1
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
2
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Hodne K, Ropstad E, Haug TM, Weltzien FA. Sex steroids differentially regulate fshb, lhb and gnrhr expression in Atlantic cod ( Gadus morhua). Reproduction 2017; 154:581-594. [PMID: 28780570 DOI: 10.1530/rep-17-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Collapse
Affiliation(s)
- Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Science, Oslo, Norway
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
3
|
Homer1 alternative splicing is regulated by gonadotropin-releasing hormone and modulates gonadotropin gene expression. Mol Cell Biol 2014; 34:1747-56. [PMID: 24591653 DOI: 10.1128/mcb.01401-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) plays a critical role in reproductive physiology by regulating follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression in the pituitary. Analysis of gonadotrope deep-sequencing data identified a global regulation of pre-mRNA splicing by GnRH. Homer1, a gene encoding a postsynaptic density scaffolding protein, was selected for further study. Homer1 expresses a short splice form, Homer1a, and more-abundant long transcripts Homer1b/c. GnRH induced a modest increase in Homer1b/c expression and a dramatic increase in the Homer1a splice form. G protein knockdown studies suggested that the Homer1 induction, but not the regulated splicing, was Gαq/11 dependent. Phosphorylation of the splicing regulator SRp20 was found to be induced by GnRH. SRp20 depletion attenuated the GnRH-induced increase in the Homer1a-to-Homer1b/c ratio and modulated the effects of GnRH on FSHβ and LHβ expression. Homer1 gene knockdown resulted in increased GnRH-induced FSHβ and LHβ transcript levels. Furthermore, splice-form-specific reduction of Homer1b/c increased both FSHβ and LHβ mRNA induction, whereas reduction of Homer1a had the opposite effect on FSHβ induction. These results indicate that the regulation of Homer1 splicing by GnRH contributes to gonadotropin gene control.
Collapse
|
4
|
Maruska KP, Fernald RD. Social regulation of male reproductive plasticity in an African cichlid fish. Integr Comp Biol 2013; 53:938-50. [PMID: 23613320 PMCID: PMC3836007 DOI: 10.1093/icb/ict017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Social interactions with the outcome of a position in a dominance hierarchy can have profound effects on reproductive behavior and physiology, requiring animals to integrate environmental information with their internal physiological state; but how is salient information from the animal's dynamic social environment transformed into adaptive behavioral, physiological, and molecular-level changes? The African cichlid fish, Astatotilapia burtoni, is ideally suited to understand socially controlled reproductive plasticity because activity of the male reproductive (brain-pituitary-gonad) axis is tightly linked to social status. Males form hierarchies in which a small percentage of brightly colored dominant individuals have an active reproductive axis, defend territories, and spawn with females, while the remaining males are subordinate, drably colored, do not hold a territory, and have a suppressed reproductive system with minimal opportunities for spawning. These social phenotypes are plastic and quickly reversible, meaning that individual males may switch between dominant and subordinate status multiple times within a lifetime. Here, we review the rapid and remarkable plasticity that occurs along the entire reproductive axis when males rise in social rank, a transition that has important implications for the operational sex ratio of the population. When males rise in rank, transformations occur in the brain, pituitary, circulation, and testes over short time-scales (minutes to days). Changes are evident in overt behavior, as well as modifications at the physiological, cellular, and molecular levels that regulate reproductive capacity. Widespread changes triggered by a switch in rank highlight the significance of external social information in shaping internal physiology and reproductive competence.
Collapse
Affiliation(s)
- Karen P. Maruska
- *Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Russell D. Fernald
- *Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Abstract
In the course of evolution, social behavior has been a strikingly potent selective force in shaping brains to control action. Physiological, cellular, and molecular processes reflect this evolutionary force, particularly in the regulation of reproductive behavior and its neural circuitry. Typically, experimental analysis is directed at how the brain controls behavior, but the brain is also changed by behavior over evolution, during development, and through its ongoing function. Understanding how the brain is influenced by behavior offers unusual experimental challenges. General principles governing the social regulation of the brain are most evident in the control of reproductive behavior. This is most likely because reproduction is arguably the most important event in an animal's life and has been a powerful and essential selective force over evolution. Here I describe the mechanisms through which behavior changes the brain in the service of reproduction using a teleost fish model system.
Collapse
Affiliation(s)
- Russell D Fernald
- Biology Department, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
6
|
Maruska KP, Fernald RD. Social Regulation of Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Physiology (Bethesda) 2011; 26:412-23. [DOI: 10.1152/physiol.00032.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Reproduction is a critically important event in every animals' life and in all vertebrates is controlled by the brain via the hypothalamic-pituitary-gonadal (HPG) axis. In many species, this axis, and hence reproductive fitness, can be profoundly influenced by the social environment. Here, we review how the reception of information in a social context causes genomic changes at each level of the HPG axis.
