1
|
Ubogu EE. Animal models of immune-mediated demyelinating polyneuropathies. Autoimmunity 2024; 57:2361745. [PMID: 38850571 PMCID: PMC11215812 DOI: 10.1080/08916934.2024.2361745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.
Collapse
Affiliation(s)
- Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Krokengen OC, Touma C, Mularski A, Sutinen A, Dunkel R, Ytterdal M, Raasakka A, Mertens HDT, Simonsen AC, Kursula P. The cytoplasmic tail of myelin protein zero induces morphological changes in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184368. [PMID: 38971517 DOI: 10.1016/j.bbamem.2024.184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The major myelin protein expressed by the peripheral nervous system Schwann cells is protein zero (P0), which represents 50% of the total protein content in myelin. This 30-kDa integral membrane protein consists of an immunoglobulin (Ig)-like domain, a transmembrane helix, and a 69-residue C-terminal cytoplasmic tail (P0ct). The basic residues in P0ct contribute to the tight packing of myelin lipid bilayers, and alterations in the tail affect how P0 functions as an adhesion molecule necessary for the stability of compact myelin. Several neurodegenerative neuropathies are related to P0, including the more common Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS) as well as rare cases of motor and sensory polyneuropathy. We found that high P0ct concentrations affected the membrane properties of bicelles and induced a lamellar-to-inverted hexagonal phase transition, which caused bicelles to fuse into long, protein-containing filament-like structures. These structures likely reflect the formation of semicrystalline lipid domains with potential relevance for myelination. Not only is P0ct important for stacking lipid membranes, but time-lapse fluorescence microscopy also shows that it might affect membrane properties during myelination. We further describe recombinant production and low-resolution structural characterization of full-length human P0. Our findings shed light on P0ct effects on membrane properties, and with the successful purification of full-length P0, we have new tools to study the role of P0 in myelin formation and maintenance in vitro.
Collapse
Affiliation(s)
- Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christine Touma
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ryan Dunkel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marie Ytterdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY, Hamburg, Germany
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett-Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2024. [PMID: 39318247 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Armstrong
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amulya Suresh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rachell Rivera
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - John M Denu
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
6
|
Yum Y, Park S, Nam YH, Yoon J, Song H, Kim HJ, Lim J, Jung SC. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med 2024; 21:761-776. [PMID: 38619758 PMCID: PMC11187028 DOI: 10.1007/s13770-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy. METHODS In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment. RESULTS Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG. CONCLUSION The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.
Collapse
Affiliation(s)
- Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ho Jin Kim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
7
|
Golabi M, Kazemi D, Chadeganipour AS, Fouladseresht H, Sullman MJM, Ghezelbash B, Dastgerdi AY, Eskandari N. The Role of Cobalamin in Multiple Sclerosis: An Update. Inflammation 2024:10.1007/s10753-024-02075-6. [PMID: 38902541 DOI: 10.1007/s10753-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition that results in axonal and permanent damage to the central nervous system, necessitating healing owing to autoimmune reactions and persistent neuroinflammation. Antioxidant and anti-inflammatory drugs are essential for the management of oxidative stress and neuroinflammation. Additionally, multivitamin supplementation, particularly vitamin B12 (cobalamin), may be beneficial for neuronal protection. Although there is no documented connection between vitamin B12 deficiency and MS, researchers have explored its potential as a metabolic cause. This review highlights the therapeutic benefits of cobalamin (Cbl) in patients with MS.
Collapse
Affiliation(s)
- Marjan Golabi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Behrooz Ghezelbash
- Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Yeganegi Dastgerdi
- Department of Cell and Molecular Biology, Falavarjan Branch, Islamic Azad University of Science, Isfahan, Iran
| | - Nahid Eskandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Rokach M, Portioli C, Brahmachari S, Estevão BM, Decuzzi P, Barak B. Tackling myelin deficits in neurodevelopmental disorders using drug delivery systems. Adv Drug Deliv Rev 2024; 207:115218. [PMID: 38403255 DOI: 10.1016/j.addr.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders. Recent developments in drug repurposing and nano/micro particle-based therapies are reviewed as a possible pathway to circumvent some of the main hurdles associated with early intervention, including patient's adherence and compliance, side effects, relapse, and faster route to possible treatment of these disorders. The strategy of drug encapsulation overcomes drug solubility and metabolism, with the possibility of drug targeting to a specific compartment, reducing side effects upon systemic administration.
Collapse
Affiliation(s)
- May Rokach
- Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sayanti Brahmachari
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Bianca Martins Estevão
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Israel; Faculty of Social Sciences, The School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
9
|
Sakakura M, Tanabe M, Mori M, Takahashi H, Mio K. Structural bases for the Charcot-Marie-Tooth disease induced by single amino acid substitutions of myelin protein zero. Structure 2023; 31:1452-1462.e4. [PMID: 37699394 DOI: 10.1016/j.str.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Myelin protein zero (MPZ or P0) is a transmembrane protein which functions to glue membranes in peripheral myelin. Inter-membrane adhesion is mediated by homophilic interactions between the extracellular domains (ECDs) of MPZ. Single amino acid substitutions in an ECD cause demyelinating neuropathy, Charcot-Marie-Tooth disease (CMT), with unknown mechanisms. In this study, by using a novel assay system "nanomyelin," we revealed that a stacked-rings-like ECD-8-mer is responsible for membrane adhesion. Two inter-ECD interactions, cis and head-to-head, are essential to constituting the 8-mer and to gluing the membranes. This result was reinforced by the observation that the CMT-related N87H substitution at the cis interface abolished membrane-adhesion activity. In contrast, the CMT-related D32G and E68V variants retained membrane-stacking activity, whereas their thermal stability was lower than that of the WT. Reduced thermal stability may lead to impairment of the long-term stability of ECD and the layered membranes of myelin.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| | - Mikio Tanabe
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Masaki Mori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Kazuhiro Mio
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 277-0882, Japan
| |
Collapse
|
10
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
11
|
Tomalty D, Giovannetti O, Velikonja L, Munday J, Kaufmann M, Iaboni N, Jamzad A, Rubino R, Fichtinger G, Mousavi P, Nicol CJB, Rudan JF, Adams MA. Molecular characterization of human peripheral nerves using desorption electrospray ionization mass spectrometry imaging. J Anat 2023; 243:758-769. [PMID: 37264225 PMCID: PMC10557387 DOI: 10.1111/joa.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is a molecular imaging method that can be used to elucidate the small-molecule composition of tissues and map their spatial information using two-dimensional ion images. This technique has been used to investigate the molecular profiles of variety of tissues, including within the central nervous system, specifically the brain and spinal cord. To our knowledge, this technique has yet to be applied to tissues of the peripheral nervous system (PNS). Data generated from such analyses are expected to advance the characterization of these structures. The study aimed to: (i) establish whether DESI-MSI can discriminate the molecular characteristics of peripheral nerves and distinguish them from surrounding tissues and (ii) assess whether different peripheral nerve subtypes are characterized by unique molecular profiles. Four different nerves for which are known to carry various nerve fiber types were harvested from a fresh cadaveric donor: mixed, motor and sensory (sciatic and femoral); cutaneous, sensory (sural); and autonomic (vagus). Tissue samples were harvested to include the nerve bundles in addition to surrounding connective tissue. Samples were flash-frozen, embedded in optimal cutting temperature compound in cross-section, and sectioned at 14 μm. Following DESI-MSI analysis, identical tissue sections were stained with hematoxylin and eosin. In this proof-of-concept study, a combination of multivariate and univariate statistical methods was used to evaluate molecular differences between the nerve and adjacent tissue and between nerve subtypes. The acquired mass spectral profiles of the peripheral nerve samples presented trends in ion abundances that seemed to be characteristic of nerve tissue and spatially corresponded to the associated histology of the tissue sections. Principal component analysis (PCA) supported the separation of the samples into distinct nerve and adjacent tissue classes. This classification was further supported by the K-means clustering analysis, which showed separation of the nerve and background ions. Differences in ion expression were confirmed using ANOVA which identified statistically significant differences in ion expression between the nerve subtypes. The PCA plot suggested some separation of the nerve subtypes into four classes which corresponded with the nerve types. This was supported by the K-means clustering. Some overlap in classes was noted in these two clustering analyses. This study provides emerging evidence that DESI-MSI is an effective tool for metabolomic profiling of peripheral nerves. Our results suggest that peripheral nerves have molecular profiles that are distinct from the surrounding connective tissues and that DESI-MSI may be able to discriminate between nerve subtypes. DESI-MSI of peripheral nerves may be a valuable technique that could be used to improve our understanding of peripheral nerve anatomy and physiology. The ability to utilize ambient mass spectrometry techniques in real time could also provide an unprecedented advantage for surgical decision making, including in nerve-sparing procedures in the future.
