1
|
Arunorat J, Chusakulwong N, Sakunasing N, Matchimakul P. Comparative quantitation of liver-type fatty acid-binding protein localizations in liver injury and non-pathological liver tissue in dogs. Vet World 2024; 17:313-318. [PMID: 38595649 PMCID: PMC11000465 DOI: 10.14202/vetworld.2024.313-318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Liver injury results in the production of free radicals that can lead to hepatocytic degeneration, cirrhosis, and hepatocellular carcinoma (HCC). Liver-fatty acid-binding protein (L-FABP) is highly expressed in hepatocytes and is a key regulator of hepatic lipid metabolism and antioxidant characteristics. Interestingly, the increase in L-FABP expression could be used as a novel marker of liver injury. Therefore, this study aimed to use immunohistochemical techniques to investigate the expression of L-FABP in dogs with liver injury compared with dogs with non-pathological liver. Materials and Methods Liver tissue samples were collected from dog biopsy specimens at the Veterinary Diagnostic Laboratory at the Faculty of Veterinary Medicine, Chiang Mai University. The tissues were prepared for immunohistochemistry and the expression and localization of L-FABP were investigated using one-way analysis of variance. Results Immunohistochemical analysis showed that L-FABP was strongly expressed in the hepatocytes of dogs with lipidosis and HCC when compared with that in normal liver. Semi-quantitative immunohistochemistry evaluation showed the percentage of protein expression of L-FABP 0.023 ± 0.027 in the non-pathological liver. The percentage of L-FABP protein expression in lipidosis and HCC was found to be 8.517 ± 1.059 and 17.371 ± 4.026, respectively. Conclusion L-FABP expression in dogs with liver injuries was significantly higher than that in dogs with non-pathological liver injury (p = 0.05). These results suggest that L-FABP has the potential as a novel marker for specific diagnosis and prognosis of dogs with liver injury.
Collapse
Affiliation(s)
- Jirapat Arunorat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttawan Chusakulwong
- Academic Year 2565, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Natcha Sakunasing
- Academic Year 2565, Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pitchaya Matchimakul
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center for Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Bock HJ, Lee NK, Paik HD. Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H 2O 2-Induced Oxidative Stress. J Microbiol Biotechnol 2023; 33:1189-1196. [PMID: 37317628 PMCID: PMC10580890 DOI: 10.4014/jmb.2304.04045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Ji Bock
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Patil V, Mhamane S, More S, Pawar A, Arulmozhi S. Exploring the protective effect exhibited by curcumin-loaded coconut oil microemulsion in the experimental models of neurodegeneration: an insight of formulation development, in vitro and in vivo study. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Neurodegenerative diseases are a major health concern which requires promising drugs with appropriate drug delivery systems. The aim of the present study was development and characterization of curcumin-loaded coconut oil microemulsion (Cur-ME) and to improve the pharmacokinetic and pharmacodynamics performance. Initially, solubility study and emulsification study were performed for preliminary screening of the components. Pseudoternary phase diagram was constructed using selected components, and composition of Cur-ME was finalized. Furthermore, in vitro drug release in vivo pharmacokinetics and pharmacodynamic was performed.
Results
The final formulation exhibited globule size less than 20 nm with PDI and zeta potential as 0.24 and −17 mV, respectively. The formulation showed more than 90% drug content with no signs of precipitation upon dilution and centrifugation. In vitro drug release revealed 2.12-fold improvement in dissolution. In vivo plasma pharmacokinetics of Cur-ME revealed twofolds and 2.48-fold improvement in AUC and Cmax, respectively, than that of Cur-Sol. In vivo pharmacokinetics in adult zebrafish revealed significant enhancement (p < 0.01) in curcumin delivery to the brain with 1.96-fold and 1.92-fold improvement in Cmax and AUC, respectively. Furthermore, the pharmacodynamics of the formulation was evaluated using trimethyl tin (TMT)-induced neurodegeneration in wistar rats. The results revealed that Cur-ME treated group significantly decreased the escape latency and pathlength as compared to the neurodegeneration control group. The observed effects were also markedly significant than Cur-Sol treated group. Further, the brain malondialdehyde (MDA) and glutathione (GSH) levels were found to be increased significantly as compared to Cur-Sol treated group.
Conclusion
The encouraging results exhibited by Cur-ME can be regarded as a mark of an effective formulation that can be used in neurodegeneration. Overall, these findings indicate that an orally delivered microemulsion has enormous potential for drug delivery to the brain.
Collapse
|
5
|
Shim YJ, Shin MK, Jung J, Koo B, Jang W. An in-silico approach to studying a very rare neurodegenerative disease using a disease with higher prevalence with shared pathways and genes: Cerebral adrenoleukodystrophy and Alzheimer’s disease. Front Mol Neurosci 2022; 15:996698. [PMID: 36245924 PMCID: PMC9553843 DOI: 10.3389/fnmol.2022.996698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Cerebral adrenoleukodystrophy (cALD) is a rare neurodegenerative disease characterized by inflammatory demyelination in the central nervous system. Another neurodegenerative disease with a high prevalence, Alzheimer’s disease (AD), shares many common features with cALD such as cognitive impairment and the alleviation of symptoms by erucic acid. We investigated cALD and AD in parallel to study the shared pathological pathways between a rare disease and a more common disease. The approach may expand the biological understandings and reveal novel therapeutic targets. Gene set enrichment analysis (GSEA) and weighted gene correlation network analysis (WGCNA) were conducted to identify both the resemblance in gene expression patterns and genes that are pathologically relevant in the two diseases. Within differentially expressed genes (DEGs), GSEA identified 266 common genes with similar up- or down-regulation patterns in cALD and AD. Among the interconnected genes in AD data, two gene sets containing 1,486 genes preserved in cALD data were selected by WGCNA that may significantly affect the development and progression of cALD. WGCNA results filtered by functional correlation via protein–protein interaction analysis overlapping with GSEA revealed four genes (annexin A5, beta-2-microglobulin, CD44 molecule, and fibroblast growth factor 2) that showed robust associations with the pathogeneses of cALD and AD, where they were highly involved in inflammation, apoptosis, and the mitogen-activated protein kinase pathway. This study provided an integrated strategy to provide new insights into a rare disease with scant publicly available data (cALD) using a more prevalent disorder with some pathological association (AD), which suggests novel druggable targets and drug candidates.