Collapse
Affiliation(s)
- Karen P. Maruska
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
7
|
Lin CJ, Wu GC, Lee MF, Lau EL, Dufour S, Chang CF. Regulation of two forms of gonadotropin-releasing hormone receptor gene expression in the protandrous black porgy fish, Acanthopagrus schlegeli. Mol Cell Endocrinol 2010; 323:137-46. [PMID: 20398731 DOI: 10.1016/j.mce.2010.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/08/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
Two GnRH receptors (GnRH-R I and GnRH-R II) were obtained in protandrous black porgy (Acanthopagrus schlegeli). We investigated their tissue distribution, developmental/seasonal changes and regulation of expression using in vivo and in vitro (primary cultures of dispersed pituitary cells) approaches. The relative expressions of GnRH-Rs in the pituitary and gonad were as follows: pituitary: GnRH-R I > GnRH-R II; testicular tissue: GnRH-R I > GnRH-R II; ovarian tissue: GnRH-R I = GnRH-R II. GnRH-R I but not GnRH-R II expression was higher in the pituitary during the spawning period as compared to the prespawning. The expression profiles of both forms of GnRH-R were variable in the gonads according to the gonadal stage and season. In vivo, hCG stimulated GnRH-R I and GnRH-R II expression in testis and ovary. The LHRH analog also up-regulated both receptors in testis and but increased only GnRH-R II in the ovary. Sex steroids (estradiol, E2 and testosterone, T) increased the expression of both receptors in the testis and ovary. In the pituitary, sex steroids (E2 and T) increased the expression of GnRH-R I, but not GnRH-II, both in vivo and in vitro. The LHRH analog also specifically up-regulated the expression of GnRH-R I, but not GnRH-R II, by pituitary cells in vitro. All these data suggest that GnRH-R I rather than GnRH-R II may play a major physiological role in the pituitary. In contrast, both GnRH-R I and GnRH-R II may participate in the regulation of gonadal functions, including a possible role during sex change.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Perera-Marín G, Gutiérrez CG, Murcia C, León H, González-Padilla E. Progesterone and the distribution of pituitary gonadotropin isoforms in cattle. Anim Reprod Sci 2008; 104:164-76. [PMID: 17403588 DOI: 10.1016/j.anireprosci.2007.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The objective of the present study was to determine the relative proportion of gonadotropin isoforms in bovine pituitary glands affected by progesterone. Twelve postpubertal heifers (Swiss-Zebu) were assigned to three groups (n=4): intact animals in the luteal phase of the estrous cycle (diestrus group); ovariectomized heifers with (OVXP) or without progesterone treatment (OVX). Prior to pituitary gland collection, a blood sample was taken from each animal to determine the circulating progesterone concentration. Pituitary protein extractions processed by chromatofocusing were eluted with a pH gradient ranging from 10.5 to 3.5. The LH and FSH eluent was grouped on the basis of the following three criteria: (1) as either a basic (pH>or=7.5), neutral (pH 7.4-6.5) and acid (pH<or=6.4); (2) according to the pH unit (pH>or=10.5-3.5); (3) on the basis of distinct isoforms 12 peaks of which (A-L) were identified for LH and 11 (I-XI) for FSH. The analysis by range of pH and by pH of elution in the OVX and OVXP groups showed no difference in the LH and FSH isoform ratio, but diestrus cattle differs having a greater ratio (p<0.05) of basic LH isoforms (87.5+/-0.4%) and lesser ratio (p<0.05) of acid isoforms (5.4+/-0.7%). In the diestrus group, the ratio of acid FSH isoform increased (62.1+/-1.7%), while neutral isoforms decreased (5.7+/-0.4%, P<0.05). The analysis by isoform type of LH revealed a greater proportion of isoforms C (pH 9.4) and E (pH 9.0) in the groups with circulating progesterone when compared to the OVX group. The heterogeneity of FSH was quantitatively similar in most isoforms in the three groups, with the exception of the predominant isoform (VIII, pH 4.9) that was more abundant in the diestrus group (p<0.05). These results indicate that progesterone with other gonad factors influence the pituitary glicosylation altering the relative proportions of gonadotropin isoforms.
