1
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
2
|
Karaca E, Yarim M. Naringenin stimulates aromatase expression and alleviates the clinical and histopathological findings of experimental autoimmune encephalomyelitis in C57bl6 mice. Histochem Cell Biol 2023; 160:477-490. [PMID: 37378907 DOI: 10.1007/s00418-023-02217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
This study was conducted to demonstrate the possible protective and therapeutic effects of naringenin, an estrogenically effective flavonoid, in experimental autoimmune encephalomyelitis (EAE), which is the rodent model of multiple sclerosis. For this purpose, 50 12-week-old C57BL6 male mice were divided into five groups; control, naringenin, EAE, prophylactic naringenin + EAE, and EAE + therapeutic naringenin. The EAE model was induced with myelin oligodendrocyte glycoprotein(35-55), and naringenin (50 mg/kg) was administered by oral gavage. The prophylactic and therapeutic effects of naringenin were examined according to clinical, histopathological, immunohistochemical, electron microscopic, and RT-PCR (aromatase, 3βHSD, estrogen receptors, and progesterone receptor expression) parameters. The acute EAE model was successfully induced, along with its clinical and histopathological findings. RT-PCR showed that expression of aromatase, 3βHSD, estrogen receptor-β, and progesterone receptor gene decreased, while estrogen receptor-α increased after EAE induction. Electron microscopic analysis showed mitochondrial damage and degenerative changes in myelinated axons and neurons in EAE, which could be behind the downregulation in the expressions of neurosteroid enzymes. Aromatase immunopositivity rates also decreased in EAE, while estrogen receptor α and β, and progesterone receptor immunopositivity rates increased. Naringenin improved aromatase immunopositivity rates and gene expression in both prophylactic and therapeutic use. Clinical and histopathological findings revealed that EAE findings were alleviated in both prophylactic and therapeutic groups, along with significantly decreased inflammatory cell infiltrations in the white matter of the spinal cords. In conclusion, naringenin could provide long-term beneficial effects even in prophylactic use due to stimulating aromatase expression, but it could not prevent or eliminate the EAE model's lesions completely.
Collapse
Affiliation(s)
- Efe Karaca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55200, Atakum, Samsun, Turkey.
| | - Murat Yarim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55200, Atakum, Samsun, Turkey
| |
Collapse
|
3
|
Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, Hormones and Cellular Regulatory Mechanisms Favoring Successful Reproduction. Front Immunol 2021; 12:717808. [PMID: 34394125 PMCID: PMC8355694 DOI: 10.3389/fimmu.2021.717808] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023] Open
Abstract
Its semi-allogeneic nature renders the conceptus vulnerable to attack by the maternal immune system. Several protective mechanisms operate during gestation to correct the harmful effects of anti-fetal immunity and to support a healthy pregnancy outcome. Pregnancy is characterized by gross alterations in endocrine functions. Progesterone is indispensable for pregnancy and humans, and it affects immune functions both directly and via mediators. The progesterone-induced mediator - PIBF - acts in favor of Th2-type immunity, by increasing Th2 type cytokines production. Except for implantation and parturition, pregnancy is characterized by a Th2-dominant cytokine pattern. Progesterone and the orally-administered progestogen dydrogesterone upregulate the production of Th2-type cytokines and suppress the production of Th1 and Th17 cytokine production in vitro. This is particularly relevant to the fact that the Th1-type cytokines TNF-α and IFN-γ and the Th17 cytokine IL-17 have embryotoxic and anti-trophoblast activities. These cytokine-modulating effects and the PIBF-inducing capabilities of dydrogesterone may contribute to the demonstrated beneficial effects of dydrogesterone in recurrent spontaneous miscarriage and threatened miscarriage. IL-17 and IL-22 produced by T helper cells are involved in allograft rejection, and therefore could account for the rejection of paternal HLA-C-expressing trophoblast. Th17 cells (producing IL-17 and IL-22) and Th22 cells (producing IL-22) exhibit plasticity and could produce IL-22 and IL-17 in association with Th2-type cytokines or with Th1-type cytokines. IL-17 and IL-22 producing Th cells are not harmful for the conceptus, if they also produce IL-4. Another important protective mechanism is connected with the expansion and action of regulatory T cells, which play a major role in the induction of tolerance both in pregnant women and in tumour-bearing patients. Clonally-expanded Treg cells increase at the feto-maternal interface and in tumour-infiltrating regions. While in cancer patients, clonally-expanded Treg cells are present in peripheral blood, they are scarce in pregnancy blood, suggesting that fetal antigen-specific tolerance is restricted to the foeto-maternal interface. The significance of Treg cells in maintaining a normal materno-foetal interaction is underlined by the fact that miscarriage is characterized by a decreased number of total effector Treg cells, and the number of clonally-expanded effector Treg cells is markedly reduced in preeclampsia. In this review we present an overview of the above mechanisms, attempt to show how they are connected, how they operate during normal gestation and how their failure might lead to pregnancy pathologies.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Julia Szekeres-Bartho
