1
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
Hien TBD, Maeng JH, Lee BH, Seong GH, Choo J, Lee EK. Potential application of antibody-mimicking peptides identified by phage display in immuno-magnetic separation of an antigen. J Biotechnol 2012; 161:213-20. [DOI: 10.1016/j.jbiotec.2012.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/09/2012] [Accepted: 06/18/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Thai Bao Dieu Hien
- College of Bionanotechnology, Gachon University, Seongnam, 461-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
4
|
Craig SJ, Shu A, Xu Y, Foong FC, Nordon R. Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 2007; 20:235-41. [PMID: 17430973 DOI: 10.1093/protein/gzm016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a fusion protein (CBD-LG) incorporating a cellulose-binding domain and an antibody binding domain, protein LG, to provide an adaptor molecule for cell separation with regenerated cellulose hollow fiber arrays. A single hollow fiber cell adhesion assay utilizing a CD34+ cell line, KG1a, was used to investigate whether ligand affinity interactions were strong enough for cell attachment and separation. CBD-LG efficiently captured CD34+ cells labeled with the mouse IgG2a monoclonal antibody MHCD3400. However, it was not possible to bind CD34+ cells labeled with an IgG1 antibody (HPCA-2). The low affinity of HPCA-2 for LG was overcome by secondary antibodies: KG1a cells that were dual labeled with HPCA-2 followed by rat anti-mouse IgG1 adhered inside hollow fibers coated with CBD-LG. Alternatively, immobilized rabbit polyclonal anti-mouse IgG1 captured cells labeled with HPCA-2. The development of an adaptor molecule to display recombinant domains at the surface of hollow fibers will be an effective tool to investigate cellular ligand-receptor interactions, a necessary step in the development of hollow fiber bioreactors for manufacture of human cellular products.
Collapse
Affiliation(s)
- Scott J Craig
- Graduate School of Biomedical Engineering, University of New South Wales, Australia
| | | | | | | | | |
Collapse
|
5
|
Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS. A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 2005; 22:1030-8. [PMID: 15536193 DOI: 10.1634/stemcells.22-6-1030] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phage display peptide libraries have enabled the discovery of peptides that selectively target specific organs. Selection of organ-specific peptides is mediated through binding of peptides displayed on phage coat protein to adhesion molecules expressed within targeted organs. Hematopoietic stem cells selectively home to bone marrow, and certain adhesion receptors critical to this function have been demonstrated. Using a phage display library, we identified a specific peptide that trafficked to murine bone marrow in vivo. We independently isolated exactly the same heptapeptide from the entire library by in vitro biopanning on primitive lineage-depleted, Hoechst 33342(dull)/rhodamine 123(dull) murine bone marrow stem cells and confirmed peptide binding to these cells by immunofluorescence studies. We demonstrated bone marrow-specific homing of the peptide by an in vivo assay in which the animals were injected with the phage displaying peptide sequence, and immunofluorescence analysis of multiple organs was performed. We also showed that the peptide significantly decreased the homing of stem cells to the bone marrow but not to the spleen 3 hours after transplantation using fluorescently labeled Lin(-)Sca(+) hematopoietic cells in an in vivo homing assay. The peptide sequence has a partial (5/7) amino acid sequence homology with a region of CD84. This discovery represents the first application of the phage display methodology to the bone marrow and stem cells and led to the identification of a specific heptapeptide that homes to bone marrow, binds to primitive stem cells, and plays a role in stem cell homing.