Collapse
Affiliation(s)
- G Perera-Marín
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, D.F., CP 04510, Mexico.
| | | | | | | | | |
Collapse
|
9
|
Perera-Marín G, Murcia C, González-Padilla E. Luteinizing hormone (LH) isoforms in ruminants: Characterization and physiological relevance. Anim Reprod Sci 2007; 101:187-207. [DOI: 10.1016/j.anireprosci.2007.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
|
10
|
Rojas-Maya S, González-Padilla E, Murcia-Mejía C, Olivares-Segura A, Hernández-Cerón J, Perera-Marín G. Caprine luteinizing hormone isoforms during the follicular phase and anestrus. Anim Reprod Sci 2007; 100:280-90. [PMID: 16963202 DOI: 10.1016/j.anireprosci.2006.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 07/31/2006] [Indexed: 11/27/2022]
Abstract
The relative proportion of the circulating luteinizing hormone isoforms in goats during follicular phase (pre-ovulatory peak; F) and anestrus (A) was investigated. Estrus was synchronized in six goats with a prostaglandin analogue. After estrus was detected, blood samples were taken at 1 h intervals for 24 h. Four anestrous goats received 100 microg i.v. of GnRH and blood samples were collected every 15 min for 5 h. Samples with the greatest LH concentration in follicular phase and after GnRH administration (anestrus) were analyzed by chromatofocusing and eluted with a pH gradient from 10.5 to 3.5. For quantification purposes eluted LH was grouped into basic (pH> or =7.5), neutral (pH 7.4-6.5) and acidic isoforms (pH< or =6.4) as well as by pH unit. In both physiological conditions (PC), basic and acidic isoforms were greater than the neutral. With this grouping criteria, there was an interaction between PC and pH group, with the proportion of neutral isoforms being greater (p<0.05) in A (12.0+/-0.8%) as compared with F (5+/-2%). Analysis by pH unit showed a very basic group of eluted isoforms (pH> or =10), which amounted to a percentage of 6.0+/-0.4% of the total observed during A, and 3+/-1% during F (p<0.05). Predominant isoforms in A eluted in the pH range 9.99-9.0 (42+/-3%) as compared to 7+/-3% (p<0.01) in that pH range in F. In contrast, the predominant isoforms in F eluted in the pH range 8.99-8.0, representing 55+/-8%, while in A the proportion was 11+/-2% (p<0.01). Isoforms eluted at the pH range 7.9-7 represented a significantly greater proportion during A (5.0+/-0.6%) as compared with F (3+/-1%). This is the first report on goat LH circulating isoforms. During A the LH isoforms secreted by the pituitary are more basic than during F.
Collapse
Affiliation(s)
- S Rojas-Maya
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Cd. Universitaria, CP 04510 México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
11
|
Arrieta E, Porras A, González-Padilla E, Murcia C, Rojas S, Perera-Marín G. Ovine serum and pituitary isoforms of luteinising hormone during the luteal phase. Reprod Fertil Dev 2006; 18:485-95. [PMID: 16737642 DOI: 10.1071/rd05094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 01/24/2006] [Indexed: 11/23/2022] Open
Abstract
The relative abundance of the different isoforms of pituitary and circulating luteinising hormone (LH) in ewes, at different times after the administration of gonadotrophin-releasing hormone (GnRH), during the luteal phase of the oestrous cycle was investigated. Sixteen ewes on Day 9 of their cycle were divided into four groups (n = 4). The control group (T0) received saline solution; the remaining animals received 100 μg GnRH (i.m.) 30, 90 or 180 min (T30, T90 and T180, respectively) before serum and pituitary gland collection. Luteinising hormone polymorphism was analysed by chromatofocusing (pH 10.5–3.5). The LH eluted from each chromatofocusing was grouped on the basis of the following three criteria: (1) according to the pH of elution (pH ≥ 10–3.5); (2) as either a basic (pH ≥ 7.5), neutral (pH 7.4–6.5) and acidic (pH ≤ 6.4) elution of LH of serum and hypophyseal origin; and (3) on the basis of distinct isoforms, of which 10 (A–J) were identifiable in hypophyseal extracts and four (A–D) were found in the serum. In general, the most abundant forms of LH in both the pituitary and serum, at all times, were basic. However, that proportion was greater in hypophyseal extracts (84 ± 3%, 81 ± 4%, 82 ± 3% and 83 ± 2% at T0, T30, T90 and T180, respectively) than in serum (51 ± 5%, 48 ± 10% and 54 ± 6% at T30, T90 and T180, respectively). Neutral and acidic LH made up a larger proportion of the total LH in sera (neutral: 17 ± 4%, 20 ± 6% and 23 ± 3% at T30, T90 and T180, respectively; acidic: 32 ± 8%, 32 ± 11% and 23 ± 6% at T30, T90 and T180, respectively) than in the pituitary extracts (neutral: 4.0 ± 0.7%, 10 ± 4%, 7 ± 2% and 5.0 ± 0.5% at T0, T30, T90 and T180, respectively; acidic: 12 ± 3%, 11 ± 2%, 12 ± 2% and 12 ± 2% at T0, T30, T90 and T180, respectively) at all times. These data reveal that the relative composition of the LH present in the pituitary gland and the LH secreted into the circulation is different, with more neutral and acidic isoforms being secreted. The pattern of circulating LH isoforms changes between 30 and 180 min after GnRH peak induction, with a greater proportion of isoform C (eluting between pH 7.0 and 6.5) at T180 compared with T30 and T90.
