1
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
2
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
3
|
Arumugam G, Alagar Yadav S. Synergistic inhibitory actions of resveratrol, epigallocatechin-3-gallate, and diallyl trisulfide against skin cancer cell line A431 through mitochondrial caspase dependent pathway: a combinational drug approach. Med Oncol 2024; 41:64. [PMID: 38280077 DOI: 10.1007/s12032-023-02292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024]
Abstract
The harmful effect of chemotherapeutic side effects has paid a way to discover a novel with curative way for skin cancer treatment. Skin cancer prevention is more viable with the use of combination of bioactive agents than using of single bioactive compounds. Present work was demonstrated to evaluate the interaction of Resveratrol (Res), Epigallocatechin-3-gallate (EGCG), and diallyl trisulfide (DATS) with each other as a binary combination on A431 cells. Nuclear fragmentation analysis of combination of bioactive agents using DAPI analysis, detection of apoptosis, analysis of cell cycle, ROS assay, antimigration assays, and western blotting were implemented to study the combination of bioactive compounds on A431 cell line. Among the selected combination EGCG + DATS had a synergetic effect reducing cellular migration, increased intercellular reactive oxygen species generation, condensation, cell phagocytosis induced by phosphatidylserine externalization, rise in sub-G1 DNA content, and S-phase were cell cycle arrest. The combinations EGCG + DATS induced apoptotic proteins in A431 cells by upregulation of proapoptotic Bax and Bad proteins, a downmodulation of anti-apoptotic proteins Bcl2 and caspases (caspase-3, and -9) activity got triggered by intrinsic pathway. The combination of EGCG + DATS showed good anticancer potential against A431 skin cancer cell line via the mitochondrial caspase dependent pathway with very strong synergism. This finding will help to produce a novel combination/chemoprevention using dietary bioactive agents (EGCG + DATS) for the treatment of skin cancer after clinical trial.
Collapse
Affiliation(s)
- Gobika Arumugam
- Department of Biotechnology, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sangilimuthu Alagar Yadav
- Department of Biotechnology, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
4
|
Upadhyay PK, Singh S, Vishwakarma VK. Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry. Curr Pharm Biotechnol 2024; 25:694-712. [PMID: 37608669 DOI: 10.2174/1389201024666230822090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers. METHODS Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only. RESULTS Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed. CONCLUSION Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
Collapse
Affiliation(s)
- Prabhat Kumar Upadhyay
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | | |
Collapse
|
5
|
Grădinaru TC, Vlad A, Gilca M. Bitter Phytochemicals as Novel Candidates for Skin Disease Treatment. Curr Issues Mol Biol 2023; 46:299-326. [PMID: 38248322 PMCID: PMC10814078 DOI: 10.3390/cimb46010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Skin diseases represent a global healthcare challenge due to their rising incidence and substantial socio-economic burden. While biological, immunological, and targeted therapies have brought a revolution in improving quality of life and survival rates for certain dermatological conditions, there remains a stringent demand for new remedies. Nature has long served as an inspiration for drug development. Recent studies have identified bitter taste receptors (TAS2Rs) in both skin cell lines and human skin. Additionally, bitter natural compounds have shown promising benefits in addressing skin aging, wound healing, inflammatory skin conditions, and even skin cancer. Thus, TAS2Rs may represent a promising target in all these processes. In this review, we summarize evidence supporting the presence of TAS2Rs in the skin and emphasize their potential as drug targets for addressing skin aging, wound healing, inflammatory skin conditions, and skin carcinogenesis. To our knowledge, this is a pioneering work in connecting information on TAS2Rs expression in skin and skin cells with the impact of bitter phytochemicals on various beneficial effects related to skin disorders.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (T.-C.G.); (M.G.)