Collapse
Affiliation(s)
- Yu Jeong Shim
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | - Junghyun Jung
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | | | - Wonhee Jang
- Department of Life Science, Dongguk University, Goyang-si, South Korea
- *Correspondence: Wonhee Jang,
| |
Collapse
|
6
|
Wang Y, Tan Z, Zhang Z, Zhu P, Tam SW, Zhang Z, Jiang X, Lin K, Tian L, Huang Z, Zhang S, Peng YK, Yung KKL. Facet-Dependent Activity of CeO 2 Nanozymes Regulate the Fate of Human Neural Progenitor Cell via Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35423-35433. [PMID: 35905295 DOI: 10.1021/acsami.2c09304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural progenitor cells (NPCs) therapy, a promising therapeutic strategy for neurodegenerative diseases, has a huge challenge to ensure high survival rate and neuronal differentiation rate. Cerium oxide (CeO2) nanoparticles exhibit multienzyme mimetic activities and have shown the capability of regulating reactive oxygen species (ROS), which is a pivotal mediator for intracellular redox homeostasis in NPCs, regulating biological processes including differentiation, proliferation, and apoptosis. In the present study, the role of facet-dependent CeO2-mediated redox homeostasis in regulating self-renewal and differentiation of NPCs is reported for the first time. The cube-, rod-, and octahedron-shaped CeO2 nanozymes with different facets are prepared. Among the mentioned nanozymes, the cube enclosed by the (100) facet exhibits the highest CAT-like activity, causing it to provide superior protection to NPCs from oxidative stress induced by H2O2; meanwhile, the octahedron enclosed by the (111) facet with the lowest CAT-like activity induces the most ROS production in ReNcell CX cells, which promotes neuronal differentiation by activated AKT/GSK-3β/β-catenin pathways. A further mechanistic study indicated that the electron density of the surface Ce atoms changed continuously with different crystal facets, which led to their different CAT-like activity and modulation of redox homeostasis in NPCs. Altogether, the different surface chemistry and atomic architecture of active sites on CeO2 exert modulation of redox homeostasis and the fate of NPCs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Sze Wah Tam
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Linyuan Tian
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University, HKSAR 999077, China
| | - Shiqing Zhang
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, HKSAR 999077, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (HKSAR), HKSAR 999077, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, HKSAR 999077, China
| |
Collapse
|
7
|
Bartolome F, Carro E, Alquezar C. Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants (Basel) 2022; 11:antiox11081421. [PMID: 35892623 PMCID: PMC9332496 DOI: 10.3390/antiox11081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress (OS) is the result of an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as an essential component of the pathophysiology of several neurodegenerative diseases, including tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant therapies looked promising in preclinical studies performed in cellular and animal models, the antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should be completely understood. Here, we review the link between OS and tauopathies, emphasizing the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have not been completely translated to clinical trials. This review aims to provide an integrated perspective of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more comprehensive understanding of OS in tauopathies that will positively impact future studies.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Program, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Carolina Alquezar
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
8
|
Ahiawodzi PD, Buzkova P, Djousse L, Ix JH, Kizer JR, Mukamal KJ. Nonesterified Fatty Acids and Hospitalizations Among Older Adults: The Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2021; 76:1326-1332. [PMID: 32914181 DOI: 10.1093/gerona/glaa228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We sought to determine associations between total serum concentrations of nonesterified fatty acids (NEFAs) and incident total and cause-specific hospitalizations in a community-living cohort of older adults. METHODS We included 4715 participants in the Cardiovascular Health Study who had fasting total serum NEFA measured at the 1992/1993 clinic visit and were followed for a median of 12 years. We identified all inpatient admissions requiring at least an overnight hospitalization and used primary diagnostic codes to categorize cause-specific hospitalizations. We used Cox proportional hazards regression models to determine associations with time-to-first hospitalization and Poisson regression for the rate ratios (RRs) of hospitalizations and days hospitalized. RESULTS We identified 21 339 hospitalizations during follow-up. In fully adjusted models, higher total NEFAs were significantly associated with higher risk of incident hospitalization (hazard ratio [HR] per SD [0.2 mEq/L] = 1.07, 95% confidence interval [CI] = 1.03-1.10, p < .001), number of hospitalizations (RR per SD = 1.04, 95% CI = 1.01-1.07, p = .01), and total number of days hospitalized (RR per SD = 1.06, 95% CI = 1.01-1.10, p = .01). Among hospitalization subtypes, higher NEFA was associated with higher likelihood of mental, neurologic, respiratory, and musculoskeletal causes of hospitalization. Among specific causes of hospitalization, higher NEFA was associated with diabetes, pneumonia, and gastrointestinal hemorrhage. CONCLUSIONS Higher fasting total serum NEFAs are associated with a broad array of causes of hospitalization among older adults. While some of these were expected, our results illustrate a possible utility of NEFAs as biomarkers for risk of hospitalization, and total days hospitalized, in older adults. Further research is needed to determine whether interventions based on NEFAs might be feasible.
Collapse
Affiliation(s)
- Peter D Ahiawodzi
- Department of Public Health, Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle
| | - Luc Djousse
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joachim H Ix
- Divisions of Nephrology and Preventive Medicine, University of California, San Diego
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Gómez-Sintes R, Arias E. Chaperone-mediated autophagy and disease: Implications for cancer and neurodegeneration. Mol Aspects Med 2021; 82:101025. [PMID: 34629183 DOI: 10.1016/j.mam.2021.101025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a proteolytic process whereby selected intracellular proteins are degraded inside lysosomes. Owing to its selectivity, CMA participates in the modulation of specific regulatory proteins, thereby playing an important role in multiple cellular processes. Studies conducted over the last two decades have enabled the molecular characterization of this autophagic pathway and the design of specific experimental models, and have underscored the importance of CMA in a range of physiological processes beyond mere protein quality control. Those findings also indicate that decreases in CMA function with increasing age may contribute to the pathogenesis of age-associated diseases, including neurodegeneration and cancer. In the context of neurological diseases, CMA impairment is thought to contribute to the accumulation of misfolded/aggregated proteins, a process central to the pathogenesis of neurodegenerative diseases. CMA therefore constitutes a potential therapeutic target, as its induction accelerates the clearance of pathogenic proteins, promoting cell survival. More recent evidence has highlighted the important and complex role of CMA in cancer biology. While CMA induction may limit tumor development, experimental evidence also indicates that inhibition of this pathway can attenuate the growth of established tumors and improve the response to cancer therapeutics. Here, we describe and discuss the evidence supporting a role of impaired CMA function in neurodegeneration and cancer, as well as future research directions to evaluate the potential of this pathway as a target for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas CIB-CSIC, 28040, Madrid, Spain; Department of Developmental and Molecular Biology & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Esperanza Arias
- Department of Medicine, Marion Bessin Liver Research Center & Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Mawwa J, Shamim SUD, Khanom S, Hossain MK, Ahmed F. In-plane graphene/boron nitride heterostructures and their potential application as toxic gas sensors. RSC Adv 2021; 11:32810-32823. [PMID: 35493562 PMCID: PMC9042146 DOI: 10.1039/d1ra06304a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
After the successful synthesis of graphene/hexagonal boron nitride (h-BN) heterostructures, research works have been carried out for their plausible real-world device applications. Such 2D nanosheets gain great attention as they have shown promising gas sensing properties due to their high surface-to-volume ratio and unique electronic properties between graphene and h-BN. Herein, we report a first-principles density functional theory investigation of the structural and electronic properties of pristine graphene (PG), pristine BN, and their in-plane heterostructures employing B3LYP and dispersion-corrected van der Waals functional WB97XD with the 6-311G (d, p) basis set. We found that these predicted nanosheets show good structural stability with favorable cohesive energy and the bandgap gradually increases with the increase in the B–N concentration. We have also studied their adsorption properties toward toxic gas molecules (SO2 and CO). Among these heterostructures, G2BN2 exhibits greater adsorption energy of about −0.237 eV and −0.335 eV when exposed to SO2 and CO gas molecules, respectively. The electronic properties such as HOMO and LUMO energies, HOMO–LUMO energy gap, Fermi level, work function, and conductivity significantly changed after the adsorption of SO2 gas on the nanosheets except for PG, whereas these parameters remain almost the same after the adsorption of the CO gas molecule. Mulliken and natural bond orbital (NBO) charge analysis reveals that charge transfer occurs from gas molecules to the nanosheets except when SO2 is adsorbed onto PG. Although the adsorption energies for CO gas are slightly greater than those for SO2 gas for these nanosheets, all other investigations such as electronic properties, charge transfer analysis, molecular electrostatic potential (MEP) map, and global indices predict that these nanosheets are good sensors for SO2 gas than CO gas molecules. DFT methods were used to study the surface geometry of in-plane 2D graphene/BN heterostructures and their effects on the adsorption properties.![]()
Collapse
Affiliation(s)
- Jannatul Mawwa
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Shamima Khanom
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Md Kamal Hossain
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University Dhaka Bangladesh
| |
Collapse
|
11
|
Yilmaz S, Alkan T, Ballar Kirmizibayrak P. A new underlying mechanism for the neuroprotective effect of bosutinib: Reverting toxicity-induced PARylation in SIN1-mediated neurotoxicity. J Biochem Mol Toxicol 2021; 35:e22915. [PMID: 34519134 DOI: 10.1002/jbt.22915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species play an important role in the development and progression of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The overproduction of these highly reactive chemical species leads to DNA damage and subsequent activation of the poly(ADP-ribose)polymerase (PARP) enzyme. Several studies have demonstrated the potential use of PARP inhibitors for neuroprotection. We previously reported that the dual Src/Abl kinase inhibitor bosutinib (BOS) decreases PARP activity and acts as a chemosensitizer in cancer cells. In this study, we evaluated the neuroprotective potential of BOS with respect to its inhibitory effect on cellular poly(ADP-ribos)ylation (PARylation) using a 3-morpholinosydnonimine (SIN1)-mediated cellular toxicity model. Our data suggest that pretreatment with BOS, especially at lower doses, significantly decreased the level of SIN1-induced cellular PARylation. This regulation pattern of PARylation was found to be associated with the protective effect of BOS against SIN1 on the viability of retinoic acid-differentiated SH-SY5Y cells. Furthermore, while PARP-1 expression was decreased, phosphorylation of SAPK/JNK was not reverted at the observed neuroprotective doses of BOS. In conclusion, we suggest a novel mechanism for the neuroprotective effect of BOS involving the inhibition of cellular PARylation.