Collapse
Affiliation(s)
- E Arrieta
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Cd. Universitaria, DF, CP 04510, México
| | | | | | | | | | | |
Collapse
|
12
|
Perera-Marín G, Murcia C, Rojas S, Hernández-Cerón J, González-Padilla E. Pattern of circulating luteinizing hormone isoforms during the estrous and luteal phases in Holstein heifers. Anim Reprod Sci 2005; 86:53-69. [PMID: 15721659 DOI: 10.1016/j.anireprosci.2004.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 06/24/2004] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
The pattern of distribution of circulating luteinizing hormone (LH) isoforms in cattle during estrus and the luteal phase was investigated. In each stage, the stage of the estrous cycle was synchronized in seven Holstein heifers with a prostaglandin analogue. After estrus was detected, blood samples were taken at 2-h intervals for 24h. In the luteal phase, animals received 250 microg i.v. of GnRH and blood samples were collected every 15 min for 5h. LH concentration in the samples was determined. Samples with the greatest LH concentration in estrus (pre-ovulatory peak) and those collected 60 min after GnRH administration (luteal phase) were analyzed by chromatofocusing, eluted with a pH gradient from 10.5 to 3.5. Eluted LH was grouped into basic (pH > or = 7.5), neutral (pH 7.4-6.5) and acidic isoforms (pH < or = 6.4) as well as by pH unit. In both phases, basic forms were the most abundant, and these were greater (P < 0.05) during the luteal phase (78.4 +/- 4.2%) as compared with during estrus (57.1 +/- 6.2%); the proportion of neutral and acidic isoforms in estrus (13.7 +/- 2.6%; 28.5 +/- 2.8%) was greater (P < 0.05) as compared with the luteal phase (3.0 +/- 0.7; 18.7 +/- 3.4). These results indicate that the relative proportion of LH isoforms secreted by the adenohypophysis differ by stage of estrous cycle. The addition of excess of NaCl to the column modifies the antigen-antibody binding in the RIA, and the proteins eluted are erroneously quantified as LH; this is an artifact of the technique.
Collapse
Affiliation(s)
- G Perera-Marín
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad Universitaria, DF, CP 04510, Mexico
| | | | | | | | | |
Collapse
|
13
|
Clarke IJ, Tobin VA, Pompolo S, Pereira A. Effects of changing gonadotropin-releasing hormone pulse frequency and estrogen treatment on levels of estradiol receptor-alpha and induction of Fos and phosphorylated cyclic adenosine monophosphate response element binding protein in pituitary gonadotropes: studies in hypothalamo-pituitary disconnected ewes. Endocrinology 2005; 146:1128-37. [PMID: 15564326 DOI: 10.1210/en.2004-0980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-alpha (ER alpha) levels in gonadotropes are increased during the follicular phase of the ovine estrous cycle, a time of increased frequency of pulsatile secretion of GnRH and elevated plasma estrogen levels. In the present study, our first aim was to determine which of these factors causes the rise in the number of gonadotropes with ER alpha. Ovariectomized hypothalamo-pituitary disconnected ewes (n = 4-6) received the following treatments: 1) no treatment, 2) injection (im) of 50 microg estradiol benzoate (EB), 3) pulses (300 ng iv) of GnRH every 3 h, 4) GnRH treatment as in group 3 and EB treatment as in group 2, 5) increased frequency of GnRH pulses commencing 20 h before termination, and 6) GnRH treatment as in group 5 with EB treatment. These treatments had predictable effects on plasma LH levels. The number of gonadotropes in which ER alpha was present (by immunohistochemistry) was increased by either GnRH treatment or EB injection, but combined treatment had the greatest effect. Immunohistochemistry was also performed to detect phosphorylated cAMP response element binding protein (pCREB) and Fos protein in gonadotropes. The number of gonadotropes with Fos and with pCREB was increased only in group 6. We conclude that either estrogen or GnRH can up-regulate ER alpha in pituitary gonadotropes. On the other hand, during the period of positive feedback action of estrogen, the appearance of pCREB and Fos in gonadotropes requires the combined action of estrogen and increased frequency of GnRH input. This suggests convergence of signaling for GnRH and estrogen.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