Collapse
Affiliation(s)
- Grzegorz S Nowakowski
- Division of Gene Therapy, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
6
|
Arts CHP, de Groot P, Heijnen-Snyder GJ, Blankensteijn JD, Eikelboom BC, Slaper-Cortenbach ICM. Application of a clinical grade CD34-mediated method for the enrichment of microvascular endothelial cells from fat tissue. Cytotherapy 2004; 6:30-42. [PMID: 14985165 DOI: 10.1080/14653240310004476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Microvascular endothelial cells (MVEC) derived from s.c. fat are seeded on vascular grafts to prevent early occlusion. We have demonstrated the presence of contaminating cells contributing to MVEC seeding-related intimal hyperplasia in MVEC isolates from fat tissue. We found that cell isolates additionally purified after the isolation process, were associated with a reduced thrombogenicity and development of intimal hyperplasia in vitro. A combination of 11Fibrau (F11)- and CD14-coated Dynabeads was used to deplete the contaminating cells, fibroblasts, and monocytes/macrophages. Unfortunately, clinical-grade F11 is not available, and thus cannot be used for clinical practice. CD34 selection with clinical-grade products is widely used for the isolation of hematopoietic progenitors, and endothelial cells (EC) express CD34 on their surfaces. The aims of this study were to test the effectiveness of two different CD34-selection techniques for purification of MVEC, and to compare the results with those of the F11/CD14-method. METHODS Liposuction fat was enzymatically digested and centrifuged twice to remove adipocytes and collagenase. CD34 selection was performed using the commercially available methods from Nexell or Miltenyi. Both techniques were modified for our use. The purity after isolation and culture, and recovery were determined by flow-cytometry (CD31-expression) and compared with that of cells purified with the F11/CD14-method. RESULTS Besides MVEC, the contaminating fibroblasts and macrophages/monocytes weakly expressed the CD34 Ag. Enrichment of MVEC was not successful with the Miltenyi method. Variations in neither the dose of Ab nor the use of direct selection and different separation programs improved the results. With the Nexell method, MVEC were enriched to 86%, a comparable purity to that obtained with the F11/CD14-method. However, a lower recovery was achieved with the Nexell method. CONCLUSION Enrichment of MVEC could be achieved with a modified protocol of the clinical grade CD34(+) selection method from Nexell, but not with the CD34 method from Miltenyi.
Collapse
Affiliation(s)
- C H P Arts
- Thrombosis and Hemostasis Laboratory, Department of Hematology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Ujam LB, Clemmitt RH, Clarke SA, Brooks RA, Rushton N, Chase HA. Isolation of monocytes from human peripheral blood using immuno-affinity expanded-bed adsorption. Biotechnol Bioeng 2003; 83:554-66. [PMID: 12827697 DOI: 10.1002/bit.10703] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel technique for the separation of monocytes from human peripheral blood preparations has been developed. The technique is based on the use of expanded-bed adsorption and a solid perfluorocarbon derivatized with avidin or streptavidin for the indirect positive or negative capture of cells labeled with biotinylated monoclonal antibodies. The perfluorocarbon support was prepared and characterized and the contactor design and operating conditions, that enable cells to be selectively isolated, were investigated. Experiments consisted of applying an immunolabeled pulse of 1 x 10(8) peripheral blood mononuclear cells (PBMCs), isolated by density gradient centrifugation, directly onto a refrigerated expanded bed. The major cell types remaining were T-lymphocytes, B-lymphocytes, and monocytes. Monocytes could be positively adsorbed, following labeling with anti-CD14 mAb, with a clearance of up to 89% and a depletion factor of 7.6. They could also be "eluted" using mechanical shear, with a 77% yield of the applied cells at a purity of 90% and >/= 65% viability. Negative isolation of monocytes, following labeling of the other cells present with anti-CD2, CD7, CD16, CD19, and CD56 mAbs, resulted in lymphocyte depletions of up to 81% with a monocyte enrichment factor of 3.8 and purity of 71%. The monocyte viability in the flowthrough was assessed to be > 95%. This combination of expanded-bed adsorption and fluidizable affinity supports shows significant potential for the intensification of cell separations.