Collapse
Affiliation(s)
- Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Tolgaç Alkan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.,Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer's disease: A preclinical evidence. Colloids Surf B Biointerfaces 2021; 205:111838. [PMID: 34022704 DOI: 10.1016/j.colsurfb.2021.111838] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Ferulic acid (FA) is a ubiquitous natural plant bioactive with distinctive promise in neurodegenerative disorders. However, its therapeutic efficacy gets compromised owing to its poor aqueous solubility, inadequate permeability across lipophilic barriers, and extensive first-pass metabolism. The current studies, therefore, were undertaken to systematically develop chitosan-coated solid lipid nanoparticles (SLNs) using QbD paradigms for improved efficacy of FA in the management of Alzheimer's disease (AD). SLNs of FA were formulated employing Compritol as lipid and polysorbate 80 as surfactant and optimised using a 32 Central Composite Design (CCD). The optimized formulation, surface-coated with chitosan using ionic gelation, exhibited particle size of 185 nm, entrapment efficiency of 51.2 % and zeta potential of 12.4 mV. FTIR and DSC studies verified the compatibility of FA with formulation excipients, PXRD construed significant loss of drug crystallinity, while FESEM depicted existence of uniform spherical nanoparticles with little aggregation. Notable improvement in ex vivo mucoadhesion and permeation studies using goat nasal mucosa, coupled with extension in in vitro drug release, was obtained with SLNs. Substantial improvement with SLNs in cognitive ability through the reduction in escape latency time during behavioural studies, together with significant improvement in various biochemical parameters and body weight gain was observed in AD-induced rats. Histopathological images of different rat organs showed no perceptible change(s) in tissue morphology. Overall, these preclinical findings successfully demonstrate improved anti-AD efficacy, superior nasal mucoadhesion and permeation, extended drug release, improved patient compliance potential, safety and robustness of the developed lipidic nanoconstructs of FA through intranasal route.
Collapse
Affiliation(s)
- Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India
| | - Harmanjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Arioz BI, Tufekci KU, Olcum M, Durur DY, Akarlar BA, Ozlu N, Bagriyanik HA, Keskinoglu P, Yener G, Genc S. Proteome profiling of neuron-derived exosomes in Alzheimer's disease reveals hemoglobin as a potential biomarker. Neurosci Lett 2021; 755:135914. [PMID: 33901610 DOI: 10.1016/j.neulet.2021.135914] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is a chronic and progressive neurodegenerative disorder, which is the most common cause of dementia worldwide. Although amyloid plaques and neurofibrillary tangles are identified as the hallmarks of the disease, the only valid diagnostic method yet is post-mortem imaging of these molecules in brain sections. Exosome is a type of extracellular vesicles secreted into extracellular space and plays fundamental roles in healthy and pathological conditions, including cell-to-cell communication. In this study, we aimed to investigate the proteomic contents of neuron-derived exosomes (NDEs) from AD patients and healthy controls (HCs) to identify a possible marker for AD diagnosis. We identified alpha-globin, beta-globin, and delta-globin increase in neuron-derived exosomes of AD patients compared to HCs with LC-MS/MS proteomics analysis. Then, we confirmed the high hemoglobin (Hb) level in NDEs of AD patients with ELISA. We found the area under the curve of hemoglobin level as 0.6913 with ROC analysis. Cargo proteins of NDEs may be useful diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Burak Ibrahim Arioz
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
| | - Melis Olcum
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Devrim Yagmur Durur
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Busra A Akarlar
- Department of Molecular Biology and Genetics, Faculty of Science, Koc University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Koc University, Istanbul, Turkey
| | - H Alper Bagriyanik
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Pembe Keskinoglu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Görsev Yener
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
14
|
Lohan S, Sharma T, Saini S, Swami R, Dhull D, Beg S, Raza K, Kumar A, Singh B. QbD-steered development of mixed nanomicelles of galantamine: Demonstration of enhanced brain uptake, prolonged systemic retention and improved biopharmaceutical attributes. Int J Pharm 2021; 600:120482. [PMID: 33737096 DOI: 10.1016/j.ijpharm.2021.120482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Numerous oral treatment options have been reported for neurological disorders, especially Alzheimer's disease (AD). Galantamine (GAL) is one of such drugs duly approved for management of AD. However, it exhibits poor brain penetration, low intestinal permeation and requires frequent dosing in AD treatment. The present studies, accordingly, were undertaken to develop DSPE-PEG 2000-based micelles loaded with GAL for efficient brain uptake, improved and extended pharmacokinetics, along with reduced dosing regimen. METHODS Mixed nanomicelles (MNMs) were systematically formulated using QbD approach, and characterized for morphology, entrapment efficiency andin vitrodrug release. RESULTS Studies on CaCo-2 and neuronal U-87 cell lines exhibited substantial enhancement in the cellular permeability and uptake of the developed MNMs. Pharmacokinetic studies performed on rats showed significantly improved values of plasma AUC (i.e., 2.28-fold, p < 0.001), ostensibly due to bypassing of hepatic first-pass metabolism and improved intestinal permeability, together with significant rise in MRT (2.08-fold, p < 0.001) and tmax (4.80-fold; p < 0.001) values, indicating immense potential for prolonged drug residence in body.Besides, substantial elevation in brain drug levels, distinctly improved levels of biochemical parameters in brain homogenates and cognitive improvement in β-amyloid-treated rats, testify the superiority in MNMs in therapeutic management of AD. CONCLUSIONS The preclinical findings of the developed nanocarrier systems successfully demonstrate the notable potential of enhanced drug efficacy, extended duration of action and improved patient compliance.