| |
Collapse
|
6
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
7
|
Pterostilbene-Mediated Inhibition of Cell Proliferation and Cell Death Induction in Amelanotic and Melanotic Melanoma. Int J Mol Sci 2023; 24:ijms24021115. [PMID: 36674631 PMCID: PMC9866175 DOI: 10.3390/ijms24021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Melanoma is one of the fastest-growing cancers worldwide. Treatment of advanced melanoma is very difficult; therefore, there is growing interest in the identification of new therapeutic agents. Pterostilbene is a natural stilbene that has been found to have several pharmacological activities. The aim of this study was to evaluate the influence of pterostilbene on the proliferation and apoptosis of human melanoma cells. Proliferation of pterostilbene-treated amelanotic (C32) and melanotic (A2058) melanoma cells was determined by BRDU assay. Flow cytometric analyses were used to determine cell cycle progression, and further molecular investigations were performed using real-time RT-qPCR. The expression of the p21 protein and the DNA fragmentation assay were determined by the ELISA method. The results revealed that pterostilbene reduced the proliferation of both amelanotic and melanotic melanoma cells. Pterostilbene induced apoptosis in amelanotic C32 melanoma cells, and this effect was mediated by an increase in the expression of the BAX, CASP9, and CASP9 genes; induction of caspase 3 activity; and DNA degradation. Pterostilbene did not affect the activation of apoptosis in the A2058 cell line. It may be concluded that pterostilbene has anticancer potential against human melanoma cells; however, more studies are still needed to fully elucidate the effects of pterostilbene on amelanotic and melanotic melanoma cells.
Collapse
|
8
|
Li Y, YuF X, Wang W, Jiang L, Cao S, Fan T. Resveratrol improves postharvest quality of tomato fruists by enhancing the antioxidant defense system and inhibiting ethylene biosynthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4313-4321. [PMID: 36193460 PMCID: PMC9525471 DOI: 10.1007/s13197-022-05502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
Resveratrol, the most widely studied phytoalexin, derived from the skin of grapes and other fruits. Evidence from numerous studies have confirmed its extensive bioactivities, such as antioxidation, anti-inflammatory and anticancer, as well as to promote antiaging effects in organisms. However, the effect of resveratrol on prolonging the postharvest storage of tomato fruits is still unknown. Here, our data provide evidence that tomato fruits applied 200 μM resveratrol displayed a significant delay in changes of weight loss, titratable acidity, soluble solids concentration, soluble protein, vitamin C and lycopene content compared to control fruits during storage. In addition, resveratrol treatment could stimulate the antioxidant defense system to inhibit the production of ROS and down-regulate the expression of ethylene biosynthesis genes. Taken together, our results suggest that resveratrol could benefit in delaying senescence and preserving the postharvest quality of tomato fruits.
Collapse
Affiliation(s)
- Yaping Li
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| | - Xin YuF
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| | - Wei Wang
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| | - Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009 Anhui People’s Republic of China
| |
Collapse
|
9
|
Kurangi B, Jalalpure S, Jagwani S. Formulation and Evaluation of Resveratrol Loaded Cubosomal Nanoformulation for Topical Delivery. Curr Drug Deliv 2021; 18:607-619. [PMID: 32881670 DOI: 10.2174/1567201817666200902150646] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
AIM The aim of the study was to formulate, characterize, and evaluate the Resveratrol- loaded Cubosomes (RC) for topical application. BACKGROUND Resveratrol (RV) is a nutraceutical compound with exciting pharmacological potential in different diseases, including cancers. Many studies on resveratrol have been reported for anti- melanoma activity. Due to its low bioavailability, the therapeutic activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been made to increase its activity through transdermal drug delivery. OBJECTIVE To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate Resveratrol-loaded Cubosomal Gel (RC-Gel) for its topical application. METHODS RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. RESULTS The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV, respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 3.91%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. CONCLUSION The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.
Collapse
Affiliation(s)
- Bhaskar Kurangi
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Satveer Jagwani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| |
Collapse
|
10
|
Marinheiro D, Ferreira BJML, Oskoei P, Oliveira H, Daniel-da-Silva AL. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1382. [PMID: 33809119 PMCID: PMC8000002 DOI: 10.3390/ma14061382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Chemotherapy has limited success in the treatment of malignant melanoma due to fast development of drug resistance and the low bioavailability of chemotherapeutic drugs. Resveratrol (RES) is a natural polyphenol with recognized preventive and therapeutic anti-cancer properties. However, poor RES solubility hampers its bioactivity, thus creating a demand for suitable drug delivery systems to improve it. This work aimed to assess the potential of RES-loaded mesoporous silica nanoparticles (MSNs) for human melanoma treatment. RES was efficiently loaded (efficiency > 93%) onto spheroidal (size~60 nm) MSNs. The encapsulation promoted the amorphization of RES and enhanced the release in vitro compared to non-encapsulated RES. The RES release was pH-dependent and markedly faster at pH 5.2 (acid environment in some tumorous tissues) than at pH 7.4 in both encapsulated and bulk forms. The RES release from loaded MSNs was gradual with time, without a burst effect, and well-described by the Weibull model. In vitro cytotoxicity studies on human A375 and MNT-1 melanoma cellular cultures showed a decrease in the cell viability with increasing concentration of RES-loaded MSNs, indicating the potent action of the released RES in both cell lines. The amelanotic cell line A375 was more sensitive to RES concentration than the melanotic MNT-1 cells.