14
|
Gault PM, Morgan K, Pawson AJ, Millar RP, Lincoln GA. Sheep exhibit novel variations in the organization of the mammalian type II gonadotropin-releasing hormone receptor gene. Endocrinology 2004; 145:2362-74. [PMID: 14749360 DOI: 10.1210/en.2003-1625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Species-specific differences in genes encoding type II GnRH receptor indicate that a functional hepta-helical receptor is produced in monkeys but not in rodents, cows, chimpanzees, or humans. To further investigate the extent of evolutionary differences, we sequenced the type II GnRH receptor gene from wild-type Soay sheep. The gene was isolated by long-distance PCR using primers to PEX11beta and RBM8A genes known to flank type II GnRH receptor gene homologues. The gene spans 5.7-kb DNA and was sequenced after shot-gun subcloning. Its novel features include absence of a Pit-1 transcription factor binding site, a premature stop codon (TAG) in exon 1, an in-frame deletion of 51 bp (17 codons) in exon 2, and several nonconservative codon changes. Sheep breed variation in the gene was assessed using genomic DNA in PCR-restriction digest assays for the premature stop codon and in a PCR assay for the deletion. Both characteristics were present in all 15 breeds tested. Receptor gene expression was investigated using poly-A(+) RNA Northern analysis, RT-PCR, and in situ hybridization. An oligonucleotide probe to exon 1 revealed an alternative transcript in testis but not in pituitary gland. No transcripts in testis or pituitary were detectable using an exon 2-3 probe. All tissues examined including multiple brain areas and gonadotrope-enriched cell cultures were negative for type II GnRH receptor in RT-PCR. Testis and pituitary sections were negative with exon 1 riboprobes and exon 1 or 2-3 oligonucleotide probes in in situ hybridization. A hepta-helical type II GnRH receptor is therefore not expressed from this sheep gene.
Collapse
Affiliation(s)
- Paula M Gault
- Medical Research Council Human Reproductive Sciences Unit, University of Edinburgh Academic Centre, Edinburgh EH16 4SB, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Hanoux V, Bouraima H, Mittre H, Féral C, Benhaïm A. Differential regulation of two 3' end variants of P450 aromatase transcripts and of a new truncated aromatase protein in rabbit preovulatory granulosa cells. Endocrinology 2003; 144:4790-8. [PMID: 12960046 DOI: 10.1210/en.2003-0260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In rabbit granulosa cells, two cytochrome P450 aromatase (P450 arom) mRNAs issued from promoter II were described: a full-length and a truncated transcript. Western blot analysis showed two P450 arom proteins with apparent molecular masses of 53 and 46 kDa, which are consistent with the predicted theoretical sizes of proteins encoded by these two transcripts. To examine the involvement of the truncated transcript in the regulation of P450 arom gene expression, the level of each transcript was specifically quantified in cultured granulosa cells by competitive quantitative RT-PCR. FSH induced a dose-dependent increase in both estradiol production and P450 arom mRNAs levels with a much more enhancement in the full-length mRNA. The half-life of the transcripts could not explain this differential regulation. Upon dibutyryl cAMP stimulation, the full-length mRNA was less abundant than the truncated one. In contrast, Western blot analysis revealed a stimulation of the 53-kDa protein content, whereas the 46-kDa protein amount was apparently unaffected. TGF beta in FSH-stimulated conditions decreased both estradiol production and P450 arom transcripts levels. TGF beta did not modify estradiol production and aromatase protein amounts induced by dibutyryl cAMP, whereas the two P450 arom mRNAs levels were increased. In conclusion, we report for the first time that a protein encoded by a truncated P450 arom mRNA could be involved in the regulation of estrogen production. Moreover, we show that the two P450 arom mRNAs are regulated in a differential manner, probably through hormonal control of the alternative splicing.
Collapse
Affiliation(s)
- Vincent Hanoux
- Laboratoire de Biochimie, Equipe d'Accueil 2608, Unité Sous Contrat de l'Institut National de la Recherche Agronomique, Centre Hospitalier Universitaire Côte de Nacre, 14032 Caen Cedex, France.