Collapse
Affiliation(s)
- Shikha Lohan
- National UGC Centre of Excellence in Application of Nanomaterials, Nanoparticles, and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Dinesh Dhull
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sarwar Beg
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Distt. Ajmer, Rajasthan 305 817, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Bhupinder Singh
- National UGC Centre of Excellence in Application of Nanomaterials, Nanoparticles, and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India; University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
15
|
Shin EJ, Chung YH, Sharma N, Nguyen BT, Lee SH, Kang SW, Nah SY, Wie MB, Nabeshima T, Jeong JH, Kim HC. Glutathione Peroxidase-1 Knockout Facilitates Memory Impairment Induced by β-Amyloid (1-42) in Mice via Inhibition of PKC βII-Mediated ERK Signaling; Application with Glutathione Peroxidase-1 Gene-Encoded Adenovirus Vector. Neurochem Res 2020; 45:2991-3002. [PMID: 33064252 DOI: 10.1007/s11064-020-03147-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
A growing body evidence suggests that selenium (Se) deficiency is associated with an increased risk of developing Alzheimer's disease (AD). Se-dependent glutathione peroxidase-1 (GPx-1) of a major antioxidant enzyme, and the most abundant isoform of GPx in the brain. In the present study, we investigated whether GPx-1 is protective against memory impairments induced by beta-amyloid (Aβ) (1-42) in mice. As the alteration of protein kinase C (PKC)-mediated ERK activation was recognized in the early stage of AD, we examined whether the GPx-1 gene modulates Aβ (1-42)-induced changes in PKC and ERK levels. We observed that Aβ (1-42) treatment (400 pmol, i.c.v.) significantly decreased PKC βII expression in the hippocampus of mice. Aβ (1-42)-induced neurotoxic changes [i.e., oxidative stress (i.e., reactive oxygen species, 4-hydroxy-2-noneal, and protein carbonyl), reduced PKC βII and phospho-ERK expressions, and memory impairment under Y-maze and passive avoidance test] were more pronounced in GPx-1 knockout than in wild type mice. Importantly, exposure to a GPx-1 gene-encoded adenovirus vector (Adv-GPx-1) significantly increased GPx-1 mRNA and GPx activity in the hippocampus of GPx-1 knockout mice. Adv-GPx-1 exposure also significantly blocked the neurotoxic changes induced by Aβ (1-42) in GPx-1 knockout mice. Treatment with ERK inhibitor U0126 did not significantly change Adv-GPx-1-mediated attenuation in PKC βII expression. In contrast, treatment with PKC inhibitor chelerythrine (CHE) reversed Adv-GPx-1-mediated attenuation in ERK phosphorylation, suggesting that PKC βII-mediated ERK signaling is important for Adv-GPx-1-mediated potentials against Aβ (1-42) insult. Our results suggest that treatment with the antioxidant gene GPx-1 rescues Aβ (1-42)-induced memory impairment via activating PKC βII-mediated ERK signaling.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Seoul, 06974, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myung Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
16
|
Venditti A, Bianco A. Sulfur-containing Secondary Metabolites as Neuroprotective Agents. Curr Med Chem 2020; 27:4421-4436. [PMID: 30207214 DOI: 10.2174/0929867325666180912105036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Sulfur-containing secondary metabolites are a relatively small group of substances of plant origin. The present review is focused on their neuroprotective properties. The results obtained in a series of in vitro and in vivo studies are reported. Among glucosinolates, the wide class of compounds in the sulfur-containing metabolites, glucoraphanin, sulforaphane and isothiocyanates proved to be the more studied in this context and showed interesting properties as modulators of several systems involved in the pathogenesis of neurologic diseases such as oxidative stress, inflammation and apoptosis. Allium sativum L. (garlic) is widely known for its sulfur-containing components endowed with health-promoting activities and its medicinal properties are known from ancient times. In recent studies, garlic components proved active in neuroprotection due to the direct and indirect antioxidant properties, modulation of apoptosis mediators and inhibiting the formation of amyloid protein. Dihydroasparagusic acid, the first dimercaptanic compound isolated from a natural source, effectively inhibited inflammatory and oxidative processes that are important factors for the etiopathogenesis of neurodegenerative diseases, not only for its antioxidant and radical scavenging properties but also because it may down-regulate the expression of several microglial-derived inflammatory mediators. Serofendic acid represents a rare case of sulfur-containing animal-derived secondary metabolite isolated from fetal calf serum extract. It proved effective in the suppression of ROS generation and in the expression of several inflammatory and apoptosis mediators and showed a cytotrophic property in astrocytes, promoting the stellation process. Lastly, the properties of hydrogen sulfide were also reported since in recent times it has been recognized as a signaling molecule and as a mediator in regulating neuron death or survival. It may be produced endogenously from cysteine but may also be released by sulfur-containing secondary metabolites, mainly from those present in garlic.
Collapse
Affiliation(s)
- Alessandro Venditti
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Armandodoriano Bianco
- Dipartimento di Chimica, Universita di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
17
|
He Y, Xu W, Qin Y. Structural characterization and neuroprotective effect of a polysaccharide from Corydalis yanhusuo. Int J Biol Macromol 2020; 157:759-768. [DOI: 10.1016/j.ijbiomac.2020.01.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
18
|
Interplay between Oxidative Stress, Inflammation, and Amyloidosis in the Anterior Segment of the Eye; Its Pathological Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6286105. [PMID: 32566091 PMCID: PMC7291327 DOI: 10.1155/2020/6286105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
There are different pathologies associated with amyloidogenic processes caused by the increase of reactive oxygen species (ROS) and the overactivation of inflammatory responses. These alterations are present in different regions of the anterior segment of the eye, and they have been associated with the development and progression of ocular pathologies, such as glaucoma, dry eye syndrome, keratitis, and cataracts among other pathologies. Aim. To discuss briefly the anatomical characteristics of the anterior segment of the eye and describe the interaction between oxidative stress (OS) and inflammatory responses, emphasizing the misfolding of several proteins leading to amyloidogenic processes occurring in the anterior segment and their implications in the development of ocular diseases. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms “eye,” “anterior segment”, “inflammation”, “oxidative stress”, and “amyloidosis”. The search encompassed manuscripts published up to April 2019. A hundred forty-four published studies met the inclusion criteria. We present the current knowledge regarding the interaction between OS and the activation of inflammatory processes and how both can cause conformational changes in several peptides and proteins in each compartment of the anterior segment. However, we found that there is no consensus about which factor is the first to cause amyloidosis. Our conclusions suggest that there is an interplay among these factors forming a vicious cycle that leads to the loss of protein structure in ocular pathologies, and multifactorial therapies should be developed to avoid protein misfolding and to stop the progression of ocular pathologies.
Collapse
|
19
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Premratanachai A, Suwanjang W, Govitrapong P, Chetsawang J, Chetsawang B. Melatonin prevents calcineurin-activated the nuclear translocation of nuclear factor of activated T-cells in human neuroblastoma SH-SY5Y cells undergoing hydrogen peroxide-induced cell death. J Chem Neuroanat 2020; 106:101793. [PMID: 32348875 DOI: 10.1016/j.jchemneu.2020.101793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
The interaction between the activation of protein phosphatase, calcineurin (CaN), and the dephosphorylation and nuclear translocation of nuclear factor of activated T-cells (NFAT), a transcriptional factor in the immune system, has attracted interest as a key factor responsible for the cell death process. In this study, the effects of melatonin on the interaction between CaN and NFAT signaling during oxidative stress-induced cell death were investigated. Human neuroblastoma SH-SY5Y cells were treated with the non-radical reactive oxygen species hydrogen peroxide (H2O2). Cells were treated with 200 μM H2O2 for the indicated time. Some H2O2-treated cells were pretreated with melatonin for 1 h. Control cells were treated with the same concentration of ethanol used to dilute melatonin. H2O2-induced cell death promoted increases in reactive oxygen species (ROS) production and the nuclear translocation of NFAT, which were related to increased levels the active, cleaved form of CaN (32.5 kDa). In addition, pretreatment of H2O2-treated cells with melatonin decreased cell death, ROS production, the levels of the active-cleaved form of CaN and the nuclear translocation of NFAT. Based on these findings, melatonin may exert its neuroprotective effects on oxidative damage-induced cell death by inhibiting CaN-activated the nuclear translocation of NFAT.