- Department of Medical Biology, Medical School, Pecs University, Pecs, Hungary.,János Szentágothai Research Centre, Pecs University, Pecs, Hungary.,Endocrine Studies, Centre of Excellence, Pecs University, Pecs, Hungary.,MTA - PTE Human Reproduction Research Group, Pecs, Hungary.,National Laboratory for Human Reproduction, Pecs University, Pecs, Hungary
| |
Collapse
|
4
|
Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front Immunol 2018; 9:2890. [PMID: 30619262 PMCID: PMC6300489 DOI: 10.3389/fimmu.2018.02890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Pregnancy represents a unique immunological situation. Though paternal antigens expressed by the conceptus are recognized by the immune system of the mother, the immune response does not harm the fetus. Progesterone and a progesterone induced protein; PIBF are important players in re-adjusting the functioning of the maternal immune system during pregnancy. PIBF expressed by peripheral pregnancy lymphocytes, and other cell types, participates in the feto-maternal communication, partly, by mediating the immunological actions of progesterone. Several splice variants of PIBF were identified with different physiological activity. The full length 90 kD PIBF protein plays a role in cell cycle regulation, while shorter splice variants are secreted and act as cytokines. Aberrant production of PIBF isoforms lead to the loss of immune-regulatory functions, resulting in and pregnancy failure. By up regulating Th2 type cytokine production and by down-regulating NK activity, PIBF contributes to the altered attitude of the maternal immune system. Normal pregnancy is characterized by a Th2-dominant cytokine balance, which is partly due to the action of the smaller PIBF isoforms. These bind to a novel form of the IL-4 receptor, and induce increased production of IL-3, IL-4, and IL-10. The communication between the conceptus and the mother is established via extracellular vesicles (EVs). Pre-implantation embryos produce EVs both in vitro, and in vivo. PIBF transported by the EVs from the embryo to maternal lymphocytes induces increased IL-10 production by the latter, this way contributing to the Th2 dominant immune responses described during pregnancy.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary.,János Szentágothai Research Centre, Pécs University, Pécs, Hungary.,Endocrine Studies, Centre of Excellence, Pécs University, Pécs, Hungary.,MTA-PTE Human Reproduction Research Group, Pécs, Hungary
| | - Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
5
|
Kazemi H, Najafi M, Ghasemian E, Rahimi-Mianji G, Pirsaraei ZA. Polymorphism detection of promoter region of IFN-
$$\gamma $$
γ
and IL-2 genes and their association with productive traits in Mazandaran native breeder fowls. J Genet 2018. [DOI: 10.1007/s12041-018-0981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Taves MD, Losie JA, Rahim T, Schmidt KL, Sandkam BA, Ma C, Silversides FG, Soma KK. Locally elevated cortisol in lymphoid organs of the developing zebra finch but not Japanese quail or chicken. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:116-125. [PMID: 26366679 DOI: 10.1016/j.dci.2015.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Glucocorticoids are important for production of functional lymphocytes and immunity. In altricial neonates, adrenal glands are unresponsive and local glucocorticoid synthesis in lymphoid organs may be necessary to support lymphocyte development. Precocial neonates, in contrast, have fully responsive adrenal glucocorticoid production, and lymphoid glucocorticoid synthesis may not be necessary. Here, we found that in altricial zebra finch hatchlings, lymphoid organs had dramatically elevated endogenous glucocorticoid (and precursor) levels compared to levels in circulating blood. Furthermore, while avian adrenals produce corticosterone, finch lymphoid organs had much higher levels of cortisol, an unexpected glucocorticoid in birds. In contrast, precocial Japanese quail and chicken offspring did not have locally elevated lymphoid glucocorticoid levels, nor did their lymphoid organs contain high proportions of cortisol. These results show that lymphoid glucocorticoids differ in identity, concentration, and possibly source, in hatchlings of three different bird species. Locally-regulated glucocorticoids might have species-specific roles in immune development.