| | | | | | | | | |
Collapse
|
16
|
Padmanabhan V, Brown MB, Dahl GE, Evans NP, Karsch FJ, Mauger DT, Neill JD, Van Cleeff J. Neuroendocrine control of follicle-stimulating hormone (FSH) secretion: III. Is there a gonadotropin-releasing hormone-independent component of episodic FSH secretion in ovariectomized and luteal phase ewes? Endocrinology 2003; 144:1380-92. [PMID: 12639921 DOI: 10.1210/en.2002-220973] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies in ovariectomized ewes have provided direct evidence that FSH secretion is comprised of basal and episodic modes. In those studies, each GnRH pulse coincided with an FSH pulse, but additional FSH pulses were noted. To determine whether non-GnRH-associated pulses of FSH represent a GnRH-independent component of FSH secretion, we determined whether episodic FSH secretion persists after blockade of GnRH action with a GnRH antagonist. Hypophyseal portal and jugular blood was collected from five ovariectomized and six luteal phase ewes at 5-min intervals for 6 h before and 6 h after a single iv injection of Nal-Glu (10 micro g/kg body weight). Hypophyseal portal LH and FSH and jugular patterns of FSH were compared with patterns of GnRH. Before Nal-Glu, in both models, there was a one-to-one concordance between GnRH and portal LH pulses, and each GnRH pulse was associated with a FSH pulse. However, additional non-GnRH-associated pulses of FSH were present. Nal-Glu administration eliminated LH but not FSH pulsatility. Nal-Glu inhibited interaction of GnRH I with GnRH type I receptor but not interaction of GnRH II with type II receptor. These studies provide the first direct evidence of the existence of an acute GnRH I-independent component of episodic FSH secretion.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Han J, Son GH, Seong JY, Kim K. GnRH pre-mRNA splicing: role of exonic splicing enhancer. PROGRESS IN BRAIN RESEARCH 2003; 141:209-19. [PMID: 12508572 DOI: 10.1016/s0079-6123(02)41095-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin Han
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
18
|
Clarke IJ. Multifarious effects of estrogen on the pituitary gonadotrope with special emphasis on studies in the ovine species. Arch Physiol Biochem 2002; 110:62-73. [PMID: 11935402 DOI: 10.1076/apab.110.1.62.898] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gonadotrope is a complex cell that expresses receptors for gonadotropin releasing hormone (GnRH) and estrogen. It has synthetic machinery for the production of 3 gonadotropin subunits which are assembled into two gonadotropins, luteinising hormone (LH) and follicle stimulating hormone (FSH). The production and secretion of LH and FSH are differentially regulated by GnRH and estrogen. Patterns of secretion of LH are dictated by the pulsatile release of GnRH from the median eminence as well as the feedback effects of estrogen. The means by which estrogen plays such an important role in the regulation of LH and FSH is reviewed in this chapter, with emphasis on work that has been done in the sheep. Estrogen regulates the second messenger systems in the gonadotrope as well as the number of GnRH receptors and the function of ion channels in the plasma membrane. Estrogen also regulates gene expression in these cells. Additionally, GnRH appears to regulate the level of estrogen receptor in the ovine gonadotrope, so there is substantial cross-talk between the signalling pathways for GnRH and estrogen. No clear picture has emerged as to how estrogen exerts a positive feedback effect on the gonadotrope and it is suggested that this might be forthcoming from more definitive studies on the way that estrogen regulates the second messenger systems and the trafficking of secretory vesicles.
Collapse
Affiliation(s)
- I J Clarke
- Prince Henry's Institute of Medical Research, Clayton, Australia.
| |
Collapse
|
19
|
Hashizume T, Kumahara A, Fujino M, Okada K. Insulin-like growth factor I enhances gonadotropin-releasing hormone-stimulated luteinizing hormone release from bovine anterior pituitary cells. Anim Reprod Sci 2002; 70:13-21. [PMID: 11841903 DOI: 10.1016/s0378-4320(01)00190-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of insulin-like growth factor I (IGF-I) in the release of luteinizing hormone (LH) is unclear in ruminants. In the present study, the effects of IGF-I on the release of LH stimulated by gonadotropin-releasing hormone (GnRH) were examined in primary cultures of bovine anterior pituitary (AP) cells, and the interaction between estradiol-17beta (E(2)) and IGF-I was characterized. GnRH(100nM)-stimulated LH release from the cultured cells was increased (P<0.05) 12, 24 and 36h after addition of IGF-I (250ng/ml), with a maximum at 12h (48.4ng/ml media versus 35.4ng/ml media in controls). IGF-I at concentrations of 25, 250 and 500ng/ml increased the release by 18.7, 24.2 and 28.9%, respectively (P<0.05), when compared with controls (37.2ng/ml media). E(2) (10nM), IGF-I (250ng/ml) and combined treatment of E(2) plus IGF-I also induced significant increases in LH release (P<0.05). The amounts of LH release after treatment with E(2) alone was 37.3% greater than with IGF-I alone (39.0ng/ml media versus 28.4ng/ml media) (P<0.05). When E(2) and IGF-I were added together (45.6ng/ml media), the release of LH was significantly greater than with either E(2) alone or IGF-I alone (P<0.05). E(2) (10nM) significantly (P<0.05) increased the amount of GnRH bound to the cells by 51.6% when compared with controls, however, IGF-I (250ng/ml) failed to increase GnRH binding. These results show that IGF-I enhances GnRH-stimulated LH release without changing the number of GnRH receptors in cattle, and IGF-I interacts with E(2) to increase the response to GnRH.