Collapse
Affiliation(s)
- Asawin Premratanachai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Jirapa Chetsawang
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.
| |
Collapse
|
21
|
Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complement Ther Med 2019; 49:102294. [PMID: 32147039 DOI: 10.1016/j.ctim.2019.102294] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The aim of this research was to review the literature on Alzheimer's disease (AD) with a focus on polyphenolics as antioxidant therapeutics. DESIGN This review included a search of the literature up to and including September 2019 in PubMed and MEDLINE databases using search terms that included: Alzheimer's Disease, Aβ peptide, tau, oxidative stress, redox, oxidation, therapeutic, antioxidant, natural therapy, polyphenol. Any review articles, case studies, research reports and articles in English were identified and subsequently interrogated. Citations within relevant articles were also examined for consideration in this review. RESULTS Alzheimer's disease is a neurodegenerative disorder that is clinically characterised by the progressive deterioration of cognitive functions and drastic changes in behaviour and personality. Due to the significant presence of oxidative damage associated with abnormal Aβ accumulation and neurofibrillary tangle deposition in AD patients' brains, antioxidant drug therapy has been investigated as potential AD treatment. In particular, naturally occurring compounds, such as plant polyphenols, have been suggested to have potential neuroprotective effects against AD due to their diverse array of physiological actions, which includes potent antioxidant effects. CONCLUSIONS The impact of oxidative stress and various mechanisms of pathogenesis in AD pathophysiology was demonstrated along with the therapeutic potential of emergent antioxidant drugs to address such mechanism of oxidation.
Collapse
Affiliation(s)
- Luke Cassidy
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia
| | - Francesca Fernandez
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia.
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Akeem G Owoola
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| |
Collapse
|
22
|
Rodrigues MV, Gutierres JM, Carvalho F, Lopes TF, Antunes V, da Costa P, Pereira ME, Schetinger MRC, Morsch VM, de Andrade CM. Protection of cholinergic and antioxidant system contributes to the effect of Vitamin D 3 ameliorating memory dysfunction in sporadic dementia of Alzheimer's type. Redox Rep 2019; 24:34-40. [PMID: 31100998 PMCID: PMC6748631 DOI: 10.1080/13510002.2019.1617514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Investigate Vitamin D3 (VD3) effect on the Acetylcholinesterase (AChE), oxidative damage and behavioral tests in animals subjected to Intracerebroventicular injection of Streptozotocin (ICV-STZ) simulating a Sporadic Dementia of Alzheimer's Type (SDAT) and treated with VD3 (21 days). METHODS Animals were divided into eight groups: Vehicle, VD12.5 μg/kg, VD42 μg/kg, VD125 μg/kg, STZ, STZ+VD12.5 μg/kg, STZ+VD42 μg/kg, STZ+VD125 μg/kg. RESULTS VD3 prevented the increase in AChE in groups of VD42 µg/kg and VD125 µg/kg; in AChE of synaptossomes and TBARS levels prevented the increase in group VD125 µg/kg; in ROS levels there was not a significant difference; for the Carbonyl Content all doses prevented the increase. Total Thiols prevent the decrease in VD42 µg/kg and VD125 µg/kg, and Reduced Glutathione prevented the decrease in VD125 µg/kg, Oxidized Glutathione prevented the increase in VD125 µg/kg. In relation to behavioral tests, the VD3 prevented the increase in time to find (days 2 and 3), in the time to find the platform (day 3) and in time spent in the quadrant (day 2). However, in relation to crossings there was not difference in groups. These results indicated the therapeutic effect of the VD3 in model of STZ in rats.
Collapse
Affiliation(s)
- Marilia Valvassori Rodrigues
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jessié Martins Gutierres
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiano Carvalho
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thauan Faccin Lopes
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Vitor Antunes
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Pauline da Costa
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria Estér Pereira
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Vera M. Morsch
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia Melazzo de Andrade
- Departamento de Pequenos animais, Hospital Vetrinário, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
23
|
Zhang J, Tang C, Liao W, Zhu M, Liu M, Sun N. The antiapoptotic and antioxidative stress effects of Zhisanzhen in the Alzheimer's disease model rat. Neuroreport 2019; 30:628-636. [PMID: 31095002 DOI: 10.1097/wnr.0000000000001243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zhisanzhen, a type of acupuncture method, has been commonly used in the treatment of various neurodegenerative disorders in clinics in China. The aim of this study was to confirm the effect of Zhisanzhen on Alzheimer's disease and the associated mechanism. We used D-galactose and Aβ1-40 injections to establish a rat model of AD. Rats were divided into four groups: normal group, AD group, AD+manual acupuncture (control) group, and AD+manual acupuncture (Zhisanzhen) group. Zhisanzhen was used to treat the AD model rats. We found that Zhisanzhen improved behavioral performance, reduced oxidative stress, increased the neurotransmitter acetylcholine concentration, reduced apoptosis in hippocampal neurons, and down-regulated the expression of apoptosis-related genes and proteins. Compared with those in the AD group, these parameters were clearly different in the Zhisanzhen control group (P<0.05). These results suggest that Zhisanzhen can markedly enhance learning and memory and reverse the symptoms of Alzheimer's disease in AD model rats, which may be related to the role of Zhisanzhen in increasing chAT and Ache activity, decreasing oxidative stress and inhibiting neuronal apoptosis.Video abstract: http://links.lww.com/WNR/A517.
Collapse
Affiliation(s)
- Jianguo Zhang
- RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine
| | - Wenyan Liao
- College of Traditional Chinese Medicine, Macau University of Science and Technology, Macau
| | - Mingmin Zhu
- Traditional Chinese Medical College of Jinan University, Guangzhou
| | - Ming Liu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Shenzhen
| | - Ningning Sun
- Jiaozuo Hospital of Traditional Chinese Medicine, Henan, China
| |
Collapse
|
24
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
25
|
Neuroprotective effects of 1`δ-1`-acetoxyeugenol acetate on Aβ(25-35) induced cognitive dysfunction in mice. Biomed Pharmacother 2019; 109:1454-1461. [DOI: 10.1016/j.biopha.2018.10.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
|
26
|
Li M, Zhu Y, Peng W, Wang H, Yuan Y, Gu X. Achyranthes bidentata Polypeptide Protects Schwann Cells From Apoptosis in Hydrogen Peroxide-Induced Oxidative Stress. Front Neurosci 2018; 12:868. [PMID: 30555292 PMCID: PMC6284036 DOI: 10.3389/fnins.2018.00868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
ABPPk, the active ingredient separated from Achyranthes bidentata polypeptides, is a traditional Chinese medicine with multiple pharmaceutical properties. In this study, we investigated the molecular mechanisms of ABPPk in protecting Schwann cells (SCs) from H2O2-induced cell apoptosis. The viability of SCs pretreated with ABPPk was elevated significantly by MTT assay estimation. Meanwhile, the apoptosis of SCs was reduced which was showed in flow cytometry and transferase-mediated dUTP nick end labeling analysis. Furthermore, the addition of ABPPk also increased the activities of SOD and GSH accompanied with a decrease in MDA and LDH activities. According to Western blot analysis, the upregulation of Bcl-2, also downregulation of Bax and cleaved caspase-3 were demonstrated in SCs which was ABPPk pretreated. Further research showed that PI3K/AKT and ERK1/2 pathways in SCs have been activated after pretreatment of ABPPk. Collectively, results in our study suggested that ABPPk protected SCs from H2O2-induced oxidative damage by reducing the expression of apoptotic molecules and enhancing the activities of antioxidant enzymes, which inhibited the apoptosis of SCs modulated by PI3K/AKT and ERK1/2 signaling pathways. In our perspectives, ABPPk as an active factor with its antioxidative activities has potential and promising therapeutic effects in the prevention of neurologic disorders.