Collapse
Affiliation(s)
- Diane Tomalty
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Olivia Giovannetti
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Leah Velikonja
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Jasica Munday
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Martin Kaufmann
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Gastrointestinal Diseases Research UnitKingston Health Sciences CenterKingstonOntarioCanada
| | - Natasha Iaboni
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
| | - Amoon Jamzad
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Rachel Rubino
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | | | - Parvin Mousavi
- School of ComputingQueen's UniversityKingstonOntarioCanada
| | - Christopher J. B. Nicol
- Department of Pathology and Molecular MedicineQueen's UniversityKingstonOntarioCanada
- Division of Cancer Biology and GeneticsQueen's Cancer Research InstituteKingstonOntarioCanada
| | - John F. Rudan
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - Michael A. Adams
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
12
|
Gharesouran J, Hosseinzadeh H, Naghiloo A, Ghafouri-Fard S, Hussen BM, Taheri M, Rezazadeh M, Samadian M. Complete Loss of Myelin protein zero (MPZ) in a patient with a late onset Charcot-Marie-Tooth (CMT). Metab Brain Dis 2023; 38:1963-1970. [PMID: 36952089 DOI: 10.1007/s11011-023-01201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Charcot-Marie-Tooth (CMT) comprises a group of hereditary neuropathies with clinical, epidemiological, and molecular heterogeneity in which variants in more than 80 different genes have been reported. One of the important genes which cause 5% of all CMT cases is Myelin protein zero (P0, MPZ). Variants in this gene have been reported in association with different forms of CMT including classical CMT1, severe DSS (CMT3B), DI-CMT, CMT2I and CMT2J with autosomal dominant (AD) inheritance. To our knowledge, MPZ variants have not been described in autosomal recessive (AR) form of CMT in previous studies. Moreover, its complete deletion has not been reported in human. Here, we described clinical characteristics of a patient with CMT symptoms who demonstrated manifestations of the disease late in his life. We performed exome sequencing for identifying CMT subtype and its associated gene, and follow that co-segregation analysis has been done to characterize inheritance pattern of the disorder. Through using exome sequencing, we identified a novel 4074 bp homozygote deletion which encompasses all 6 exons of the MPZ gene in this patient. After identifying the alteration, variant confirmation and co-segregation analysis have been performed by using specific primers. Our result revealed that the patient's parents were heterozygous for the alteration and they did not show any symptoms of CMT. Although most MPZ variants have been described with early onset CMT with AD pattern of inheritance, the reported patient in our study had late onset form and his parents did not show any symptoms. Considering substantial role of MPZ protein in the biogenesis of peripheral nervous system (PNS) myelin, we proposed that there should be another protein in PNS that compensates for lack of MPZ protein. Taken together, our finding is the first report of MPZ association with AR form of CMT with late onset features. Moreover, our results propose the presence of another protein in PNS myelin biogenesis and its assembly. However, functional studies alongside with other molecular studies are needed to confirm our results and identify the proposed protein.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Naghiloo
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Rashidbenam Z, Ozturk E, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Front Cell Neurosci 2023; 17:1197492. [PMID: 37361998 PMCID: PMC10285164 DOI: 10.3389/fncel.2023.1197492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair. This review highlights the molecular and cellular mechanisms that drive neurodegeneration as a consequence of chronic-active inflammation and outlines plausible therapeutic approaches to antagonize the MAIFs during the evolution of neuroinflammatory lesions. Moreover, investigative lines for translation of targeted therapies against these myelin inhibitors are defined with an emphasis on the chief MAIF, Nogo-A, that may demonstrate clinical efficacy of neurorepair during progressive MS.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Bidô RDCDA, Pereira DE, Alves MDC, Dutra LMG, Costa ACDS, Viera VB, Araújo WJD, Leite EL, Oliveira CJBD, Alves AF, Freitas JCR, Martins ACS, Cirino JA, Soares JKB. Mix of almond baru (Dipteryx alata Vog.) and goat whey modulated intestinal microbiota, improved memory and induced anxiolytic like behavior in aged rats. J Psychiatr Res 2023; 164:98-117. [PMID: 37331263 DOI: 10.1016/j.jpsychires.2023.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The objective was to evaluate the effects of the consumption of a mix of baru almond and goat whey on memory performance and anxiety parameters related to the intestinal health of rats treated during aging. The animals were divided into three groups and treated by gavage for 10 weeks (n = 10/each group): Control (CT) - distilled water; Baru almond (BA) - 2000 mg of baru/kg of body weight; and Baru + Whey (BW) - 2000 mg of baru + 2000 mg of goat milk whey/kg of body weight. Anxiety behavior, memory, brain fatty acid profile and fecal microbiota were measured. BA and BW realized less grooming, spent more time in the central area of the open field and the open arms, and realized more head dipping in the elevated plus maze. A higher rate of exploration of the new object in the short and long-term memory was observed in BA and BW. There was an increase in the deposition of MUFAs and PUFAs and oleic acid in the brain of BA and BW. Regarding spatial memory, BA and BW performed better, with an emphasis on BW. There was a beneficial modulation of the fecal microbiota with a reduction of the pathogenic genus Clostridia_UFC-014 in BA and BW and an increase in the abundance of metabolic pathways of interest in the brain-gut axis. Thus, consumption of the mix is efficient in beneficially altering the intestinal microbiota, improving memory and anxiolytic-like behavior in rats during aging.
Collapse
Affiliation(s)
- Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil.
| | - Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Maciel da Costa Alves
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Wydemberg José de Araújo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba, Areia, PB, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, PB, Brazil
| | | | - Janaína André Cirino
- National Institute of Technology in Bonding and Coating Materials, University City, Recife, PE, Brazil
| | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
15
|
Chung HL, Ye Q, Park YJ, Zuo Z, Mok JW, Kanca O, Tattikota SG, Lu S, Perrimon N, Lee HK, Bellen HJ. Very-long-chain fatty acids induce glial-derived sphingosine-1-phosphate synthesis, secretion, and neuroinflammation. Cell Metab 2023; 35:855-874.e5. [PMID: 37084732 PMCID: PMC10160010 DOI: 10.1016/j.cmet.2023.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
VLCFAs (very-long-chain fatty acids) are the most abundant fatty acids in myelin. Hence, during demyelination or aging, glia are exposed to higher levels of VLCFA than normal. We report that glia convert these VLCFA into sphingosine-1-phosphate (S1P) via a glial-specific S1P pathway. Excess S1P causes neuroinflammation, NF-κB activation, and macrophage infiltration into the CNS. Suppressing the function of S1P in fly glia or neurons, or administration of Fingolimod, an S1P receptor antagonist, strongly attenuates the phenotypes caused by excess VLCFAs. In contrast, elevating the VLCFA levels in glia and immune cells exacerbates these phenotypes. Elevated VLCFA and S1P are also toxic in vertebrates based on a mouse model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Indeed, reducing VLCFA with bezafibrate ameliorates the phenotypes. Moreover, simultaneous use of bezafibrate and fingolimod synergizes to improve EAE, suggesting that lowering VLCFA and S1P is a treatment avenue for MS.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qi Ye
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ye-Jin Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nobert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyun Kyoung Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Liu X, Guan J, Wu Z, Xu L, Sun C. The TGR5 Agonist INT-777 Promotes Peripheral Nerve Regeneration by Activating cAMP-dependent Protein Kinase A in Schwann Cells. Mol Neurobiol 2023; 60:1901-1913. [PMID: 36593434 DOI: 10.1007/s12035-022-03182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Schwann cell (SC) myelination is a pivotal event in the normal physiological functioning of the peripheral nervous system (PNS), where myelination is finely controlled by a series of factors within SCs to ensure timely onset and correct myelin thickness for saltatory conduction. Among these, cyclic AMP (cAMP) is a promising factor for driving myelin gene expression in SCs. It has been shown that TGR5 activation is often associated with increased production of cAMP. Therefore, we speculated that the G-protein-coupled receptor (TGR5) might be involved in the PNS myelination. To test this hypothesis, sciatic nerve crush-injured mice were treated with INT-777, a specific agonist of TGR5, which significantly improved remyelination and functional recovery. Furthermore, rats that underwent sciatic nerve transection were treated with INT-777, which also promoted nerve regeneration and functional recovery. In primary SCs, the stimulatory effect of INT-777 on myelin gene expression was largely counteracted by H89, a potent inhibitor of cAMP-dependent protein kinase A (PKA). Additionally, INT-777 stimulated cell migration was blunted in the presence of H89. Overall, these data indicate that INT-777 is capable of promoting peripheral nerve regeneration and functional recovery after injury, and these benefits are likely due to the activation of the TGR5/cAMP/PKA axis. As such, INT-777, together with other TGR5 agonists, may hold great therapeutic potential for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jindong Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Zhiguan Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| |
Collapse
|
17
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
18
|
Bigbee JW. Cells of the Central Nervous System: An Overview of Their Structure and Function. ADVANCES IN NEUROBIOLOGY 2023; 29:41-64. [PMID: 36255671 DOI: 10.1007/978-3-031-12390-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The central nervous system is the last major organ system in the vertebrate body to yield its cellular structure, due to the complexity of its cells and their interactions. The fundamental unit of the nervous system is the neuron, which forms complex circuits that receive and integrate information and generate adaptive responses. Each neuron is composed of an input domain consisting of multiple dendrites along with the cell body, which is also responsible for the majority of macromolecule synthesis for the cell. The output domain is the axon which is a singular extension from the cell body that propagates the action potential to the synapse, where signals pass from one neuron to another. Facilitating these functions are cohorts of supporting cells consisting of astrocytes, oligodendrocytes and microglia along with NG2 cells and ependymal cells. Astrocytes have a dazzling array of functions including physical support, maintenance of homeostasis, development and integration of synaptic activity. Oligodendrocytes form the myelin sheath which surrounds axons and enables rapid conduction of the nerve impulse. Microglia are the resident immune cells, providing immune surveillance and remodeling of neuronal circuits during development and trauma. All these cells function in concert with each other, producing the remarkably diverse functions of the nervous system.
Collapse
Affiliation(s)
- John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Pisciotta C, Shy ME. Hereditary neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:609-617. [PMID: 37562889 DOI: 10.1016/b978-0-323-98818-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
20
|
Veneri FA, Prada V, Mastrangelo R, Ferri C, Nobbio L, Passalacqua M, Milanesi M, Bianchi F, Del Carro U, Vallat JM, Duong P, Svaren J, Schenone A, Grandis M, D’Antonio M. A novel mouse model of CMT1B identifies hyperglycosylation as a new pathogenetic mechanism. Hum Mol Genet 2022; 31:4255-4274. [PMID: 35908287 PMCID: PMC9759335 DOI: 10.1093/hmg/ddac170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023] Open
Abstract
Mutations in the Myelin Protein Zero gene (MPZ), encoding P0, the major structural glycoprotein of peripheral nerve myelin, are the cause of Charcot-Marie-Tooth (CMT) type 1B neuropathy, and most P0 mutations appear to act through gain-of-function mechanisms. Here, we investigated how misglycosylation, a pathomechanism encompassing several genetic disorders, may affect P0 function. Using in vitro assays, we showed that gain of glycosylation is more damaging for P0 trafficking and functionality as compared with a loss of glycosylation. Hence, we generated, via CRISPR/Cas9, a mouse model carrying the MPZD61N mutation, predicted to generate a new N-glycosylation site in P0. In humans, MPZD61N causes a severe early-onset form of CMT1B, suggesting that hyperglycosylation may interfere with myelin formation, leading to pathology. We show here that MPZD61N/+ mice develop a tremor as early as P15 which worsens with age and correlates with a significant motor impairment, reduced muscular strength and substantial alterations in neurophysiology. The pathological analysis confirmed a dysmyelinating phenotype characterized by diffuse hypomyelination and focal hypermyelination. We find that the mutant P0D61N does not cause significant endoplasmic reticulum stress, a common pathomechanism in CMT1B, but is properly trafficked to myelin where it causes myelin uncompaction. Finally, we show that myelinating dorsal root ganglia cultures from MPZD61N mice replicate some of the abnormalities seen in vivo, suggesting that they may represent a valuable tool to investigate therapeutic approaches. Collectively, our data indicate that the MPZD61N/+ mouse represents an authentic model of severe CMT1B affirming gain-of-glycosylation in P0 as a novel pathomechanism of disease.
Collapse
Affiliation(s)
- Francesca A Veneri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Rosa Mastrangelo
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lucilla Nobbio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Maria Milanesi
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bianchi
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, National Reference Center for ‘Rare Peripheral Neuropathies’, University Hospital of Limoges (CHU Limoges), Dupuytren Hospital, 87000 Limoges, France
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
21
|
Polyneuropathy Associated with IgM Monoclonal Gammopathy; Advances in Genetics and Treatment, Focusing on Anti-MAG Antibodies. HEMATO 2022. [DOI: 10.3390/hemato3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With increasing age, the chances of developing either MGUS or polyneuropathy increase as well. In some cases, there is a causative relationship between the IgM M-protein and polyneuropathy. In approximately half of these cases, IgM targets the myelin-associated glycoprotein (MAG). This results in chronic polyneuropathy with slowly progressive, predominantly sensory neurological deficits and distally demyelinating features in nerve conduction studies. Despite the disease being chronic and developing slowly, it can cause considerable impairment. We reviewed English medical publications between 1980 and May 2022 on IgM gammopathy-associated polyneuropathy, with special attention to studies addressing the pathophysiology or treatment of anti-MAG polyneuropathy. Treatment options have been limited to a temporizing effect of intravenous immunoglobulins in some patients and a more sustained effect of rituximab but in only 30 to 55 percent of patients. An increase in our knowledge concerning genetic mutations, particularly the MYD88L265P mutation, led to the development of novel targeted treatment options such as BTK inhibitors. Similarly, due to the increasing knowledge of the pathophysiology of anti-MAG polyneuropathy, new treatment options are emerging. Since anti-MAG polyneuropathy is a rare disease with diverse symptomatology, large trials with good outcome measures are a challenge.
Collapse
|
22
|
Zhao Y, Liang Y, Xu Z, Liu J, Liu X, Ma J, Sun C, Yang Y. Exosomal miR-673-5p from fibroblasts promotes Schwann cell-mediated peripheral neuron myelination by targeting the TSC2/mTORC1/SREBP2 axis. J Biol Chem 2022; 298:101718. [PMID: 35151688 PMCID: PMC8908274 DOI: 10.1016/j.jbc.2022.101718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Peripheral myelination is a complicated process, wherein Schwann cells (SCs) promote the formation of the myelin sheath around the axons of peripheral neurons. Fibroblasts are the second resident cells in the peripheral nerves; however, the precise function of fibroblasts in SC-mediated myelination has rarely been examined. Here, we show that exosomes derived from fibroblasts boost myelination-related gene expression in SCs. We used exosome sequencing, together with bioinformatic analysis, to demonstrate that exosomal microRNA miR-673-5p is capable of stimulating myelin gene expression in SCs. Subsequent functional studies revealed that miR-673-5p targets the regulator of mechanistic target of the rapamycin (mTOR) complex 1 (mTORC1) tuberous sclerosis complex 2 in SCs, leading to the activation of downstream signaling pathways including mTORC1 and sterol-regulatory element binding protein 2. In vivo experiments further confirmed that miR-673-5p activates the tuberous sclerosis complex 2/mTORC1/sterol-regulatory element binding protein 2 axis, thus promoting the synthesis of cholesterol and related lipids and subsequently accelerating myelin sheath maturation in peripheral nerves. Overall, our findings revealed exosome-mediated cross talk between fibroblasts and SCs that plays a pivotal role in peripheral myelination. We propose that exosomes derived from fibroblasts and miR-673-5p might be useful for promoting peripheral myelination in translational medicine.