Collapse
Affiliation(s)
- Matthew D Taves
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada; Dept. of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer A Losie
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Titissa Rahim
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kim L Schmidt
- Dept. of Biology, University of Western Ontario, London, ON, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Benjamin A Sandkam
- Department of Biological Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Chunqi Ma
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | - Kiran K Soma
- Dept. of Psychology, University of British Columbia, Vancouver, BC, Canada; Dept. of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Effects of the neuroendocrine system on development and function of the immune system. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Szekeres-Bartho J. Progesterone-mediated immunomodulation in pregnancy: its relevance to leukocyte immunotherapy of recurrent miscarriage. Immunotherapy 2011; 1:873-82. [PMID: 20636029 DOI: 10.2217/imt.09.54] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Progesterone is crucial for the establishment and maintenance of pregnancy. Progesterone-regulated genes in the pregnant uterus control the development of endometrial receptivity as well as recruitment and differentiation of decidual NK cells, which in turn act on angiogenesis and trophoblast invasion. The link between progesterone and the immune system is established by lymphocyte progesterone receptors expressed in peripheral blood gammadelta T cells of pregnant women and in peripheral NK cells. Regulation of lymphocyte progesterone receptors is activation related, thus efficient recognition of fetal antigens is a requirement for the initiation of progesterone-dependent immunoregulatory mechanisms. Several immunological effects of progesterone are mediated by progesterone-induced blocking factor--the product of a progesterone-induced gene in lymphocytes. One part of unexplained recurrent miscarriages might have an immunological etiology. Immunization of the mothers with paternal or third-party leukocytes aims to correct the misregulated antifetal immune response. There are, however, serious concerns about this treatment, including the lack of information about the mode of action and possible adverse effects of the treatment, the failure to detect a significant effect of immunotherapy and the lack of a reliable generally accepted marker for patient selection. These concerns will be discussed in this review.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Microbiology & Immunology, Medical School, Pecs University, H-7643 Pecs, Hungary.
| |
Collapse
|
9
|
Cutolo M, Straub RH. Effects of the neuroendocrine system on development and function of the immune system. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Hel Z, Stringer E, Mestecky J. Sex steroid hormones, hormonal contraception, and the immunobiology of human immunodeficiency virus-1 infection. Endocr Rev 2010; 31:79-97. [PMID: 19903932 PMCID: PMC2852204 DOI: 10.1210/er.2009-0018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Worldwide, an increasing number of women use oral or injectable hormonal contraceptives. However, inadequate information is available to aid women and health care professionals in weighing the potential risks of hormonal contraceptive use in individuals living with HIV-1 or at high risk of infection. Numerous epidemiological studies and challenge studies in a rhesus macaque model suggest that progesterone-based contraceptives increase the risk of HIV-1 infection in humans and simian immunodeficiency virus (SIV) infection in macaques, accelerate disease progression, and increase viral shedding in the genital tract. However, because several other studies in humans have not observed any effect of exogenously administered progesterone on HIV-1 acquisition and disease progression, the issue continues to be a topic of intense research and ongoing discussion. In contrast to progesterone, systemic or intravaginal treatment with estrogen efficiently protects female rhesus macaques against the transmission of SIV, likely by enhancing the natural protective properties of the lower genital tract mucosal tissue. Although the molecular and cellular mechanisms underlying the effect of sex steroid hormones on HIV-1 and SIV acquisition and disease progression are not well understood, progesterone and estrogen are known to regulate a number of immune mechanisms that may exert an effect on retroviral infection. This review summarizes current knowledge of the effects of various types of sex steroid hormones on immune processes involved in the biology of HIV-1 infection.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, Alabama 35294-2170, USA.