Collapse
Affiliation(s)
- T Hashizume
- Faculty of Agriculture, Iwate University, Ueda 3, Morioka, Japan.
| | | | | | | |
Collapse
|
20
|
Dalla Valle L, Lunardi L, Colombo L, Belvedere P. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. J Steroid Biochem Mol Biol 2002; 80:25-34. [PMID: 11867261 DOI: 10.1016/s0960-0760(01)00170-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome P450arom, a key enzyme in the hormonal steroidogenic pathway, mediates the conversion of androgens to estrogens. This work describes the molecular cloning of the cDNA encoding the European sea bass (Dicentrarchus labrax L.) cytochrome P450arom by means of reverse transcriptase and polymerase chain reaction (RT-PCR) and 5' and 3'-rapid amplification of cDNA ends (RACE) analyses. The cDNA is 1822bp in length and encodes a putative protein of 517 amino acids. Northern blot analysis revealed that the ovary expressed a transcript of about 2.2kb in size. Analysis of the deduced amino acid sequence indicated 62-86% identity with ovarian P450arom of other teleost fish, the highest identity being found with the Japanese flounder, Paralichthys olivaceous. Identity was lower (56-65%) with the P450arom forms first reported in teleost brain. Only 52% identity was observed with the corresponding fragment of the cartilaginous fish, Dasyatis sabina. RT-PCR revealed that the sea bass P450arom mRNA was also expressed, at low levels, in testis and brain. Between the 5' and 3'-untranslated terminal regions (UTR), the sea bass CYP19 gene contains eight introns. All introns conform to the GT/AG rule for RNA splicing and are inserted in exactly the same positions as those found in Oryzias latipes and the human CYP19 gene.
Collapse
Affiliation(s)
- L Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| | | | | | | |
Collapse
|
21
|
Tobin VA, Pompolo S, Clarke IJ. The percentage of pituitary gonadotropes with immunoreactive oestradiol receptors increases in the follicular phase of the ovine oestrous cycle. J Neuroendocrinol 2001; 13:846-54. [PMID: 11679053 DOI: 10.1046/j.1365-2826.2001.00701.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the oestrous cycle, there is an alteration in gonadotrope responsiveness to gonadotropin releasing hormone (GnRH). One cellular mechanism that may be involved in these changes at the pituitary level is the hormonal regulation of oestrogen receptor (ER) expression. Using double-label immunohistochemistry, we examined the proportion of gonadotropes, lactotropes and somatotropes with immunoreactive (ir) oestrogen receptor alpha (ERalpha) in pituitary sections from ewes at three stages of the ovine oestrous cycle (n = 8 per group). The percentage of ERalpha positive cells that also stained positive for luteinizing hormone (LH) increased in the transition from the luteal phase to the follicular phase (n = 8), with no further increase at the time of oestrus (n = 8). In the pituitaries from the luteal phase sheep, only a small number (15%) of lactotropes and 4% of somatotropes were found to contain ir-ERalpha and there were no alterations across the oestrous cycle. When we examined pituitaries from ovariectomized (OVX) ewes treated (i.m.) with either oestradiol benzoate (50 microg) or oil vehicle for 2, 4, 6 or 16 h (n = 4 per group), there was no effect of treatment. In fact, the percentage of gonadotropes that were ERalpha-positive in OVX ewes was similar to that observed in the pituitaries from the follicular phase ewes, both of which display a high frequency of pulsatile GnRH secretion. We conclude that the number of gonadotropes that contain ir-ERalpha increases in the follicular phase of the oestrous cycle and this may enhance the responsiveness of these cells to oestrogen and GnRH. We suggest that this may be due to increased pulsatile GnRH input rather than rising oestrogen levels.