Collapse
Affiliation(s)
- Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| | - Yunyun Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Zhixin Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jina Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neurogeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| |
Collapse
|
23
|
Chen Z, Saini M, Neo SXM, Ng PS, Koh JS, Prasad K, Verma K, Davila S, Lim WK, Phua Z, Li MM, Kang C, Tay KSS, Chai JYH. Acute to Subacute Atraumatic Entrapment Neuropathies in Patients With CMT1A: A Report of a Distinct Phenotypic Variant of CMT1A. Front Neurol 2022; 13:826634. [PMID: 35280294 PMCID: PMC8914073 DOI: 10.3389/fneur.2022.826634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Charcot-Marie-Tooth type 1A (CMT1A) is typically characterised as a childhood-onset, symmetrical, length-dependent polyneuropathy with a gradual progressive clinical course. Acute to subacute neurological deterioration in CMT1A is rare, and has been reported secondary to overlap pathologies including inflammatory neuropathy. We identified two patients with CMT1A who presented with acute to subacute, atraumatic, entrapment neuropathies as an initial symptom. A superimposed inflammatory neuropathy was excluded. Both patients had a diffuse demyelinating polyneuropathy, with markedly low motor nerve conduction velocities (<20 m/s). In both patients, we demonstrated symptomatic and asymptomatic partial conduction blocks at multiple entrapment sites. Nerve ultrasound findings in our patients demonstrated marked diffuse nerve enlargement, more pronounced at non-entrapment sites compared to entrapment sites. We discuss ways to distinguish this condition from its other differentials. We propose pathophysiological mechanisms underlying this condition. We propose that CMT1A with acute to subacute, atraumatic, entrapment neuropathies to be a distinct phenotypic variant of CMT1A.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- *Correspondence: Zhiyong Chen
| | - Monica Saini
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Shermyn X. M. Neo
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Peng-Soon Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jasmine S. Koh
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kalpana Prasad
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kamal Verma
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Sonia Davila
- Singhealth Duke-National University of Singapore (NUS) Institute of Precision Medicine, Singapore, Singapore
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- SingHealth Duke-National University of Singapore (NUS) Genomic Medicine Centre, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-National University of Singapore (NUS) Institute of Precision Medicine, Singapore, Singapore
- SingHealth Duke-National University of Singapore (NUS) Genomic Medicine Centre, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Ziqun Phua
- Neurodiagnostic Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Michelle M. Li
- Neurodiagnostic Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Corrine Kang
- Clinical Measurement Unit, Changi General Hospital, Singapore, Singapore
| | - Karine S. S. Tay
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Josiah Y. H. Chai
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
24
|
Brown RI, Kawakami K, Kucenas S. A novel gene trap line for visualization and manipulation of erbb3b + neural crest and glial cells in zebrafish. Dev Biol 2022; 482:114-123. [PMID: 34932993 DOI: 10.1016/j.ydbio.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Glia are a diverse and essential cell type in the vertebrate nervous system. Transgenic tools and fluorescent reporter lines are critical resources to investigate how glial subtypes develop and function. However, despite the many lines available in zebrafish, the community still lacks the ability to label all unique stages of glial development and specific subpopulations of cells. To address this issue, we screened zebrafish gene and enhancer trap lines to find a novel reporter for peripheral glial subtypes. From these, we generated the gSAIzGFFD37A transgenic line that expresses GFP in neural crest cells and central and peripheral glia. We found that the gene trap construct is located within an intron of erbb3b, a gene essential for glial development. Additionally, we confirmed that GFP+ cells express erbb3b along with sox10, a known glial marker. From our screen, we have identified the gSAIzGFFD37A line as a novel and powerful tool for studying glia in the developing zebrafish, as well as a new resource to manipulate erbb3b+ cells.
Collapse
Affiliation(s)
- Robin Isadora Brown
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI The Graduate University for Advanced Studies, Mishima, Shizuoka, 444-8540, Japan
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
25
|
Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 2022; 10:1041961. [PMID: 36896314 PMCID: PMC9989179 DOI: 10.3389/fchem.2022.1041961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023] Open
Abstract
Myelin is a modified cell membrane that forms a multilayer sheath around the axon. It retains the main characteristics of biological membranes, such as lipid bilayer, but differs from them in several important respects. In this review, we focus on aspects of myelin composition that are peculiar to this structure and differentiate it from the more conventional cell membranes, with special attention to its constituent lipid components and several of the most common and important myelin proteins: myelin basic protein, proteolipid protein, and myelin protein zero. We also discuss the many-fold functions of myelin, which include reliable electrical insulation of axons to ensure rapid propagation of nerve impulses, provision of trophic support along the axon and organization of the unmyelinated nodes of Ranvier, as well as the relationship between myelin biology and neurologic disease such as multiple sclerosis. We conclude with a brief history of discovery in the field and outline questions for future research.
Collapse
Affiliation(s)
- Alexander Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ilya Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
26
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
28
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Brito LGO, Pereira GMV, Moalli P, Shynlova O, Manonai J, Weintraub AY, Deprest J, Bortolini MAT. Age and/or postmenopausal status as risk factors for pelvic organ prolapse development: systematic review with meta-analysis. Int Urogynecol J 2021; 33:15-29. [PMID: 34351465 DOI: 10.1007/s00192-021-04953-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/25/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Age is named as a risk factor for pelvic organ prolapse (POP), despite not being the primary outcome for many observational studies. Postmenopausal status is another associated factor but has many confounders. We aimed to systematically review the role of age and/or postmenopausal status in POP development. METHODS Systematic review addressing age and hormones, more specifically by postmenopausal status, from inception to March 2020 in four databases (PubMed, Embase, WOS, Cochrane Library). Quality of evidence was classified by the ROBINS-I classification for non-randomized studies. Experimental studies, animal studies, studies linking age with recurrent POP and case series were excluded. Effect estimates were collected from adjusted odds ratio plus 95% confidence intervals. Significance level was 5%. A discussion exploring mechanistic factors was also included. RESULTS Nineteen studies (11 cross sectional, 6 cohort and 2 case control) were included for quantitative analysis. Only two studies presented a low overall risk of bias for age; most of the domains were of moderate risk. Every additional year was responsible for a 10% increase in the risk to develop POP (OR = 1.102 [1.021-1.190]; i2 = 80%, random analysis, p = 0.012). This trend was confirmed when age was dichotomized into a cutoff of 35 (p = 0.035) and 50 (p < 0.001) years. Although an increase in the risk for POP was noted in postmenopausal women, this did not reach statistical significance (OR = 2.080 [0.927-4.668], i2 = 0%, p = 0.076). CONCLUSION Age is a risk factor for POP; postmenopausal status was not statistically associated with POP, prompting the need for further studies addressing this factor.