| | | | | |
Collapse
|
11
|
Stringer EM, Giganti M, Carter RJ, El-Sadr W, Abrams EJ, Stringer JS. Hormonal contraception and HIV disease progression: a multicountry cohort analysis of the MTCT-Plus Initiative. AIDS 2009; 23 Suppl 1:S69-77. [PMID: 20081390 PMCID: PMC3865610 DOI: 10.1097/01.aids.0000363779.65827.e0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE HIV-infected women need access to safe and effective contraception. Recent animal and human data suggest that hormonal contraception may accelerate HIV disease progression. METHODS We compared the incidence of HIV disease progression among antiretroviral therapy-naive women with and without exposure to hormonal contraception at 13 sites in Africa and Asia. Disease progression was defined as becoming eligible for antiretroviral therapy or death. RESULTS Between 1 August 2002 and 31 December 2007, the MTCT-Plus programs enrolled 7846 women. In total, 4109 (52%) women met eligibility criteria for this analysis and contributed 5911 person-years of follow-up (median follow-up, 379 days; interquartile range, 121-833). At baseline, 3064 (75%) women reported using either no contraception or a nonhormonal method, whereas 823 (20%) reported using implants/injectables and 222 (5%) reported using oral contraceptive pills. The disease progression outcome was met by 944 (29%) women (rate, 18.3/100 woman-years). Neither implants/injectables (adjusted hazard ratio 1.0, 95% confidence interval 0.8-1.1) nor oral contraceptive pills (adjusted hazard ratio 0.8, 95% confidence interval 0.6-1.1) were associated with disease progression. Treating contraceptive method as a time-varying exposure did not change this negative finding. CONCLUSION This multicountry cohort analysis provides some reassurance that hormonal contraception is not associated with HIV disease progression. Further research is needed to address the contraceptive needs of HIV-infected women.
Collapse
|
12
|
HIV disease progression by hormonal contraceptive method: secondary analysis of a randomized trial. AIDS 2009; 23:1377-82. [PMID: 19448528 DOI: 10.1097/qad.0b013e32832cbca8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-infected women need access to safe contraception. We hypothesized that women using depomedroxyprogesterone acetate (DMPA) contraception would have faster HIV disease progression than women using oral contraceptive pills (OCPs) and nonhormonal methods. METHODS In a previously reported trial, we randomized 599 HIV-infected women to the intrauterine device (IUD) or hormonal contraception. Women randomized to hormonal contraception chose between OCPs and DMPA. This analysis investigates the relationship between exposure to hormonal contraception and HIV disease progression [defined as death, becoming eligible for antiretroviral therapy (ART), or both]. RESULTS Of the 595 women not on ART at the time of randomization, 302 were allocated to hormonal contraception, of whom 190 (63%) initiated DMPA and 112 (37%) initiated OCPs. Women starting IUD, OCPs, or DMPA were similar at baseline. Compared with women using the IUD, the adjusted hazard of death was not significantly increased among women using OCPs [1.24; 95% confidence interval (CI) 0.42-3.63] or DMPA (1.83; 95% CI 0.82-4.08). However, women using OCPs (adjusted hazard ratio (AHR) 1.69; 95% CI 1.09-2.64) or DMPA (AHR 1.56; 95% CI 1.08-2.26) trended toward an increased likelihood of becoming eligible for ART. Women exposed to OCPs (AHR 1.67; 95% CI 1.10-2.51) and DMPA (AHR 1.62; 95% CI 1.16-2.28) also had an increased hazard of meeting our composite disease progression outcome (death or becoming ART eligible) than women using the IUD. CONCLUSION In this secondary analysis, exposure to OCPs or DMPA was associated with HIV disease progression among women not yet on ART. This finding, if confirmed elsewhere, would have global implications and requires urgent further investigation.