Collapse
Affiliation(s)
- Diogo Marinheiro
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bárbara J. M. L. Ferreira
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Párástu Oskoei
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Helena Oliveira
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Ana L. Daniel-da-Silva
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Xu N, Wang L, Fu S, Jiang B. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch Med Sci 2021; 17:166-176. [PMID: 33488869 PMCID: PMC7811305 DOI: 10.5114/aoms.2020.100777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Osteosarcoma is the most common primary malignancy of the bone. The existing adjuvant chemotherapy regimens, while improving the overall survival, have been limited by the significant systemic toxicity. Substantial clinical and research efforts are being invested to develop novel pharmaceutical agents. Resveratrol (Res) has been suggested to have a chemopreventive effect. However, the mechanism of Res in osteosarcoma remains to be elucidated. MATERIAL AND METHODS The MG-63 osteosarcoma cell culture model was used to investigate the chemotherapeutic effect of Res. MTT assay, wound healing assay, and Transwell migration assay were used to document the effect of Res on cell proliferation, migration, and invasion, respectively. Apoptosis in MG-63 cells was quantified with the TUNEL assay. Western blotting analysis was used to examine the molecular changes following Res treatment. Data processing and analysis were conducted using GraphPad Prism 5.0. P < 0.05 was considered statistically significant. RESULTS Our data suggested that Res blocks cell proliferation, migration, and invasion, and activates apoptotic cell death in osteosarcoma MG-63 cells. We found that Res potentially down-regulates nuclear factor κB (NF-κB) and Akt intracellular signaling transduction. Moreover, the combination of Res and pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, resulted in synergistic growth inhibition of osteosarcoma. CONCLUSIONS Our in vitro preclinical study in the MG-63 cell line model supports the translation of Res to the clinical management of patients with osteosarcoma.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Lili Wang
- Department of Oncology, Ninth People’s Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Shiping Fu
- Department of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Bin Jiang
- Department of Oncology, Ninth People’s Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Gugleva V, Zasheva S, Hristova M, Andonova V. Topical use of resveratrol: technological aspects. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e48472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resveratrol is a natural polyphenolic phytoalexin found in grapes, berry skins, roots of Japanese knotweed and is reputed as an excellent antioxidant, anti-inflammatory, neuro- and cardio- protective agent. Resveratrol has also beneficial effects in therapy of different skin conditions such as acne, exfoliative eczema, psoriasis and is known to provide a protection against ultraviolet radiation-mediated oxidative stress. However, its low oral bioavailability and short biological half- life compromise its beneficial therapeutic effects; therefore, its topical application is a practical approach in the treatment of various cutaneous disorders. Challenges associated with the development of topical resveratrol drug delivery systems and dosage forms include its low aqueous solubility as well as its poor UV-, pH- and temperature-dependent stability. The purpose of this article is to discuss the mechanism of action, therapeutic effect and physicochemical properties of resveratrol and to present recent technological approaches designed to improve its stability, bioavailability and therapeutic efficiency.