Collapse
Affiliation(s)
- Luiz Gustavo Oliveira Brito
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Rua Alexander Fleming, 101 - Cidade Universitária, Campinas, 13148-254, Brazil.
| | - Glaucia Miranda Varella Pereira
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Rua Alexander Fleming, 101 - Cidade Universitária, Campinas, 13148-254, Brazil
| | - Pamela Moalli
- Division of Urogynecology & Pelvic Reconstructive Surgery, UPMC Magee-Womens Hospital, Pittsburgh, VA, USA
| | - Oksana Shynlova
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | - Jittima Manonai
- Department of Obstetrics and Gynaecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi Yehuda Weintraub
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Bem-Gurion University of the Negev, Beer Sheva, Israel
| | - Jan Deprest
- Academic Department of Development and Regeneration, Biomedical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
30
|
Bohren Y, Timbolschi DI, Muller A, Barrot M, Yalcin I, Salvat E. Platelet-rich plasma and cytokines in neuropathic pain: A narrative review and a clinical perspective. Eur J Pain 2021; 26:43-60. [PMID: 34288258 DOI: 10.1002/ejp.1846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain arises as a direct consequence of a lesion or disease affecting the somatosensory system. A number of preclinical studies have provided evidence for the involvement of cytokines, predominantly secreted by a variety of immune cells and by glial cells from the nervous system, in neuropathic pain conditions. Clinical trials and the use of anti-cytokine drugs in different neuropathic aetiologies support the relevance of cytokines as treatment targets. However, the use of such drugs, in particularly biotherapies, can provoke notable adverse effects. Moreover, it is challenging to select one given cytokine as a target, among the various neuropathic pain conditions. It could thus be of interest to target other proteins, such as growth factors, in order to act more widely on the neuroinflammation network. Thus, platelet-rich plasma (PRP), an autologous blood concentrate, is known to contain a natural concentration of growth factors and immune system messengers and is widely used in the clinical setting for tissue regeneration and repair. DATABASE AND DATA TREATMENT In the present review, we critically assess the current knowledge on cytokines in neuropathic pain by taking into consideration both human studies and animal models. RESULTS This analysis of the literature highlights the pathophysiological importance of cytokines. We particularly highlight the concept of time- and tissue-dependent cytokine activation during neuropathic pain conditions. RESULTS Conclusion: Thus, direct or indirect cytokines modulation with biotherapies or growth factors appears relevant. In addition, we discuss the therapeutic potential of localized injection of PRP as neuropathic pain treatment by pointing out the possible link between cytokines and the action of PRP. SIGNIFICANCE Preclinical and clinical studies highlight the idea of a cytokine imbalance in the development and maintenance of neuropathic pain. Clinical trials with anticytokine drugs are encouraging but are limited by a 'cytokine candidate approach' and adverse effect of biotherapies. PRP, containing various growth factors, is a new therapeutic used in regenerative medicine. Growth factors can be also considered as modulators of cytokine balance. Here, we emphasize a potential therapeutic effect of PRP on cytokine imbalance in neuropathic pain. We also underline the clinical interest of the use of PRP, not only for its therapeutic effect but also for its safety of use.
Collapse
Affiliation(s)
- Yohann Bohren
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Ionut Timbolschi
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Eric Salvat
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
31
|
Song W, Sun Y, Liang XC, Zhang Q, Xie J, Wang C, Liu W. Jinmaitong ameliorates diabetes-induced peripheral neuropathy in rats through Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113461. [PMID: 33039625 DOI: 10.1016/j.jep.2020.113461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinmaitong (JMT) is a prescription of Traditional Chinese Medicine, which is composed of ten herbal drugs and two animal drugs. It has long been used for the treatment of diabetic peripheral neuropathy (DPN). AIM OF STUDY Wnt/β-catenin pathway is considered as an essential and direct driver of myelinogenesis. This study aims to evaluate the protective effect of JMT against DPN dynamically during a 16-weeks' treatment, and to investigate the underlying mechanism in which the Wnt/β-catenin pathway is involved. MATERIALS AND METHODS Diabetic model was induced by single intraperitoneal injection of Streptozotocin (STZ) using male Sprague-Dawley rats. The model rats were divided into five groups and administrated with JMT at three doses (0.437, 0.875, and 1.75 g/kg per day), neurotropin (positive drug, 2.67 NU/kg per day), and placebo (deionized water), respectively, for continuous 8 weeks (n = 9-10), 12 weeks (n = 8-10), or 16 weeks (n = 7-9). Meanwhile, rats in control group were administrated with placebo (n = 10 for 8 weeks, n = 9 for 12 and 16 weeks, respectively). Blood glucose and body weight were monitored every four weeks. Mechanical allodynia was assessed using mechanical withdrawal threshold (MWT) test. The morphological change of sciatic nerves were observed by transmission electron microscope (TEM) and hematoxylin and eosin (HE) stain. The mRNA and protein levels of targeted genes were evaluated by quantitative real time-PCR and western bolt, respectively. Myelin protein zero (MPZ) and mediators involved in Wnt/β-catenin pathway, such as β-catenin, glycogen synthase kinase 3β (GSK-3β), and WNT inhibitory factor-1 (WIF-1), were compared among different groups after treatment of 8, 12, and 16 weeks, respectively. RESULTS The mechanical allodynia and peripheral nerve morphology were degenerated in DPN rats over time, and notably improved after JMT-treatment of 12 and 16 weeks. The decreased MPZ level in DPN rats were also significantly amended by JMT. More importantly, we found that the suppressed Wnt/β-catenin pathway in sciatic nerves of DPN rats was overtly up-regulated by JMT in a time-dependent manner. Among the three doses, JMT at the middle dose showed the best effect. CONCLUSIONS JMT effectively ameliorated diabetic-induced peripheral neuropathy, which was mediated by the activation of Wnt/β-catenin signaling pathway. This study provided new perspective to understand the neuroprotective mechanism of JMT.
Collapse
Affiliation(s)
- Wei Song
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China; Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Ying Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Xiao-Chun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Chao Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Wei Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
32
|
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, Massaad-Massade L. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res 2021; 227:100-111. [PMID: 32693030 DOI: 10.1016/j.trsl.2020.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy, affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused by a duplication on chromosome 17p11.2 leading to an overexpression of the Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small changes in its expression influences myelination and affect motor and sensory functions. To date, CMT1A treatment is symptomatic and classic pharmacological options have been disappointing. Here, we review the past, present, and future treatment options for CMT1A, with a special emphasis on the highly promising potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
Collapse
Affiliation(s)
- Suzan Boutary
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - David Adams
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Julien Loisel-Duwattez
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France
| | | |
Collapse
|
33
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
34
|
Abdelhamid AM, Mahmoud SS, Abdelrahman AE, Said NM, Toam M, Samy W, Amer MAM. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2411-2425. [PMID: 32710137 DOI: 10.1007/s00210-020-01946-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Cisplatin and oxaliplatin are widely used anticancer drugs. Their use is restricted by their dose-limiting side effects: nephrotoxicity and neurotoxicity, respectively. Cerium oxide nanoparticles (CONPs) are promising antioxidant and anti-inflammatory agent. To test the possible ameliorative impact of CONPs on the toxic effect of cisplatin and oxaliplatin in male albino rats. Forty eight rats were divided into 6 groups: control group, CONPs group, cisplatin group, cisplatin and CONPs group, oxaliplatin group, and oxaliplatin and CONPs group. After 4 weeks, serum urea and creatinine, renal tissue level of interleukin 10 (IL10), and total antioxidant (TAO) were measured in control, CONPs, and cisplatin groups. The other kidney was used for histopathological and immunohistochemical studies. The right sciatic nerves and the lumbar spinal cord of rats from control, CONPs, and oxaliplatin groups were used for immunohistochemical evaluations of nitrotyrosine, myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP). Cisplatin significantly increased serum urea and creatinine levels, significantly decreased the kidney level of IL10 and TAO with marked tubular necrosis, hemorrhage and renal damage. Also, it decreased IL10 immunohistochemical expression. CONPs significantly decreased the serum urea and creatinine level and increased IL10 and TAO with lower renal damage and strong IL10 expression compared with cisplatin group. Oxaliplatin significantly decreased MBP immunoreactivity and increased nitrotyrosine immunoreactivity. In the lumbar spinal cord, GFAP immunoreactivity was significantly increased. CONPs significantly increased MBP and decreased nitrotyrosine immunoreactivity. GFAP immunoreactivity was significantly decreased. CONPs ameliorated cisplatin and oxaliplatin primary toxicities through anti-inflammatory and antioxidant characteristics.
Collapse
Affiliation(s)
- Amira Mohamed Abdelhamid
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt.
| | - Shireen Sami Mahmoud
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt
| | - Aziza E Abdelrahman
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Nelly Mohamed Said
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Toam
- Clinical Oncology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Biochemistry department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Marwa AbdEl-Moniem Amer
- Forensic Medicine and Clinical toxicology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Wrapping axons in mammals and Drosophila: Different lipids, same principle. Biochimie 2020; 178:39-48. [PMID: 32800899 DOI: 10.1016/j.biochi.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle.
