect. We have previously shown that the lesion of the fimbria-fornix--the main entrance of subcortical afferents to the hippocampus--abolishes the reinforcing basolateral amygdala-effects on long-term potentiation in the dentate gyrus in vivo. It remains to be investigated, however, if such subcortical afferents may also be important for behavioral reinforcement of long-term potentiation. Young-adult (8 weeks) Sprague-Dawley male rats were fimbria-fornix-transected under anesthesia, and electrodes were implanted at the dentate gyrus and the perforant path. One week after surgery the freely moving animals were studied. Fimbria-fornix-lesion reduced the ability of the animals to develop long-term potentiation when a short pulse duration was used for tetanization (0.1 ms per half-wave of a biphasic stimulus), whereas increasing the pulse duration to 0.2 ms per half-wave during tetanization resulted in a transient early-long-term potentiation lasting about 4 h in the lesioned animals, comparable to that obtained in non-lesioned or sham-operated control rats. In water-deprived (24 h) control animals, i.e. in non-lesioned and sham-operated rats, early-long-term potentiation could be behaviorally reinforced by drinking 15 min after tetanization. However, in fimbria-fornix-lesioned animals long-term potentiation-reinforcement by drinking was not detected. This result indicates that the effect of behavioral-motivational stimuli to reinforce long-term potentiation is mediated by subcortical, heterosynaptic afferents.
Collapse
Affiliation(s)
- W Almaguer-Melian
- Centro Internacional de Restauración Neurológica, Ave. 25 # 15805, Cubanacán, Playa 11300, Ciudad de La Habana, Cuba
| | | | | | | |
Collapse
|
49
|
van der Staay FJ, Bouger P, Lehmann O, Lazarus C, Cosquer B, Koenig J, Stump V, Cassel JC. Long-term effects of immunotoxic cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats. Hippocampus 2006; 16:1061-79. [PMID: 17016816 DOI: 10.1002/hipo.20229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We therefore tested the effects of septal lesions produced by 192 IgG-saporin in rats, which is highly selective for basal forebrain cholinergic neurons, on home cage activity, noncognitive tests (modified Irwin test, open field and forced swimming tests, and various sensorimotor tasks), and the cone-field spatial learning task. The immunotoxic lesion reduced acetylcholine (ACh) levels in the septum (-61%) and hippocampus (>-75%). Rats with lesions showed mild home-cage hyperactivity at 4 weeks postlesion, but no noncognitive deficits at 13 weeks postsurgery. In the cone-field task, rats with septal lesions made more working- and reference-memory errors than the controls, but acquisition curves were parallel in both groups. The speed of visiting cones was faster in the rats with lesions, indicative of disturbed attention or increased motivation. These data support the growing evidence that involvement of the septohippocampal cholinergic system in spatial learning and memory may have been overestimated in studies that used lesions with poor selectivity.
Collapse
|
50
|
Pereira de Vasconcelos A, Klur S, Muller C, Cosquer B, Lopez J, Certa U, Cassel JC. Reversible inactivation of the dorsal hippocampus by tetrodotoxin or lidocaine: A comparative study on cerebral functional activity and motor coordination in the rat. Neuroscience 2006; 141:1649-63. [PMID: 16797129 DOI: 10.1016/j.neuroscience.2006.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/16/2006] [Accepted: 05/07/2006] [Indexed: 11/26/2022]
Abstract
Reversible inactivation of the hippocampus by lidocaine or tetrodotoxin is used to investigate implications of this structure in memory processes. Crucial points related to such inactivation are the temporal and spatial extents of the blockade. We compared effects of intrahippocampal infusions of commonly-used doses of lidocaine (5 or 10 mug) or tetrodotoxin (5 or 10 ng) in rats at two post-infusion delays (5 or 30 min), using 2-deoxyglucose autoradiography to visualize local cerebral glucose metabolism, and beam-walking performance to assess motor coordination. In addition, memory retrieval was evaluated in a water maze after bilateral infusions of 10 mug lidocaine. A unilateral tetrodotoxin infusion induced dose- and time-dependent reductions of 2-deoxyglucose uptake in the vicinity of the infusion site (dorsal hippocampus: -29% to -67%) and in other ipsi- and contralateral brain regions (ventral hippocampus, lateral thalamus, cortical regions). The maximal effect was at 10 ng, at the delay of 30 min between the tetrodotoxin infusion and the 2-deoxyglucose injection. Uni- and bilateral infusions of tetrodotoxin induced dramatic motor coordination deficits. Conversely, lidocaine reduced 2-deoxyglucose uptake (-19%) in the dorsal hippocampus only at 10 mug, with weak extrahippocampal effects. Whether infused uni- or bilaterally and regardless of the dose, lidocaine did not alter motor coordination. When infused bilaterally, however, 10 microg of lidocaine impaired short-term retrieval of spatial information in a water maze. Because lidocaine i) induced a weak though significant functional blockade mainly restricted to the infusion site, ii) had no consequences on motor coordination and, nevertheless iii) altered short-term spatial memory retrieval, we conclude that acute intrahippocampal infusions of lidocaine may offer some advantages over tetrodotoxin at the doses used herein.
Collapse
Affiliation(s)
- A Pereira de Vasconcelos
- LN2C FRE 2855, Université Louis Pasteur, ULP/CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, 12 rue Goethe, F 67000 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|