Collapse
Affiliation(s)
- Meiyuan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenqiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
27
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
28
|
Jia J, Zhang T, Chi J, Liu X, Sun J, Xie Q, Peng S, Li C, Yi L. Neuroprotective Effect of CeO 2@PAA-LXW7 Against H 2O 2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells. Neurochem Res 2018; 43:1439-1453. [PMID: 29882125 DOI: 10.1007/s11064-018-2559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
CeO2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO2@PAA-LXW7, a new compound that couples CeO2@PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H2O2-induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO2@PAA, and CeO2@PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H2O2-induced injury. We used H2O2-induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO2@PAA-LXW7. In this study, LXW7, CeO2@PAA, and CeO2@PAA-LXW7 inhibit H2O2-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H2O2-induced NGF-differentiated PC12 cells, whereas LXW7, CeO2@PAA, and CeO2@PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO2@PAA-LXW7 on H2O2-induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO2@PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H2O2-induced NGF-differentiated PC12 cells. LXW7, CeO2@PAA, and CeO2@PAA-LXW7 can play neuroprotective roles by counteracting the oxidative stress and apoptosis induced by H2O2 in NGF-differentiated PC12 cells. CeO2@PAA-LXW7 exerting a more powerful synergistic effect via the conjunction of LXW7 and CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Ting Zhang
- Department of Phoenix international medical center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jieshan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiaoma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
29
|
Lewerenz J, Ates G, Methner A, Conrad M, Maher P. Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Front Neurosci 2018; 12:214. [PMID: 29731704 PMCID: PMC5920049 DOI: 10.3389/fnins.2018.00214] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about whether these are two distinct pathways or cell type- and insult-dependent variations on the same pathway. In this review, we compare and contrast in detail the commonalities and distinctions between the two pathways concluding that the molecular pathways involved in the regulation of ferroptosis and oxytosis are highly similar if not identical. Thus, we suggest that oxytosis and ferroptosis should be regarded as two names for the same cell death pathway. In addition, we describe the potential physiological relevance of oxytosis/ferroptosis in multiple neurological diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Axel Methner
- Department of Neurology, University Medical Center and Focus Program Translational Neuroscience of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
30
|
Oliveira AI, Pinho C, Fonte P, Sarmento B, Dias AC. Development, characterization, antioxidant and hepatoprotective properties of poly(Ɛ-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int J Biol Macromol 2018; 110:185-196. [DOI: 10.1016/j.ijbiomac.2017.10.103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022]
|
31
|
Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ 1-42) induced neurotoxicity in PC12 cells. Neurosci Lett 2018; 673:33-38. [PMID: 29499310 DOI: 10.1016/j.neulet.2018.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022]
Abstract
Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ1-42-induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ1-42-induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ1-42-induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ1-42-induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ1-42-treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ1-42-induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ1-42 -induced neurotoxicity via the activation of BDNF signaling.
Collapse
|
32
|
Koh EJ, Kim KJ, Song JH, Choi J, Lee HY, Kang DH, Heo HJ, Lee BY. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice. Int J Mol Sci 2017; 18:ijms18112401. [PMID: 29137190 PMCID: PMC5713369 DOI: 10.3390/ijms18112401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
Spirulina maxima, a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1–42 (Aβ1–42) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ1–42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ1–42-injected mice. SM70EE reduced hippocampal Aβ1–42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ1–42-injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ1–42-injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ1–42-injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ1–42-injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ1–42-induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ1–42 in mice.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Ji-Hyeon Song
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Hyeon Yong Lee
- Department of Food Science and Engineering, Seowon University, Cheongju 28674, Korea.
| | - Do-Hyung Kang
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea.
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| |
Collapse
|
33
|
Chowdhury AA, Gawali NB, Bulani VD, Kothavade PS, Mestry SN, Deshpande PS, Juvekar AR. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d-galactose induced cognitive impairment. Pharmacol Rep 2017; 70:372-377. [PMID: 29477946 DOI: 10.1016/j.pharep.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs) and cognitive impairment. Literature cites the role of advanced glycation end products (AGEs) in AD due to increased cytotoxicity via oxidative stress. d-galactose (d-gal) induced amnesia stimulates Aβ overproduction via increased oxidative stress and AGEs. Trigonelline (TRG), a naturally occurring alkaloid has been reported to have neuroprotective and antidiabetic properties. METHODS Present study assessed the protective effect of TRG against in vitro AGEs formation. Since chronic administration of d-gal increases AGEs, we subsequently investigated the neuroprotective role of TRG (50 and 100 mg/kg as per body weight) against d-gal induced amnesia. Mice were subcutaneously (sc) injected with d-gal (150 mg/kg) for 6 weeks. Behavioral assessments in Morris water maze (MWM) and Y-maze were performed, followed by biochemical estimations to deduce the probable mechanism of action. RESULTS In vitro experiments demonstrated that TRG stalled early and late AGEs formation. Chronic d-gal administration significantly impaired cognitive performance in MWM and Y maze, caused marked oxidative damage, elevated the AGEs levels and significantly increased the acetylcholinesterase levels as compared to sham group. TRG (50 and 100 mg/kg) treatment significantly ameliorated cognitive performance, reversed the oxidative damage, decreased AGE levels and caused significant decline in acetylcholine esterase levels as compared to d-gal group. CONCLUSION Present study highlights the neuroprotective role of TRG against d-gal induced amnesia due to the antioxidant, antiglycative and anticholinesterase properties.
Collapse
Affiliation(s)
- Amrita A Chowdhury
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Nitin B Gawali
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Vipin D Bulani
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Pankaj S Kothavade
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Snehal N Mestry
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Padmini S Deshpande
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India
| | - Archana R Juvekar
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, India.
| |
Collapse
|
34
|
A DFT Study of Structural and Bonding Properties of Complexes Obtained from First-Row Transition Metal Chelation by 3-Alkyl-4-phenylacetylamino-4,5-dihydro-1H-1,2,4-triazol-5-one and Its Derivatives. Bioinorg Chem Appl 2017; 2017:5237865. [PMID: 28757814 PMCID: PMC5512031 DOI: 10.1155/2017/5237865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
Density functional calculations were used to explore the complexation of 3-alkyl-4-phenylacetylamino-4,5-dihydro-1h-1,2,4-triazol-5-one (ADPHT) derivatives by first-row transition metal cations. Neutral ADPHT ligand and mono deprotonated ligands have been used. Geometry optimizations have been performed in gas-phase and solution-phase (water, benzene, and N,N-dimethylformamide (DMF)) with B3LYP/Mixed I (LanL2DZ for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) and with B3LYP/Mixed II (6-31G(d) for metal atom and 6-31+G(d,p) for C, N, O, and H atoms) especially in the gas-phase. Single points have also been carried out at CCSD(T) level. The B3LYP/Mixed I method was used to calculate thermodynamic energies (energies, enthalpies, and Gibb energies) of the formation of the complexes analyzed. The B3LYP/Mixed I complexation energies in the gas phase are therefore compared to those obtained using B3LYP/Mixed II and CCSD(T) calculations. Our results pointed out that the deprotonation of the ligand increases the binding affinity independently of the metal cation used. The topological parameters yielded from Quantum Theory of Atom in Molecules (QTAIM) indicate that metal-ligand bonds are partly covalent. The significant reduction of the proton affinity (PA) observed when passing from ligands to complexes in gas-phase confirms the notable enhancement of antioxidant activities of neutral ligands.