Collapse
|
36
|
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells 2020; 9:E1832. [PMID: 32759708 PMCID: PMC7465998 DOI: 10.3390/cells9081832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin-the lipid-rich, periodic structure of membrane pairs that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes via homophilic adhesion, forming, as revealed by electron microscopy, the electron-dense, double "intraperiod line" that is split by a narrow, electron-lucent space corresponding to the extracellular space between membrane pairs. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs myelination. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when P0 is trafficked and modified to enable myelin compaction, and how mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
| |
Collapse
|
37
|
Zhang J, Ren J, Liu Y, Huang D, Lu L. Resveratrol regulates the recovery of rat sciatic nerve crush injury by promoting the autophagy of Schwann cells. Life Sci 2020; 256:117959. [PMID: 32531375 DOI: 10.1016/j.lfs.2020.117959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol has the ability to promote functional recovery after sciatic nerve crush injury (SNCI), though the mechanism through which this occurs in not fully understood. Resveratrol can promote autophagy, a key process in Wallerian degeneration; thus, we hypothesized that resveratrol could promote recovery from SNCI by promoting Schwann cell autophagy and acceleration of Wallerian degeneration. Motor function recovery was assessed by calculating Sciatic Function Indexes (SFIs) at days 7, 14, 21, 28 post SNCI. Autophagy and myelin clearance were assessed by microtubule-associated protein light chain 3B (LC3B) and myelin protein zero (MPZ) immunofluorescence and Western blot analysis on the fourth day after SNCI. The autophagy of Schwann cells following resveratrol administration was quantified by immunofluorescence in RSC96 cells. Immunofluorescence and Transmission electron microscopy (TEM) were also used in Resveratrol treated sciatic nerve four days post-SNCI to find LC3B positive areas and typical double membrane structures represent for autophagy. The SNCI+resveratrol (crush+Res) groups recovered faster than the SNCI+vehicles (crush+V) group. On day four, almost all of the myelin had regenerated in the crush+Res rats, while the crush+V group's myelin remained intact and the expression levels of LC3-II/I was the highest. On day 28 post-injury, both the control and crush+Res groups' myelin neurofibers reached peak numbers as did the thickness of the myelin sheath. Both in vitro and in vivo immunofluorescence showed that LC3B was colocalized with Schwann cells. This is the first study to observe that resveratrol can promote recovery from SCNI by accelerating the myelin clearance process by promoting autophagy of Schwann cells.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jingyan Ren
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dongxu Huang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
38
|
Geroldi A, Prada V, Veneri F, Trevisan L, Origone P, Grandis M, Schenone A, Gemelli C, Lanteri P, Fossa P, Mandich P, Bellone E. Early onset demyelinating Charcot-Marie-Tooth disease caused by a novel in-frame isoleucine deletion in peripheral myelin protein 2. J Peripher Nerv Syst 2020; 25:102-106. [PMID: 32277537 DOI: 10.1111/jns.12375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Peripheral myelin protein 2 (PMP2) is a small protein located on the cytoplasmic side of compact myelin, involved in the lipids transport and in the myelination process. In the last years few families affected with demyelinating Charcot-Marie-Tooth neuropathy (CMT1), caused by PMP2 mutations, have been identified. In this study we describe the first case of a PMP2 in-frame deletion. PMP2 was analyzed by direct sequencing after exclusion of the most frequent CMT-associated genes by using a next generation sequencing (NGS) genes panel. Sanger sequencing was used for family's segregation analysis. Molecular modeling analysis was used to evaluate the mutation impact on the protein structure. A novel PMP2: p.I50del has been identified in a child with early onset CMT1 and in three affected family members. All family members show an early onset demyelinating neuropathy without other distinguish features. Molecular modeling analysis and in silico evaluations do not suggest a strong impact on the overall protein structure, but a most likely altered protein function. This study suggests the importance to add PMP2 in CMT NGS genes panels or, at most, to test it after major CMT1 genes exclusion, due to the lack of diagnostic-addressing additional features.
Collapse
Affiliation(s)
- Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Francesca Veneri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Lucia Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy.,IRCCS-Ospedale Policlinico San Martino-UOC Neurologia, Genoa, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy.,IRCCS-Ospedale Policlinico San Martino-UOC Neurologia, Genoa, Italy
| | - Chiara Gemelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Paola Lanteri
- IRCCS Giannina Gaslini-U.O. Neuropsichiatria Infantile, Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| |
Collapse
|
39
|
Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020; 9:cells9040812. [PMID: 32230947 PMCID: PMC7226731 DOI: 10.3390/cells9040812] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Myelin is critical for the proper function of the nervous system and one of the most complex cell–cell interactions of the body. Myelination allows for the rapid conduction of action potentials along axonal fibers and provides physical and trophic support to neurons. Myelin contains a high content of lipids, and the formation of the myelin sheath requires high levels of fatty acid and lipid synthesis, together with uptake of extracellular fatty acids. Recent studies have further advanced our understanding of the metabolism and functions of myelin fatty acids and lipids. In this review, we present an overview of the basic biology of myelin lipids and recent insights on the regulation of fatty acid metabolism and functions in myelinating cells. In addition, this review may serve to provide a foundation for future research characterizing the role of fatty acids and lipids in myelin biology and metabolic disorders affecting the central and peripheral nervous system.
Collapse
|
40
|
Scapin C, Ferri C, Pettinato E, Zambroni D, Bianchi F, Del Carro U, Belin S, Caruso D, Mitro N, Pellegatta M, Taveggia C, Schwab MH, Nave KA, Feltri ML, Wrabetz L, D'Antonio M. Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot-Marie-Tooth type 1B mouse model. Hum Mol Genet 2020; 28:992-1006. [PMID: 30481294 DOI: 10.1093/hmg/ddy411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Bianchi
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ubaldo Del Carro
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Donatella Caruso
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- DiSFeB-Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Pellegatta
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Markus H Schwab
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Klaus-Armin Nave
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - M Laura Feltri
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lawrence Wrabetz
- DIBIT, Divisions of Genetics and Cell Biology.,Hunter James Kelly Research Institute.,Department of Neurology.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
41
|
Eid SA, El Massry M, Hichor M, Haddad M, Grenier J, Dia B, Barakat R, Boutary S, Chanal J, Aractingi S, Wiesel P, Szyndralewiez C, Azar ST, Boitard C, Zaatari G, Eid AA, Massaad C. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice. Diabetes 2020; 69:448-464. [PMID: 31882567 DOI: 10.2337/db19-0517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/15/2019] [Indexed: 11/13/2022]
Abstract
Diabetes triggers peripheral nerve alterations at a structural and functional level, collectively referred to as diabetic peripheral neuropathy (DPN). This work highlights the role of the liver X receptor (LXR) signaling pathway and the cross talk with the reactive oxygen species (ROS)-producing enzyme NADPH oxidase-4 (Nox4) in the pathogenesis of DPN. Using type 1 diabetic (T1DM) mouse models together with cultured Schwann cells (SCs) and skin biopsies from patients with type 2 diabetes (T2DM), we revealed the implication of LXR and Nox4 in the pathophysiology of DPN. T1DM animals exhibit neurophysiological defects and sensorimotor abnormalities paralleled by defective peripheral myelin gene expression. These alterations were concomitant with a significant reduction in LXR expression and increase in Nox4 expression and activity in SCs and peripheral nerves, which were further verified in skin biopsies of patients with T2DM. Moreover, targeted activation of LXR or specific inhibition of Nox4 in vivo and in vitro to attenuate diabetes-induced ROS production in SCs and peripheral nerves reverses functional alteration of the peripheral nerves and restores the homeostatic profiles of MPZ and PMP22. Taken together, our findings are the first to identify novel, key mediators in the pathogenesis of DPN and suggest that targeting LXR/Nox4 axis is a promising therapeutic approach.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mehdi Hichor
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mary Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Julien Grenier
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Suzan Boutary
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Johan Chanal
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Selim Aractingi
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | | | | | - Sami T Azar
- Department of Internal Medicine, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Christian Boitard
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Charbel Massaad
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| |
Collapse
|
42
|