Collapse
|
13
|
Abstract
The majority of the 15.4 million human immunodeficiency virus (HIV)-infected women worldwide are of child-bearing age and need access to contraception. Hormonal methods of contraception are safe, acceptable, and effective in preventing unwanted pregnancies. Many published studies have examined the impact of hormonal contraception on HIV disease acquisition and transmissibility. Far fewer have investigated the relationship between hormonal contraception and HIV disease progression. This review examines available data on this relationship from clinical, animal, and immunological studies. Several clinical studies suggest an overall effect but are not definitive, and the mechanisms behind HIV disease progression are unclear. Animal and immunological data suggest that immunomodulation by hormonal contraceptive methods may affect the immune response to HIV infection. Additional work is needed in this area to elucidate the possible relationship between hormonal methods for birth control and progression to acquired immunodeficiency syndrome in HIV-infected women.
Collapse
Affiliation(s)
- Elizabeth Stringer
- Department of Obstetrics and Gynecology, Division of International Women's Health, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
14
|
Lutton BV, Callard IP. Morphological relationships and leukocyte influence on steroid production in the epigonal organ-ovary complex of the skate, Leucoraja erinacea. J Morphol 2008; 269:620-9. [PMID: 18302243 DOI: 10.1002/jmor.10614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ (EO), and the gonads. In this study, the histological and vascular relationships of the EO and ovarian follicles of the little skate, Leucoraja erinacea, were assessed. Perfusions of Evans blue dye and Batson's monomer showed a shared vascular pathway from the gonadal artery into the epigonal-ovary complex, with blood first entering the EO and then perfusing the ovarian follicles. Histological studies demonstrated direct cellular contact between epigonal leukocytes and the follicle wall (FW), as well as the presence of leukocytes between the steroidogenic theca and granulosa cells. In vitro analyses demonstrated that epigonal cells co-cultured with FW cells cause a dose-dependent inhibition of estrogen (E2) and testosterone (T) production. In contrast, conditioned media from epigonal leukocytes, stimulated or unstimulated with lipopolysaccharide (10 microg/ml), increase the production of E2 and T from FW cells of the ovaries. These studies provide a basis for further investigations of leukocyte secreted factors and cell contact modulation of follicular steroid production.
Collapse
Affiliation(s)
- B V Lutton
- Transplantation Biology Research Center, Massachusetts General Hospital, MGH East, Building 149-9019 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
15
|
SHIN YH, YONEZAWA Y, ABE A, KONDO Y. Changes in estrogen receptor alpha expression in the bursa of Fabricius during chick embryonic development. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2007.00503.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lutton BV, Callard IP. Influence of reproductive activity, sex steroids, and seasonality on epigonal organ cellular proliferation in the skate (Leucoraja erinacea). Gen Comp Endocrinol 2008; 155:116-25. [PMID: 17499739 DOI: 10.1016/j.ygcen.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, the epigonal organ, a unique leukopoietic immune tissue, is associated with the gonads. As the ovaries increase in size during reproductive activity, the overall mass of the epigonal organ does not change. However, immunohistochemistry (proliferating cell nuclear antigen Ab) demonstrated more proliferative activity and extravasation of epigonal leukocytes from blood vessels in reproductively active (RA) skates (Leucoraja erinacea) than in non-reproductively active (NRA) skates. In addition, [(3)H]thymidine incorporation was greater in epigonal leukocytes from RA skates than in leukocytes from NRA skates. Plasma from RA skates, but not from NRA skates, increased proliferation of epigonal leukocytes in vitro, an effect that was not seen using steroid-free plasma. In contrast to the stimulatory effect of plasma on leukocyte proliferation, addition of steroids (estrogen, progesterone, testosterone, and dexamethasone) in vitro decreased [(3)H]thymidine incorporation. While the inhibitory response to steroids was seasonally variable, (3)[H]thymidine incorporation was always highest in RA animals, in which plasma steroid levels were also consistently highest. These studies suggest functional interactions between reproductive and immune tissues in the skate, and that cellular turnover in epigonal tissue may be influenced by gonadal activity.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