Collapse
|
13
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
14
|
Heenatigala Palliyage G, Singh S, Ashby CR, Tiwari AK, Chauhan H. Pharmaceutical Topical Delivery of Poorly Soluble Polyphenols: Potential Role in Prevention and Treatment of Melanoma. AAPS PharmSciTech 2019; 20:250. [PMID: 31297635 DOI: 10.1208/s12249-019-1457-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Melanoma is regarded as the fifth and sixth most common cancer in men and women, respectively, and it is estimated that one person dies from melanoma every hour in the USA. Unfortunately, the treatment of melanoma is difficult because of its aggressive metastasis and resistance to treatment. The treatment of melanoma continues to be a challenging issue due to the limitations of available treatments such as a low response rate, severe adverse reactions, and significant toxicity. Natural polyphenols have attracted considerable attention from the scientific community due to their chemopreventive and chemotherapeutic efficacy. It has been suggested that poorly soluble polyphenols such as curcumin, resveratrol, quercetin, coumarin, and epigallocatechin-3-gallate may have significant benefits in the treatment of melanoma due to their antioxidant, anti-inflammatory, antiproliferative, and chemoprotective efficacies. The major obstacles for the use of polyphenolic compounds are low stability and poor bioavailability. Numerous nanoformulations, including solid lipid nanoparticles, polymeric nanoparticles, micelles, and liposomes, have been formulated to enhance the bioavailability and stability, as well as the therapeutic efficacy of polyphenols. This review will provide an overview of poorly soluble polyphenols that have been reported to have antimetastatic efficacy in melanomas.
Collapse
|
15
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
16
|
Yang HZ, Zhang J, Zeng J, Liu S, Zhou F, Zhang F, Giampieri F, Cianciosi D, Forbes-Hernandez TY, Ansary J, Gil E, Chen R, Battino M. Resveratrol inhibits the proliferation of melanoma cells by modulating cell cycle. Int J Food Sci Nutr 2019; 71:84-93. [PMID: 31154861 DOI: 10.1080/09637486.2019.1614541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the inhibitory effects of resveratrol (RSV) in A375 and A431 melanoma cells, by assessing cell viability (CCK-8 assay), apoptosis through flow cytometer and cell morphology, cell cycle assay by flow cytometer and western blot (Cyclin D1, Rac1 and PCDH9). Our results demonstrated that RSV strongly inhibited A375 cells proliferation, by decreasing cell viability, promoting apoptosis and arresting cell cycle. Besides, to clarify the main factor - duration or concentration of RSV, the double variance analysis of independent factors was operated after Bartlett's test for homogeneity by R project. According to the outcomes obtained from statistical analyses, Cyclin D1 and PCDH9 were strongly affected by RSV duration while Rac1 was not influenced. In conclusion, RSV can inhibit A375 proliferation and trigger apoptosis by influencing cell cycle proteins; for these effects, treatment duration of RSV played more important role than concentration.
Collapse
Affiliation(s)
- Hui-Zhi Yang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Jie Zeng
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shengbo Liu
- Guangdong Medical University, Zhanjiang, China
| | - Fei Zhou
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fang Zhang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Nutrition and Food Science Group, University of Vigo, Vigo, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Nutrition and Food Science Group, University of Vigo, Vigo, Spain
| | - Johura Ansary
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Emilio Gil
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Nutrition and Food Science Group, University of Vigo, Vigo, Spain
| | - RongYi Chen
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| |
Collapse
|
17
|
Ombra MN, Paliogiannis P, Stucci LS, Colombino M, Casula M, Sini MC, Manca A, Palomba G, Stanganelli I, Mandalà M, Gandini S, Lissia A, Doneddu V, Cossu A, Palmieri G. Dietary compounds and cutaneous malignant melanoma: recent advances from a biological perspective. Nutr Metab (Lond) 2019; 16:33. [PMID: 31139235 PMCID: PMC6528337 DOI: 10.1186/s12986-019-0365-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Cutaneous malignant melanoma is a heterogeneous disease, being the consequence of specific genetic alterations along several molecular pathways. Despite the increased knowledge about the biology and pathogenesis of melanoma, the incidence has grown markedly worldwide, making it extremely important to develop preventive measures. The beneficial role of correct nutrition and of some natural dietary compounds in preventing malignant melanoma has been widely demonstrated. This led to numerous studies investigating the role of several dietary attitudes, patterns, and supplements in the prevention of melanoma, and ongoing research investigates their impact in the clinical management and outcomes of patients diagnosed with the disease. This article is an overview of recent scientific advances regarding specific dietary compounds and their impact on melanoma development and treatment.