Collapse
|
35
|
Choi SY, Kim JH, Lee J, Lee S, Cho EJ. Protective effect ofAcer okamotoanumfrom oxidative stress in C6 glial cells. ACTA ACUST UNITED AC 2017. [DOI: 10.3839/jabc.2017.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Soo Yeon Choi
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jaemin Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
36
|
Dysregulation of intracellular trafficking and endosomal sorting in Alzheimer's disease: controversies and unanswered questions. Biochem J 2017; 473:1977-93. [PMID: 27407168 DOI: 10.1042/bcj20160147] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid plaques in the brain consisting of an aggregated form of amyloid β-peptide (Aβ) derived from sequential amyloidogenic processing of the amyloid precursor protein (APP) by membrane-bound proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. The initial processing of APP by BACE1 is re-gulated by intracellular sorting events of the enzyme, which is a prime target for therapeutic intervention. GWAS (genome-wide sequencing studies) have identified several AD-susceptibility genes that are associated with the regulation of membrane trafficking, and substantial evidence now indicates that AD is likely to arise from defective membrane trafficking in either or both of the secretory and endocytic pathways. Considerable progress has been made in defining the intracellular trafficking pathways of BACE1 and APP and the sorting signals of these membrane proteins that define their itineraries. In this review we highlight recent advances in understanding the regulation of the intracellular sorting of BACE1 and APP, discuss how dysregulation of these trafficking events may lead to enhanced generation of the neurotoxic Aβ products in AD and highlight the unresolved questions in the field.
Collapse
|
37
|
Arafa RK, Elghazawy NH. Personalized Medicine and Resurrected Hopes for the Management of Alzheimer's Disease: A Modular Approach Based on GSK-3β Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:199-224. [PMID: 28840559 DOI: 10.1007/978-3-319-60733-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurological disorders with vast reaching worldwide prevalence. Research attempts to decipher what's happening to the human mind have shown that pathogenesis of AD is associated with misfolded protein intermediates displaying tertiary structure conformational changes eventually leading to forming large polymers of unwanted aggregates. The two hallmarks of AD pathological protein aggregates are extraneuronal β-amyloid (Aβ) based senile plaques and intraneuronal neurofibrillary tangles (NFTs). As such, AD is categorized as a protein misfolding neurodegenerative disease (PMND) . Therapeutic interventions interfering with the formation of these protein aggregates have been widely explored as potential pathways for thwarting AD progression. One such tactic is modulating the function of enzymes involved in the metabolic pathways leading to formation of these misfolded protein aggregates. Much evidence has shown that glycogen synthase kinase-3β (GSK-3β) plays a key role in hyperphosphorylation of tau protein leading eventually to its aggregation to form NFTs. Data presented hereby will display a plethora of information as to how to interfere with progression of AD through the route of GSK-3β activity control.
Collapse
Affiliation(s)
- Reem K Arafa
- Zewail City of Science and Technology, Cairo, 12588, Egypt.
| | | |
Collapse
|
38
|
Kim S, Chin YW, Cho J. Protection of Cultured Cortical Neurons by Luteolin against Oxidative Damage through Inhibition of Apoptosis and Induction of Heme Oxygenase-1. Biol Pharm Bull 2017; 40:256-265. [DOI: 10.1248/bpb.b16-00579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Berger MM, Jia XY, Legay V, Aymard M, Tilles JG, Lina B. Nutrition- and Virus-Induced Stress Represses the Expression of Manganese Superoxide Dismutase in Vitro. Exp Biol Med (Maywood) 2016; 229:843-9. [PMID: 15337840 DOI: 10.1177/153537020422900818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between oxidative stress and neuronal cell death has been suggested for many years. To understand the influence of oxidative stress on neuronal cell death, we investigated the influence of oxidative stress on DEV cells, a human glial cell line. Using enterovirus infection and/or malnutrition to induce oxidative stress, our results demonstrate that those stressors severely influence the antioxidant defense system in DEV cells. Although the expression of mitochondrial manganese superoxide dismutase (MnSOD) in DEV cells was significantly increased in acute infection with viral and nutritional stress, in persistent infection and nutritional stress, the expression of the MnSOD was drastically downregulated. We believe that this downregulation of MnSOD expression in the chronic stress model is due to repression of antioxidant defense. The downregulation of the MnSOD expression may lead to an increase of free-radical production and thus explain why the cells in the chronic stress model were more vulnerable to other oxidative stress influences. The vulnerability of DEV cells to additional stress factors resulted in progressive cell death, which may be analogous to the cell death in neurodegenerative diseases.
Collapse
Affiliation(s)
- Martina M Berger
- Department of Medicine, University of California, Irvine, Orange, California 92868, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Insulin-like growth factor-1 protects SH-SY5Y cells against β-amyloid-induced apoptosis via the PI3K/Akt-Nrf2 pathway. Exp Gerontol 2016; 87:23-32. [PMID: 27887985 DOI: 10.1016/j.exger.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) shows protective effect against Aβ-induced cytotoxicity and apoptosis, but the underlying mechanisms are poorly characterized. The present study was conducted to explore the mechanisms involved in the beneficial effect of IGF-1 against Aβ-induced apoptosis in SH-SY5Y cells. We found that pretreatment with IGF-1 attenuated Aβ25-35-induced loss of cell viability and apoptosis in SH-SY5Y cells in a dose-dependent manner. In addition, IGF-1 inhibited the generation of reactive oxygen species (ROS) and increased the antioxidant activity in Aβ25-35-treated cells. Further, IGF-1 significantly promoted the nuclear translocation of Nrf2, and upregulated the expression of its downstream gene heme oxygenase-1 (HO-1). Moreover, LY294002, a specific PI3K inhibitor, was found to completely abolish the protective effect of IGF-1 on Aβ25-35-induced apoptosis and ROS generation. Together, our findings suggest that IGF-1 protects SH-SY5Y cells against Aβ25-35-induced cell injury by scavenging ROS via the PI3K/Akt-Nrf2 signaling pathway.