Jha MK, Lee Y, Russell KA, Yang F, Dastgheyb RM, Deme P, Ament XH, Chen W, Liu Y, Guan Y, Polydefkis MJ, Hoke A, Haughey NJ, Rothstein JD, Morrison BM. Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging. Glia 2019; 68:161-177. [PMID: 31453649 DOI: 10.1002/glia.23710] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Schwann cell (SC)-specific monocarboxylate transporter 1 (MCT1) knockout mice were generated by mating MCT1 f/f mice with myelin protein zero (P0)-Cre mice. P0-Cre+/- , MCT1 f/f mice have no detectable early developmental defects, but develop hypomyelination and reduced conduction velocity in sensory, but not motor, peripheral nerves during maturation and aging. Furthermore, reduced mechanical sensitivity is evident in aged P0-Cre+/- , MCT1 f/f mice. MCT1 deletion in SCs impairs both their glycolytic and mitochondrial functions, leading to altered lipid metabolism of triacylglycerides, diacylglycerides, and sphingomyelin, decreased expression of myelin-associated glycoprotein, and increased expression of c-Jun and p75-neurotrophin receptor, suggesting a regression of SCs to a less mature developmental state. Taken together, our results define the contribution of SC MCT1 to both SC metabolism and peripheral nerve maturation and aging.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Youngjin Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Katelyn A Russell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fang Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raha M Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xanthe H Ament
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weiran Chen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ying Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Brain Science Institute, Johns Hopkins University, Baltimore, Maryland
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res 2019; 44:1101-1112. [PMID: 30725239 DOI: 10.1007/s11064-019-02741-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed the probable protective effects of thymoquinone (TQ), an active constituent of Nigella sativa, against ACR-induced neurotoxicity. ACR (50 mg/kg, i.p., for 11 days) and TQ (2.5, 5 and 10 mg/kg, i.p., for 11 days) were administered to rats. On 12th day, gait score was examined and rats were sacrificed. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined in sciatic nerve. Furthermore, western blotting was conducted. The exposure of rats to ACR caused severe gait disabilities. The MDA and GSH contents were increased and decreased, respectively. ACR decreased P-ERK/ERK ratio and myelin basic protein (MBP) content, but significantly increased P-JNK/JNK, P-P38/P38, Bax/Bcl-2 ratios and caspase 3 and 9 levels. Concurrently administration of TQ (5 and 10 mg/kg) with ACR, prevented gait abnormalities and meaningfully reduced MDA and elevated the GSH contents. Furthermore, TQ (5 mg/kg) elevated the P-ERK/ERK ratio and MBP content while reduced the P-JNK/JNK, P-P38/P38 ratios and apoptotic markers. MAP kinase and apoptosis signaling pathways were involved in ACR-induced neurotoxicity in rat sciatic nerve and TQ significantly reduced ACR neurotoxicity. TQ afforded neuroprotection, in part, due to its anti-oxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
de Melo MFFT, Pereira DE, Moura RDL, da Silva EB, de Melo FALT, Dias CDCQ, Silva MDCA, de Oliveira MEG, Viera VB, Pintado MME, Dos Santos SG, Soares JKB. Maternal Supplementation With Avocado ( Persea americana Mill.) Pulp and Oil Alters Reflex Maturation, Physical Development, and Offspring Memory in Rats. Front Neurosci 2019; 13:9. [PMID: 30728763 PMCID: PMC6351466 DOI: 10.3389/fnins.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Avocado (Persea americana Mill.) is an oleaginous fruit source of fatty acids with high levels of neuroprotective phytocomplexes. The objective of this study was to evaluate the development of reflex and somatic maturation, fatty acid profiles in the brain, and memory in different stages of life in the offspring of dams supplemented with avocado pulp and oil during gestation and lactation. The dams were randomly divided into three groups (n = 15 pups/group), and recieved by gavage supplementation: control group (CG)-distilled water; Avocado Oil (AO)-3,000 mg avocado oil/kg animal weight, and Avocado Pulp (AP)-3,000 mg avocado pulp/kg animal weight. We performed the following tests: Analysis of Somatic Development and Ontogeny of Postnatal Reflex (T0 to T21), the Open Field Habituation Test and the Object Recognition Test (ORT) in the adolescent (T45) and adult (T90) phases. The cerebral fatty acids content was evaluated at times T0, T21, T45, and T90. The results were analyzed using the statistical program GraphPad Prism and significant statistics were considered when p < 0.05. Acceleration of reflex maturation and reflex ontogeny was observed in the offspring of AO and AP fed dams, with the results being more pronounced in the pulp fed group (p < 0.05). All groups presented a decrease in the ambulation parameter in the second exposure to the Open Field Habituation Test, at T45 and T90 (p < 0.05). In the ORT, the AO and AP offspring presented memory improvements in the short and long term in the adult and adolescent phases (p < 0.05). The results of the brain fatty acid profiles presented higher polyunsaturated fatty acids (PUFA) content in the AO and AP groups at T21, T45, and T90. The docosahexaenoic fatty acid (DHA) content was higher at T21 (AO and AP), at T45 (AO and AP), and at T90 (AP) (p < 0.05). The arachidonic acid (ARA) content was higher at T45 (AO and AP), and at T90 (AO) (p < 0.05). Maternal supplementation with avocado oil and pulp anticipates reflex maturation and somatic postnatal development, and improves memory during the adolescent and adult phases.
Collapse
Affiliation(s)
- Marilia Ferreira Frazão Tavares de Melo
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Diego Elias Pereira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Renally de Lima Moura
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Elisiane Beatriz da Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | - Celina de Castro Querino Dias
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maciel da Costa Alves Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Bromatology, Department of Nutrition, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Tecnology, Universidade Federal da Paraíba, João Pessoa, Brazil.,Laboratory of Experimental Nutrition, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil
| |
Collapse
|
45
|
Kitada M, Murakami T, Wakao S, Li G, Dezawa M. Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia 2019; 67:950-966. [PMID: 30637802 DOI: 10.1002/glia.23582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Direct conversion is considered a promising approach to obtain tissue-specific cells for cell therapies; however, this strategy depends on exogenous gene expression that may cause undesired adverse effects such as tumorigenesis. By optimizing the Schwann cell induction system, which was originally developed for trans-differentiation of bone marrow mesenchymal stem cells into Schwann cells, we established a system to directly convert adult human skin fibroblasts into cells comparable to authentic human Schwann cells without gene introduction. Serial treatments with beta-mercaptoethanol, retinoic acid, and finally a cocktail of basic fibroblast growth factor, forskolin, platelet-derived growth factor-AA, and heregulin-β1 (EGF domain) converted fibroblasts into cells expressing authentic Schwann cell markers at an efficiency of approximately 75%. Genome-wide gene expression analysis suggested the conversion of fibroblasts into the Schwann cell-lineage. Transplantation of induced Schwann cells into severed peripheral nerve of rats facilitated axonal regeneration and robust functional recovery in sciatic function index comparable to those of authentic human Schwann cells. The contributions of induced Schwann cells to myelination of regenerated axons and re-formation of neuromuscular junctions were also demonstrated. Our data clearly demonstrated that cells comparable to functional Schwann cells feasible for the treatment of neural disease can be induced from adult human skin fibroblasts without gene introduction. This direct conversion system will be beneficial for clinical applications to peripheral and central nervous system injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Murakami
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen Li
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
46
|
Wang P, Yang M, Jiang L, Wu YJ. A fungicide miconazole ameliorates tri-o-cresyl phosphate-induced demyelination through inhibition of ErbB/Akt pathway. Neuropharmacology 2018; 148:31-39. [PMID: 30553827 DOI: 10.1016/j.neuropharm.2018.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Organophosphorus compound (OP)-induced delayed neuropathy (OPIDN) is characterized by distal axonal degeneration and demyelination of the central and peripheral axons, which leads to progressive muscle weakness, ataxia and paralysis in several days after OP intoxication. This study aimed to investigate the possible use of an imidazole fungicide miconazole as a novel therapy for OPIDN. Adult hens, the most commonly used animal models in OPIDN studies, were orally given tri-o-cresyl phosphate (TOCP). We showed that miconazole, which was administered daily to hens beginning on the 7th day after TOCP exposure, drastically ameliorated the neurotoxic symptoms and histopathological damages in spinal cord and sciatic nerves. Mechanistically, miconazole inhibited the TOCP-induced activation of ErbB/Akt signaling, and enhanced the myelin basic protein (MBP) expression. In a glial cell model sNF96.2 cells, miconazole restored the TOCP-inhibited MBP expression, and promoted cell differentiation as well as cell migration by inhibiting the activation of ErbB/Akt signaling pathway. In sum, miconazole, a synthetic imidazole fungicide, could ameliorate the symptoms and histopathological changes of OPIDN, probably by promoting glial cell differentiation and migration to enhance myelination via inhibiting the activation of ErbB/Akt. Thus, miconazole is a promising candidate therapy for the clinical treatment of OPIDN.