Collapse
Affiliation(s)
- Maria Neve Ombra
- 1Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Panagiotis Paliogiannis
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Luigia Stefania Stucci
- 3Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Colombino
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Milena Casula
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria Cristina Sini
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Antonella Manca
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Grazia Palomba
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Ignazio Stanganelli
- 5Istituto Scientifico Romagnolo per Studio e Cura Tumori (IRST-IRCCS), Meldola, Italy
| | - Mario Mandalà
- 6Medical Oncology, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - Sara Gandini
- 7Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Amelia Lissia
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Valentina Doneddu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Antonio Cossu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | |
Collapse
|
18
|
Zhang CH, Wang JX, Cai ML, Shao R, Liu H, Zhao WL. The roles and mechanisms of G3BP1 in tumour promotion. J Drug Target 2018; 27:300-305. [PMID: 30207743 DOI: 10.1080/1061186x.2018.1523415] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is a SH3 domain-binding protein that is overexpressed in a variety of tumour tissues and cancers, such as head and neck cancer, lung cancer, prostate cancer, colon cancer and breast cancer. G3BP1 promotes tumour cell proliferation and metastasis and inhibits apoptosis by regulating the Ras, TGF-β/Smad, Src/FAK and p53 signalling pathways. At present, polypeptides targeting G3BP1 have shown anti-tumour activity and G3BP1 also involved in anti-cancer effects of some polyphenolic compounds (resveratrol and EGCG). Therefore G3BP1 may be a potential target for tumour treatment.
Collapse
Affiliation(s)
- Cong-Hui Zhang
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| | - Jun-Xia Wang
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| | - Mei-Lian Cai
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| | - Rongguang Shao
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| | - Hong Liu
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| | - Wu-Li Zhao
- a NHC Key Laboratory of Biotechnology of Antibiotics , Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
19
|
Peng KT, Chiang YC, Ko HH, Chi PL, Tsai CL, Ko MI, Lee MH, Hsu LF, Lee CW. Mechanism of Lakoochin A Inducing Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS and MAPKs Pathway. Int J Mol Sci 2018; 19:ijms19092649. [PMID: 30200660 PMCID: PMC6164788 DOI: 10.3390/ijms19092649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is developed from pigment-containing cells, melanocytes, and primarily found on the skin. Malignant melanoma still has a high mortality rate, which may imply a lack of therapeutic agents. Lakoochin A, a compound isolated from Artocarpus lakoocha and Artocarpus xanthocarpus, has an inhibitory function of tyrosinase activity and melanin production, but the anti-cancer effects are still unclear. In the current study, the therapeutic effects of lakoochin A with their apoptosis functions and possible mechanisms were investigated on A375.S2 melanoma cells. Several methods were applied, including 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT), flow cytometry, and immunoblotting. Results suggest that lakoochin A attenuated the growth of A375.S2 melanoma cells through an apoptosis mechanism. Lakoochin A first increase the production of cellular and mitochondrial reactive oxygen species (ROSs); mitochondrial ROSs then promote mitogen-activated protein kinases (MAPKs) pathway activation and raise downstream apoptosis-related protein and caspase expression. This is the first study to demonstrate that lakoochin A, through ROS-MAPK, apoptosis-related proteins, caspases cascades, can induce melanoma cell apoptosis and may be a potential candidate compound for treating malignant melanoma.
Collapse
Affiliation(s)
- Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying Dist., Kaohsiung City 81362, Taiwan.
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Zuoying Dist., Kaohsiung City 81362, Taiwan.
| | - Chia-Lan Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
| | - Ming-I Ko
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Lee-Fen Hsu
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan.
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan.