Collapse
|
41
|
Ye L, Xiao L, Bai X, Yang SY, Li Y, Chen Y, Cui Y, Chen Y. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Neurosci Lett 2016; 634:79-86. [DOI: 10.1016/j.neulet.2016.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
42
|
Inoue T, Griffin DM, Huq R, Samuel ELG, Ruano SH, Stinnett G, Majid TJ, Beeton C, Tour JM, Pautler RG. Characterization of a novel MR-detectable nanoantioxidant that mitigates the recall immune response. NMR IN BIOMEDICINE 2016; 29:1436-1444. [PMID: 27552925 PMCID: PMC5035207 DOI: 10.1002/nbm.3565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 06/06/2023]
Abstract
In many human diseases, the presence of inflammation is associated with an increase in the level of reactive oxygen species (ROS). The resulting state of oxidative stress is highly detrimental and can initiate a cascade of events that ultimately lead to cell death. Thus, many therapeutic attempts have been focused on either modulating the immune system to lower inflammation or reducing the damaging caused by ROS. Berlin et al. reported the development of a novel nanoantioxidant known as poly(ethylene glycol)-functionalized-hydrophilic carbon clusters (PEG-HCCs). They showed that PEG-HCCs could be targeted to cancer cells, utilized as a drug delivery vector, and can even be visualized ex vivo. Our work here furthers this work and characterizes Gd-DTPA conjugated PEG-HCCs and explores the potential for in vivo tracking of T cells in live mice. We utilized a mouse model of delayed-type hypersensitivity (DTH) to assess the immunomodulatory effects of PEG-HCCs. The T1 -agent Gd-DTPA was then conjugated to the PEG-HCCs and T1 measurements, and T1 -weighted MRI of the modified PEG-HCCs was done to assess their relaxivity. We then assessed if PEG-HCCs could be visualized both ex vivo and in vivo within the mouse lymph node and spleen. Mice treated with PEG-HCCs showed significant improvements in the DTH assay as compared to the vehicle (saline)-treated control. Flow cytometry demonstrated that splenic T cells are capable of internalizing PEG-HCCs whereas fluorescent immunohistochemistry showed that PEG-HCCs are detectable within the cortex of lymph nodes. Finally, our nanoantioxidants can be visualized in vivo within the lymph nodes and spleen of a mouse after addition of the Gd-DTPA. PEG-HCCs are internalized by T cells in the spleen and can reduce inflammation by suppression of a recall immune response. PEG-HCCs can be modified to allow for both in vitro and in vivo visualization using MRI. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Taeko Inoue
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Deric M Griffin
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Redwan Huq
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Errol L G Samuel
- Department of Chemistry, Department of Material Science and NanoEngineering and The NanoCarbon Center, Rice University, Houston, Texas, USA
| | - Simone H Ruano
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gary Stinnett
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Tabassum J Majid
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christine Beeton
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James M Tour
- Department of Chemistry, Department of Material Science and NanoEngineering and The NanoCarbon Center, Rice University, Houston, Texas, USA.
| | - Robia G Pautler
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
|
44
|
Ianiski FR, Rech VC, Nishihira VSK, Alves CB, Baldissera MD, Wilhelm EA, Luchese C. Amyloid-β peptide absence in short term effects on kinase activity of energy metabolism in mice hippocampus and cerebral cortex. AN ACAD BRAS CIENC 2016; 88:1829-1840. [PMID: 27411072 DOI: 10.1590/0001-3765201620150776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Considering that Alzheimer's disease is a prevalent neurodegenerative disease worldwide, we investigated the activities of three key kinases: creatine kinase, pyruvate kinase and adenylate kinase in the hippocampus and cerebral cortex in Alzheimer's disease model. Male adult Swiss mice received amyloid-β or saline. One day after, mice were treated with blank nanocapsules (17 ml/kg) or meloxicam-loaded nanocapsules (5 mg/kg) or free meloxicam (5 mg/kg). Treatments were performed on alternating days, until the end of the experimental protocol. In the fourteenth day, kinases activities were performed. Amyloid-β did not change the kinases activity in the hippocampus and cerebral cortex of mice. However, free meloxicam decrease the creatine kinase activity in mitochondrial-rich fraction in the group induced by amyloid-β, but for the cytosolic fraction, it has raised in the activity of pyruvate kinase activity in cerebral cortex. Further, meloxicam-loaded nanocapsules administration reduced adenylate kinase activity in the hippocampus of mice injected by amyloid-β. In conclusion we observed absence in short-term effects in kinases activities of energy metabolism in mice hippocampus and cerebral cortex using amyloid-β peptide model. These findings established the foundation to further study the kinases in phosphoryltransfer network changes observed in the brains of patients post-mortem with Alzheimer's disease.
Collapse
Affiliation(s)
- Francine R Ianiski
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Virginia C Rech
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Vivian S K Nishihira
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Catiane B Alves
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Matheus D Baldissera
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Ethel A Wilhelm
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brasil
| | - Cristiane Luchese
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brasil
| |
Collapse
|
45
|
Mercer SW, La Fontaine S, Warr CG, Burke R. Reduced glutathione biosynthesis in Drosophila melanogaster
causes neuronal defects linked to copper deficiency. J Neurochem 2016; 137:360-70. [DOI: 10.1111/jnc.13567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Stephen W. Mercer
- School of Biological Sciences; Monash University; Melbourne Victoria Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences; Centre for Molecular and Medical Research and Centre for Cellular and Molecular Biology; Deakin University; Burwood Victoria Australia
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria Australia
| | - Coral G. Warr
- School of Biological Sciences; Monash University; Melbourne Victoria Australia
| | - Richard Burke
- School of Biological Sciences; Monash University; Melbourne Victoria Australia
| |
Collapse
|
46
|
Park HY, Choi JW, Park Y, Oh MS, Ha SK. Fermentation enhances the neuroprotective effect of shogaol-enriched ginger extract via an increase in 6-paradol content. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons. Sci Rep 2016; 6:21857. [PMID: 26899247 PMCID: PMC4761890 DOI: 10.1038/srep21857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells.
Collapse
|
48
|
Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats. Journal of Food Science and Technology 2016; 53:1454-64. [PMID: 27570270 DOI: 10.1007/s13197-015-2150-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.
Collapse
|
49
|
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Neuroprotective Activity of Hypericum perforatum and Its Major Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1004. [PMID: 27462333 PMCID: PMC4939296 DOI: 10.3389/fpls.2016.01004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 05/15/2023]
Abstract
Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out.
Collapse
Affiliation(s)
- Ana I. Oliveira
- Nucleo de Investigação e Informação em Farmácia, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia de Saúde do Porto – Instituto Politécnico do Porto, Vila Nova de GaiaPortugal
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
| | - Cláudia Pinho
- Nucleo de Investigação e Informação em Farmácia, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia de Saúde do Porto – Instituto Politécnico do Porto, Vila Nova de GaiaPortugal
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
| | - Bruno Sarmento
- Cooperativa de Ensino Superior Politécnico e Universitário, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRDPortugal
- Instituto de Investigação e Inovação em Saúde, PortoPortugal
- Instituto de Engenharia Biomédica, PortoPortugal
| | - Alberto C. P. Dias
- Agrobioplant Group (CITAB-UM), Department of Biology, University of Minho, BragaPortugal
- *Correspondence: Alberto C. P. Dias,
| |
Collapse
|
50
|
Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, Mazzon E. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 2015; 106:12-21. [PMID: 26254971 DOI: 10.1016/j.fitote.2015.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The discovery of new natural compounds with pharmacological properties is a field of interest widely growing, especially for the management of neurodegenerative diseases. As no pharmacological treatment is available to prevent the development of these disorders, dietary intake of foods or plant-based extracts with antioxidant properties might have beneficial effects on human health and improve brain functions. Isothiocyanates (ITCs), derived from the hydrolysis of the corresponding glucosinolates (GLs), mainly found in Brassica vegetables (Brassicaceae) and, to a lesser extent, in Moringaceae plants, have demonstrated to exert neuroprotective properties. Specifically, strong evidences suggest that antioxidant effects may be ascribed mainly to their peculiar ability to activate the Nrf2/ARE pathway, but alternative mechanisms of action have also been suggested. This review summarizes the current knowledge about the neuroprotective effects of ITCs in counteracting oxidative stress as well as inflammatory and apoptotic mechanisms, using in vitro and in vivo models of acute and chronic neurodegenerative disease. Therefore, ITCs could be regarded as a promising source of alternative medicine for the prevention and/or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA) - UMR 7311, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|