Collapse
Affiliation(s)
- L B Ujam
- Cobra BioManufacturing, Stephenson Building, Keele University Science Park, Keele, Staffordshire, ST5 5SP, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Marini FC, Shayakhmetov D, Gharwan H, Lieber A, Andreeff M. Advances in gene transfer into haematopoietic stem cells by adenoviral vectors. Expert Opin Biol Ther 2002; 2:847-56. [PMID: 12517264 DOI: 10.1517/14712598.2.8.847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Until recently, the cells of haematopoietic origin were not considered good adenoviral (Adv) targets, primarily because they lacked the specific Adv receptors required for productive and efficient Adv infections. In addition, because of limitations inherent in Adv infections, such as short-term expression and a non-integrating nature, their application has been precluded from haematopoietic stem cell (HSC) and bone marrow transduction protocols where long-term expression has been required. Therefore, limited research utilising Adv-mediated gene transfer into haematopoietic cells had been conducted. With recent insights into the critical interactions between adenovirus (Adv) and cells, new Adv-mediated gene transduction strategies have now been reported that may overcome these limitations. These new strategies include Adv possessing synthetic polymer coatings, genetically modified capsid proteins or antibody-redirected fibres that can efficiently redirect and retarget Adv to transfer genes into HSC. Additionally, new hybrid Advs, engineered with both modified capsid proteins and novel cis-acting integration sequences, are also being developed which can efficiently deliver and integrate Adv delivered genes into HSC. This is an area of research that is now rapidly gaining momentum in terms of techniques and applications. Here we review the current status of adenovirus-based vectors as a means to achieve high-level gene transfer into haematopoietic cell types.
Collapse
Affiliation(s)
- Frank C Marini
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Phage display, which exploits fundamental tools and principles of immune repertoire diversity, antigen-antibody interactions, and clonal and immunologic selection, is used increasingly to advance experimental and clinical hematology. Phage display is based on the ability of bacteriophage to present engineered proteins on their surface coat. Diverse libraries of proteins such as peptides, antibody fragments, and protein domains corresponding to gene fragments or cDNAs may be displayed. Interactions between phage-displayed proteins and target antigens can be identified rapidly and characterized using high throughput methodologies. Peptide and gene fragment libraries are particularly useful to characterize binding interactions between proteins, such as ligand-receptor interactions. This approach allows rapid generation of human antibodies, often against nonimmunogenic, conserved proteins. Phage antibodies against surface and intracellular antigens are used as reagents for flow cytometry, in vivo imaging, and therapeutic targeting. Phage-derived antibodies also facilitate analyses of the humoral antibody response. Finally, cellular delivery of phage-displayed peptides and gene fragments can be used to modulate functional pathways and molecules in vitro and in vivo. The combinatorial power of phage display enables identification of candidate epitopes without knowledge of the protein interaction, a priori. Overall, these capabilities provide a versatile, high-throughput approach to develop tools and reagents useful for a plethora of experimental hematology applications. This paper focuses on current and future applications of antibody and epitope phage display technology in hematology.
Collapse
Affiliation(s)
- B P Mullaney
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, Calif., USA.