Collapse
Affiliation(s)
- V A Tobin
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
22
|
Wang L, Oh DY, Bogerd J, Choi HS, Ahn RS, Seong JY, Kwon HB. Inhibitory activity of alternative splice variants of the bullfrog GnRH receptor-3 on wild-type receptor signaling. Endocrinology 2001; 142:4015-25. [PMID: 11517181 DOI: 10.1210/endo.142.9.8383] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently we characterized three distinct GnRH receptors in the bullfrog (bfGnRHR-1, bfGnRHR-2, and bfGnRHR-3). In the present study, we further investigated the expression and function of splice variants, generated from the primary bfGnRHR-3 transcript by exon skipping (splice variant 1), intron retention (splice variants 2 and 3), and/or transcriptional slippage (splice variant 4), apart from the constitutively spliced form (wild-type). Cellular expression and function of the splice variants were examined using a transient expression system. Immunoblot analysis revealed that the wild-type receptor and all splice variant proteins were expressed in transfected HeLa cells with no significant differences in expression levels. These splice variants showed a very low binding affinity to ligand and did not induce signal transduction in response to GnRH treatment. Interestingly, cotransfection of the wild-type with splice variants 2--4, but not with splice variant 1, significantly inhibited wild-type receptor-mediated signaling. Subcellular localization analysis of green fluorescent protein-tagged wild-type and splice variant proteins revealed that the wild-type receptor protein was mainly localized in the cell membrane, whereas the splice variant 1 protein was exclusively detected in the cytoplasm. The splice variant 2--4 proteins, however, were found in both the cell membrane and cytoplasm. The inhibition of wild-type receptor signaling by splice variants 2--4 and the subcellular localization of splice variants 2-4 suggest a possible physical interaction of splice variants 2--4 with the wild-type receptor protein. In addition, the ratio of mRNA levels of the wild-type to splice variants 2--4 significantly varied from hibernation (wild-type < splice variants 2--4) to the prebreeding season (wild-type > splice variants 2--4). Collectively, these results suggest that alternative splicing of the bfGnRHR-3 primary transcript plays a role in fine-tuning GnRH receptor function in amphibians.
Collapse
Affiliation(s)
- L Wang
- Hormone Research Center and Department of Biology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Robison RR, White RB, Illing N, Troskie BE, Morley M, Millar RP, Fernald RD. Gonadotropin-releasing hormone receptor in the teleost Haplochromis burtoni: structure, location, and function. Endocrinology 2001; 142:1737-43. [PMID: 11316736 PMCID: PMC2672947 DOI: 10.1210/endo.142.5.8155] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH acts via GnRH receptors (GnRH-R) in the pituitary to cause the release of gonadotropins that regulate vertebrate reproduction. In the teleost fish, Haplochromis burtoni, reproduction is socially regulated through the hypothalamus-pituitary-gonadal axis, making the pituitary GnRH-R a likely site of action for this control. As a first step toward understanding the role of GnRH-R in the social control of reproduction, we cloned and sequenced candidate GnRH-R complementary DNAs from H. burtoni tissue. We isolated a complementary DNA that predicts a peptide encoding a G protein-coupled receptor that shows highest overall identity to other fish type I GnRH-R (goldfish IA and IB and African catfish). Functional testing of the expressed protein in vitro confirmed high affinity binding of multiple forms of GNRH: Localization of GnRH-R messenger RNA using RT-PCR revealed that it is widely distributed in the brain and retina as well as elsewhere in the body. Taken together, these data suggest that this H. burtoni GnRH receptor probably interacts in vivo with all three forms of GNRH:
Collapse
Affiliation(s)
- R R Robison
- Program in Neuroscience, Department of Psychology, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Cheng KW, Leung PCK. The expression, regulation and signal transduction pathways of the mammalian gonadotropin-releasing hormone receptor. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-096] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal mammalian sexual maturation and reproductive functions require the integration and precise coordination of hormones at the hypothalamic, pituitary, and gonadal levels. Hypothalamic gonadotropin-releasing hormone (GnRH) is a key regulator in this system; after binding to its receptor (GnRHR), it stimulates de novo synthesis and release of gonadotropins in anterior pituitary gonadotropes. Since the isolation of the GnRHR cDNA, the expression of GnRHR mRNA has been detected not only in the pituitary, but also in extrapituitary tissues, including the ovary and placenta. It has been shown that change in GnRHR mRNA is one of the mechanisms for regulating the expression of the GnRHR. To help understand the molecular mechanism(s) involved in transcriptional regulation of the GnRHR gene, the 5' flanking region of the GnRHR gene has recently been isolated. Initial characterization studies have identified several DNA regions in the GnRHR 5' flanking region which are responsible for both basal expression and GnRH-mediated homologous regulation of this gene in pituitary cells. The mammalian GnRHR lacks a C-terminus and possesses a relatively short third intracellular loop; both features are important in desensitization of many others G-protein coupled receptors (GPCRs), Homologous desensitization of GnRHR has been shown to be regulated by various serine-threonine protein kinases including protein kinase A (PKA) and protein kinase C (PKC), as well as by G-protein coupled receptor kinases (GRKs). Furthermore, GnRHR was demonstrated to couple with multiple G proteins (Gq/11, Gs, and Gi), and to activate cascades that involved the PKC, PKA, and mitogen-activator protein kinases. These results suggest the diversity of GnRHR-G protein coupling and signal transduction systems. The identification of second form of GnRH (GnRH-II) in mammals adds to the complexity of the GnRH-GnRHR system. This review summaries our recent progress in understanding the regulation of GnRHR gene expression and the GnRHR signal transduction pathways.Key words: gonadotropin-releasing hormone receptor, transcriptional regulation, desensitization, signal transduction.
Collapse
|