17
|
Lutton BV, Callard IP. Effects of reproductive activity and sex hormones on apoptosis in the epigonal organ of the skate (Leucoraja erinacea). Gen Comp Endocrinol 2007; 154:75-84. [PMID: 17714713 DOI: 10.1016/j.ygcen.2007.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ, and the gonads. The intimate morphological relationship between these tissues suggests functional interactions. In this study, we used apoptosis to assess differences between epigonal tissues of reproductively active (RA) and non-reproductively active (NRA) skates (Leucoraja erinacea). Plasma steroid levels were significantly higher in RA than in NRA animals, and TUNEL analysis showed that epigonal tissue of RA skates had greater DNA fragmentation than NRA skates. Addition of steroids to epigonal leukocytes in vitro demonstrated that progesterone, testosterone, and dexamethasone, but not estrogen, induced apoptosis of epigonal leukocytes as evidenced by DNA laddering and caspase-3 antibody labeling. This study supports recent evidence that cellular homeostasis of epigonal lymphomyeloid tissue may be influenced by gonadal activity and reproductive steroids in a representative of the most basal gnathastome group.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
18
|
Quinn MJ, McKernan M, Lavoie ET, Ottinger MA. Immunotoxicity of trenbolone acetate in Japanese quail. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:88-93. [PMID: 17162502 DOI: 10.1080/15287390600755026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trenbolone acetate is a synthetic androgen that is currently used as a growth promoter in many meat-exporting countries. Despite industry laboratories classifying trenbolone as nonteratogenic, data showed that embryonic exposure to this androgenic chemical altered development of the immune system in Japanese quail. Trenbolone is lipophilic, persistent, and released into the environment in manure used as soil fertilizer. This is the first study to date to assess this chemical's immunotoxic effects in an avian species. A one-time injection of trenbolone into yolks was administered to mimic maternal deposition, and subsequent effects on the development and function of the immune system were determined in chicks and adults. Development of the bursa of Fabricius, an organ responsible for development of the humoral arm of the immune system, was disrupted, as indicated by lower masse, and smaller and fewer follicles at day 1 of hatch. Morphological differences in the bursas persisted in adults, although no differences in either two measures of immune function were observed. Total numbers of circulating leukocytes were reduced and heterophil-lymphocyte ratios were elevated in chicks but not adults. This study shows that trenbolone acetate is teratogenic and immunotoxic in Japanese quail, and provides evidence that the quail immune system may be fairly resilient to embryonic endocrine-disrupting chemical-induced alterations following no further exposure posthatch.
Collapse
Affiliation(s)
- Michael James Quinn
- U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | |
Collapse
|
19
|
Yang L, Li X, Zhao J, Hou Y. Progesterone is involved in the maturation of murine spleen CD11c-positive dendritic cells. Steroids 2006; 71:922-9. [PMID: 16919693 DOI: 10.1016/j.steroids.2006.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 07/07/2006] [Accepted: 07/11/2006] [Indexed: 01/23/2023]
Abstract
Progesterone (Prog), a female sex steroid hormone, not only plays an important role in the female mammary pregnancy but also influences the immune response. In the present study, murine spleen CD11c-positive dendritic cells (SDCs) were treated with various concentrations of Prog for 24 h, and their viability, phenotype, nuclear factor kappa B P65 (NF-kappaB P65), endocytosis, stimulatory capacity, and cytokine expression were analyzed. The results showed that Prog increased the expressions of MHC-II and CD40, stimulatory capacity and intracellular levels of IL-6 and IL-10, while decreased the expressions of CD54 and IL-12, endocytosis and nuclear level of NF-kappaB P65 of SDCs. These data suggested that Prog may promote the maturation of SDCs and enhance their ability to interact with T cells so as to change the course of autoimmune diseases.