| | | |
Collapse
|
10
|
Felschow DM, McVeigh ML, Hoehn GT, Civin CI, Fackler MJ. The adapter protein CrkL associates with CD34. Blood 2001; 97:3768-75. [PMID: 11389015 DOI: 10.1182/blood.v97.12.3768] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD34 is a cell-surface transmembrane protein expressed specifically at the stem/progenitor stage of lymphohematopoietic development that appears to regulate adhesion. To elucidate intracellular signals modified by CD34, we designed and constructed glutathione-S-transferase (GST)- fusion proteins of the intracellular domain of full-length CD34 (GST-CD34i(full)). Precipitation of cell lysates using GST-CD34i(full) identified proteins of molecular mass 39, 36, and 33 kd that constitutively associated with CD34 and a 45-kd protein that associated with CD34 after adhesion. By Western analysis, we identified the 39-kd protein as CrkL. In vivo, CrkL was coimmunoprecipitated with CD34 using CD34 antibodies, confirming the association between CrkL and CD34. CD34 peptide inhibition assays demonstrated that CrkL interacts at a membrane-proximal region of the CD34 tail. To identify the CrkL domain responsible for interaction with CD34, we generated GST-fusion constructs of adapter proteins including GST-CrkL3' (C-terminal SH3) and GST-CrkL5' (N-terminal SH2SH3). Of these fusion proteins, only GST-CrkL3' could precipitate endogenously expressed CD34, suggesting that CD34 binds the C-terminal SH3 domain of CrkL. Interestingly, there appears to be differential specificity between CrkL and CrkII for CD34, because GST-CD34i(full) did not precipitate CrkII, a highly homologous Crk family member. Furthermore, GST-CD34i(full) did not bind c-Abl, c-Cbl, C3G, or paxillin proteins that are known to associate with CrkL, suggesting that CD34 directly interacts with the CrkL protein. CD34i(full) association with Grb or Shc adapter proteins was not detected. Our investigations shed new light on signaling pathways of CD34 by demonstrating that CD34 couples to the hematopoietic adapter protein CrkL. (Blood. 2001;97:3768-3775)
Collapse
Affiliation(s)
- D M Felschow
- Johns Hopkins Oncology Center, Johns Hopkins University School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans St., Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
11
|
Martín-Henao GA, Picón M, Amill B, Querol S, Ferrà C, Grañena A, García J. Combined positive and negative cell selection from allogeneic peripheral blood progenitor cells (PBPC) by use of immunomagnetic methods. Bone Marrow Transplant 2001; 27:683-7. [PMID: 11360106 DOI: 10.1038/sj.bmt.1702860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2000] [Accepted: 10/18/2000] [Indexed: 11/09/2022]
Abstract
Twenty-four mobilized peripheral blood products from healthy donors for allogeneic transplantation were positively selected for CD34(+) cells and depleted of CD4(+) and CD8(+) cells (+/- selection) by combining clinical grade immunomagnetic methods. A sequential, "two-step" strategy combining positive selection of CD34(+) cells by use of the Isolex 300i (versions 1 and 2) device and T cell depletion (TCD) using the MaxSep device and a simultaneous, "one-step" method of CD34(+)cell selection and TCD using the Isolex 300i (software versions 1 and 2) have been investigated. Using these magnetic bead separation systems, two groups of sequential +/- selection (Isolex 300i version 1/MaxSep and Isolex 300i version 2/MaxSep) and two groups of simultaneous +/- selection (Isolex 300i versions 1 and 2) were analysed. In the sequential +/- selection, logarithms of TCD (CD3(+) cell depletion) obtained by the positive selection step had median values of 3.7 with the version 1 (n = 5) and 4.5 with version 2 software of the Isolex 300i (n = 5) (P = 0.07). Version 2 also gave a higher CD34(+) cell purity and yield than did version 1 (92% vs77%, P < 0.05 and 55% vs 34%, P = 0.3, respectively). Additional TCD obtained in the second step with the MaxSep device for the two groups had a median value of 0.9 log and 7% CD34(+)cell losses. In the simultaneous +/- selection, the Isolex 300i version 2 (n = 10) gave a median TCD of 5.1 log and version 1 (n = 4) of 4 log (P < 0.005). Higher CD34(+)cell purity and yield were also obtained with version 2 than with version 1 (97% and 76%, P < 0.005 and 57% and 39%, P = 0.07, respectively). These data indicate that simultaneous, "one-step" +/- selection in the Isolex 300i version 2 achieves a high TCD with a high CD34(+) cell purity and an acceptable CD34(+) cell yield.
Collapse
Affiliation(s)
- G A Martín-Henao
- Department of Cryobiology and Cell Therapy, Cancer Research Institute, Hospital Duran i Reynals, Av. Castelldefels Km 2.7, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|