Collapse
Affiliation(s)
- Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Min Yang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
47
|
Rosenberg LH, Cattin AL, Fontana X, Harford-Wright E, Burden JJ, White IJ, Smith JG, Napoli I, Quereda V, Policarpi C, Freeman J, Ketteler R, Riccio A, Lloyd AC. HDAC3 Regulates the Transition to the Homeostatic Myelinating Schwann Cell State. Cell Rep 2018; 25:2755-2765.e5. [PMID: 30517863 PMCID: PMC6293966 DOI: 10.1016/j.celrep.2018.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The formation of myelinating Schwann cells (mSCs) involves the remarkable biogenic process, which rapidly generates the myelin sheath. Once formed, the mSC transitions to a stable homeostatic state, with loss of this stability associated with neuropathies. The histone deacetylases histone deacetylase 1 (HDAC1) and HDAC2 are required for the myelination transcriptional program. Here, we show a distinct role for HDAC3, in that, while dispensable for the formation of mSCs, it is essential for the stability of the myelin sheath once formed-with loss resulting in progressive severe neuropathy in adulthood. This is associated with the prior failure to downregulate the biogenic program upon entering the homeostatic state leading to hypertrophy and hypermyelination of the mSCs, progressing to the development of severe myelination defects. Our results highlight distinct roles of HDAC1/2 and HDAC3 in controlling the differentiation and homeostatic states of a cell with broad implications for the understanding of this important cell-state transition.
Collapse
Affiliation(s)
- Laura H Rosenberg
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; CRUK Therapeutic Discovery Laboratories, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne-Laure Cattin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Xavier Fontana
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth Harford-Wright
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jacob G Smith
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victor Quereda
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Cristina Policarpi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Horizon Discovery, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
48
|
Fledrich R, Abdelaal T, Rasch L, Bansal V, Schütza V, Brügger B, Lüchtenborg C, Prukop T, Stenzel J, Rahman RU, Hermes D, Ewers D, Möbius W, Ruhwedel T, Katona I, Weis J, Klein D, Martini R, Brück W, Müller WC, Bonn S, Bechmann I, Nave KA, Stassart RM, Sereda MW. Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy. Nat Commun 2018; 9:3025. [PMID: 30072689 PMCID: PMC6072747 DOI: 10.1038/s41467-018-05420-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/28/2018] [Indexed: 01/17/2023] Open
Abstract
In patients with Charcot-Marie-Tooth disease 1A (CMT1A), peripheral nerves display aberrant myelination during postnatal development, followed by slowly progressive demyelination and axonal loss during adult life. Here, we show that myelinating Schwann cells in a rat model of CMT1A exhibit a developmental defect that includes reduced transcription of genes required for myelin lipid biosynthesis. Consequently, lipid incorporation into myelin is reduced, leading to an overall distorted stoichiometry of myelin proteins and lipids with ultrastructural changes of the myelin sheath. Substitution of phosphatidylcholine and phosphatidylethanolamine in the diet is sufficient to overcome the myelination deficit of affected Schwann cells in vivo. This treatment rescues the number of myelinated axons in the peripheral nerves of the CMT rats and leads to a marked amelioration of neuropathic symptoms. We propose that lipid supplementation is an easily translatable potential therapeutic approach in CMT1A and possibly other dysmyelinating neuropathies.
Collapse
Affiliation(s)
- R Fledrich
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
| | - T Abdelaal
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Division, National Research Centre, Giza, 12622, Egypt
| | - L Rasch
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - V Bansal
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - V Schütza
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - B Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - C Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - T Prukop
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - J Stenzel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - R U Rahman
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - D Hermes
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - D Ewers
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, 37075, Germany
| | - T Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
| | - I Katona
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - J Weis
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - D Klein
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - R Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - W Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W C Müller
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - S Bonn
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
- German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
| | - I Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany
| | - K A Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
| | - R M Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - M W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| |
Collapse
|
49
|
Interaction of the cryptic fragment of myelin basic protein with mitochondrial voltage-dependent anion-selective channel-1 affects cell energy metabolism. Biochem J 2018; 475:2355-2376. [PMID: 29954845 DOI: 10.1042/bcj20180137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
In demyelinating nervous system disorders, myelin basic protein (MBP), a major component of the myelin sheath, is proteolyzed and its fragments are released in the neural environment. Here, we demonstrated that, in contrast with MBP, the cellular uptake of the cryptic 84-104 epitope (MBP84-104) did not involve the low-density lipoprotein receptor-related protein-1, a scavenger receptor. Our pull-down assay, mass spectrometry and molecular modeling studies suggested that, similar with many other unfolded and aberrant proteins and peptides, the internalized MBP84-104 was capable of binding to the voltage-dependent anion-selective channel-1 (VDAC-1), a mitochondrial porin. Molecular modeling suggested that MBP84-104 directly binds to the N-terminal α-helix located midway inside the 19 β-blade barrel of VDAC-1. These interactions may have affected the mitochondrial functions and energy metabolism in multiple cell types. Notably, MBP84-104 caused neither cell apoptosis nor affected the total cellular ATP levels, but repressed the aerobic glycolysis (lactic acid fermentation) and decreased the l-lactate/d-glucose ratio (also termed as the Warburg effect) in normal and cancer cells. Overall, our findings implied that because of its interactions with VDAC-1, the cryptic MBP84-104 peptide invoked reprogramming of the cellular energy metabolism that favored enhanced cellular activity, rather than apoptotic cell death. We concluded that the released MBP84-104 peptide, internalized by the cells, contributes to the reprogramming of the energy-generating pathways in multiple cell types.
Collapse
|
50
|
Rachana KS, Manu MS, Advirao GM. Insulin-induced upregulation of lipoprotein lipase in Schwann cells during diabetic peripheral neuropathy. Diabetes Metab Syndr 2018; 12:525-530. [PMID: 29602762 DOI: 10.1016/j.dsx.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 01/03/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the major complications associated with diabetes. It is characterized by the degeneration of the myelin sheath around axons, referred to as demyelination. Such demyelinations are often caused by reduced lipid component of the myelin sheath. Since, lipoprotein lipase (LPL) provides the lipid for myelin sheath by hydrolysing the triglyceride rich lipoproteins, and also helps in the uptake of lipids by the Schwann cells (SCs) for its utilization, LPL is considered as the important factor in the regeneration of myelin sheath during diabetic neuropathy. Earlier reports from our laboratory have provided the insights of insulin and its receptor in SCs during diabetic neuropathy. In order to evaluate the long term effect of insulin on lipid metabolism during diabetic neuropathy, in this study, we analyzed the expression of LPL in SCs under normal, high glucose and insulin treated conditions. A decrease in the expression of LPL was observed in SCs of high glucose condition and it was reversed upon insulin treatment. Histochemical observations of sciatic nerve of insulin treated neuropathy subjects showed the improved nerve morphology, signifying the importance of insulin in restoring the pathophysiology of diabetic neuropathy.
Collapse
Affiliation(s)
| | - Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India.
| |
Collapse
|