Collapse
Affiliation(s)
- Linsong Yang
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | |
Collapse
|
20
|
Embryonic Effects of Androgen Active Endocrine Disrupting Chemicals on Avian Immune and Reproductive Systems. J Poult Sci 2006. [DOI: 10.2141/jpsa.43.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Yao MWM, Lim H, Schust DJ, Choe SE, Farago A, Ding Y, Michaud S, Church GM, Maas RL. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol 2003; 17:610-27. [PMID: 12554760 DOI: 10.1210/me.2002-0290] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human infertility and recurrent pregnancy loss caused by implantation defects are poorly understood. Hoxa-10-deficient female mice have severe infertility and recurrent pregnancy loss due to defective uterine implantation. Gene expression profiling experiments reveal that Hoxa-10 is an important regulator of two critical events in implantation: stromal cell proliferation and local immunosuppression. At the time of implantation, Hoxa-10 mediates the progesterone-stimulated proliferation of uterine stromal cells. Hoxa-10 mutants express a stromal cell proliferation defect that is accompanied by quantitative or spatial alterations in the expression of two cyclin-dependent kinase inhibitor genes, p57 and p15. Hoxa-10 deficiency also leads to a severe local immunological disturbance, characterized by a polyclonal proliferation of T cells, that occurs in place of the normal progesterone-mediated immunosuppression in the periimplantation uterus.
Collapse
Affiliation(s)
- Mylene W M Yao
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Thorn Building, Room 1019, 20 Shattuck Street, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ahola TM, Alkio N, Manninen T, Ylikomi T. Progestin and G protein-coupled receptor 30 inhibit mitogen-activated protein kinase activity in MCF-7 breast cancer cells. Endocrinology 2002; 143:4620-6. [PMID: 12446589 DOI: 10.1210/en.2002-220492] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that the G protein-coupled receptor (GPR)30 is critical for progestin-induced growth inhibition. In this study, we addressed signal transduction pathways involved in progestin-mediated signaling. Progestin could not provide any additional growth inhibitory effect to MCF-7 cells treated with specific MAPK kinase inhibitors, PD98059 and U0126. Medroxyprogesteroneacetate (MPA) induced a late (22-23 h) decrease in ERK-1 and -2 activities verified by immunoblotting and kinase assay. The inactivation was abrogated by antiprogestin. Transient expression of GPR30 decreased ERK-1 and -2 activity; and in the cells in which GPR30 expression was decreased by the antisense, ERK activities were increased. The antisense-expressing cells were able to significantly resist the growth-inhibitory effect of the MAPK kinase inhibitors PD98059 and U0126 but not that of other factors tested. Interestingly, the decrease of ERK activity induced by MPA was abrogated by GPR30 antisense. Collectively, these results show that MAPK activity is inhibited by progestin and GPR30 and suggest that progestin-induced ERK inactivation is mediated through GPR30. Coupled with our previous findings, the data imply that up-regulation of GPR30 by progestin leads to ERK-1 and -2 inactivation associated with MPA-induced growth inhibition.
Collapse
Affiliation(s)
- Tytti M Ahola
- Department of Cell Biology, Medical School, University of Tampere, 33014 Tampere, Finland.
| | | | | | | |
Collapse
|
23
|
Ahola TM, Manninen T, Alkio N, Ylikomi T. G protein-coupled receptor 30 is critical for a progestin-induced growth inhibition in MCF-7 breast cancer cells. Endocrinology 2002; 143:3376-84. [PMID: 12193550 DOI: 10.1210/en.2001-211445] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The issue of how progesterone affects mammary gland growth is controversial, and the mechanism governing the effects of the hormone remains mostly unknown. We have previously shown that G protein-coupled receptor 30 (GPR30) is a progestin target gene whose expression correlates with progestin-induced growth inhibition in breast cancer cells. In this study, we investigate the role of GPR30 in regulating cell proliferation and mediating progestin-induced growth inhibition. When progestin failed to inhibit the growth of MCF-7 cells and instead stimulated growth, GPR30 was down-regulated. In this way, the inhibitory or stimulatory affects that progestin has on proliferation correlated with the level of expression of GPR30. Transient expression of GPR30 resulted in a marked inhibition of cell proliferation independent of estrogen treatment. GPR30 antisense was used to evaluate the role of GPR30 expression in progestin-induced growth inhibition. A diminished GPR30 mRNA expression by the antisense stimulated growth. Interestingly, GPR30 antisense abrogated the growth inhibitory effect of progestin and progesterone. Indeed, progestin induced 1) a reduction in cell proliferation, 2) G1-phase arrest, and 3) down-regulation of cyclin D1 was diminished. These data suggest that the orphan receptor, GPR30, is important for the inhibitory effect of progestin on growth.
Collapse
Affiliation(s)
- Tytti M Ahola
- Department of Cell Biology, Medical School, 33014 University of Tampere, Finland.
| | | | | | | |
Collapse
|
24
|
|
25
|
Stavréus-Evers A, Cekan SZ. Quantitative measurements of steroid receptors and their messenger ribonucleic acids with a special emphasis on polymerase chain reaction. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 137:383-97. [PMID: 11385359 DOI: 10.1067/mlc.2001.115098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Stavréus-Evers
- Department of Woman and Child Health, Division of Reproductive Endocrinology, Karolinska Institute
| | | |
Collapse
|
26
|
Szekeres-Bartho J, Barakonyi A, Par G, Polgar B, Palkovics T, Szereday L. Progesterone as an immunomodulatory molecule. Int Immunopharmacol 2001; 1:1037-48. [PMID: 11407300 DOI: 10.1016/s1567-5769(01)00035-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increased progesterone sensitivity of pregnancy lymphocytes is due to activation-induced appearance of progesterone binding sites in the lymphocytes. Following recognition of fetally derived antigens gamma/delta TCR+ cells develop progesterone receptors. Progesterone binding results in the synthesis of a mediator protein named the progesterone-induced blocking factor (PIBF). PIBF by acting on the phospholipase A2 enzyme interferes with arachidonic acid metabolism, induces a Th2 biased immune response, and by controlling NK activity exerts an anti-abortive effect.
Collapse
Affiliation(s)
- J Szekeres-Bartho
- Department of Medical Microbiology and Immunology, Pecs University Medical School, 12 Szigeti Str., H-7643 Pecs, Hungary
| | | | | | | | | | | |
Collapse
|
27
|
Uotinen N, Puustinen R, Pasanen S, Manninen T, Kivineva M, Syvälä H, Tuohimaa P, Ylikomi T. Distribution of progesterone receptor in female mouse tissues. Gen Comp Endocrinol 1999; 115:429-41. [PMID: 10480995 DOI: 10.1006/gcen.1999.7333] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel antibodies against the mammalian progesterone receptor (PR) were raised and characterized to study the distribution of PR and the effect of estrogen on PR expression in various female murine tissues by immunohistochemistry. There were estrogen-independent constitutive PR expressions in the smooth muscle cells of uterus, uterine blood vessels, urinary bladder, duodenum, and jejunum of ovariectomized mice. Uterine stromal cells, capsular cells of kidney and adrenal gland, and the epithelial cells of submandibular gland expressed PR constitutively. PR expression was detected in some thymic cells and the number of PR-positive thymic cells increased markedly after estrogen treatment. Estrogen induced PR expression in the epithelial cells of uterus, vagina, urethra, and skin and the stromal cells of vagina, urethra, and pancreatic ducts, as well as the smooth muscle cells of some blood vessels. These results suggest cell-specific progesterone actions in the urinary tract, skin, and gastrointestinal organs, on the immune functions, and on the regulation of local blood flow.
Collapse
Affiliation(s)
- N Uotinen
- Medical School, University of Tampere, Tampere, FIN-33101, Finland.
| | | | | | | | | | | | | | | |
Collapse
|