| |
Collapse
|
20
|
Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, Ali S, Asrar M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed Pharmacother 2018; 103:1643-1651. [DOI: 10.1016/j.biopha.2018.04.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
21
|
Juin C, Oliveira Junior RGD, Fleury A, Oudinet C, Pytowski L, Bérard JB, Nicolau E, Thiéry V, Lanneluc I, Beaugeard L, Prunier G, Almeida JRGDS, Picot L. Zeaxanthin from Porphyridium purpureum induces apoptosis in human melanoma cells expressing the oncogenic BRAF V600E mutation and sensitizes them to the BRAF inhibitor vemurafenib. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Chedea VS, Vicaş SI, Sticozzi C, Pessina F, Frosini M, Maioli E, Valacchi G. Resveratrol: from diet to topical usage. Food Funct 2018; 8:3879-3892. [PMID: 29034918 DOI: 10.1039/c7fo01086a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stilbene derivative resveratrol (3,5,4'-trihydroxy-stilbene; RESV) has become the subject of interest of many researchers and the pharmaceutical industries due to its well-acclaimed beneficial biological activities. Although earlier research tended to focus on the effects of RESV on cardiovascular disorders, many other studies have described the beneficial effects of RESV in the areas of cancer chemoprevention and inflammation and interest of researchers on this compound is still increasing. It is now well accepted that the effect of RESV is not just due to its so called "antioxidant" activity but mainly (if not only) because of the ability of this compound to trigger cell signaling pathways and gene expression involved in cellular defense systems. Many "in vitro" studies on RESV did not take into account that although its oral absorption is about 75% it undergoes rapid metabolism and the concentration in the blood stream is almost undetectable. For this reason interest in the topical usage of RESV by cosmeceutical skin care brands has exponentially increased in the last decade reporting in general very promising results on its beneficial effect in protecting the skin from outdoor insults, but there is still some controversy on its topical usage mainly surrounding the concentration used. Therefore, more basic research on the topical application of RESV should be performed to better understand the way it prevents cutaneous damage and whether it could be recommended as a preventive skin aging agent for all skin insults.
Collapse
Affiliation(s)
- Veronica Sanda Chedea
- Laboratory of Animal Biology, National Research and Development Institute for Biology and Animal Nutrition, Baloteşti (INCDBNA-IBNA), Calea Bucureşti nr. 1, Balotesti, Ilfov 077015, Romania.
| | | | | | | | | | | | | |
Collapse
|
23
|
Singh D, Fisher J, Shagalov D, Varma A, Siegel DM. Dangerous plants in dermatology: Legal and controlled. Clin Dermatol 2018; 36:399-419. [PMID: 29908582 DOI: 10.1016/j.clindermatol.2018.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The plant and mushroom kingdoms have species used for intoxication, inebriation, or recreation. Some of these species are toxic. Given that many of these plants or substances are illegal and have histories of abuse, much of the research regarding therapeutic application is based on basic science, animal studies, and traditional use. This review examines Cannabis, Euphorbia, Ricinus, Podophyllum, Veratrum, mushrooms, and nightshades, along with resveratrol and cocaine as they relate to dermatology.
Collapse
Affiliation(s)
- Deeptej Singh
- Department of Dermatology, University of New Mexico School of Medicine, Albuquerque, NM.
| | - Juliya Fisher
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Devorah Shagalov
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Aakaash Varma
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Daniel M Siegel
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
24
|
Abstract
Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein), and therapeutic perspectives with an emphasis on clinical trial results to date.
Collapse
|
25
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Chhabra G, Ndiaye MA, Garcia-Peterson LM, Ahmad N. Melanoma Chemoprevention: Current Status and Future Prospects. Photochem Photobiol 2017; 93:975-989. [PMID: 28295364 DOI: 10.1111/php.12749] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
The incidence of skin cancers, both nonmelanoma and melanoma, is increasing in the United States. The ultraviolet radiation, mainly from sun, is considered the major cause for these neoplasms. While nonmelanoma skin cancers are far more numerous, melanoma remains the most challenging. This is because melanoma can become extremely aggressive and its incidence is increasing worldwide due to lack of effective early detection, as well as disease recurrence, following both surgery and chemotherapy. Therefore, in addition to better treatment options, newer means are required to prevent melanomas from developing. Chemoprevention is a reasonable cost-effective approach to prevent carcinogenesis by inhibiting the processes of tumor initiation, promotion and progression. Melanoma is a progressive disease, which makes it very suitable for chemopreventive interventions, by targeting the processes and molecular pathways involved in the progression of melanoma. This review discusses the roles of various chemopreventive agents such as NSAIDs, statins, vitamins and dietary agents in melanoma and highlights current advancements and our perspective on future of melanoma chemoprevention. Although considerable preclinical data suggest that melanoma may be prevented or delayed by a numerous chemopreventive agents, we realize there are insufficient clinical studies evaluating their efficacy and long-term safety for human use.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, WI
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, WI
| | | | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI.,William S. Middleton VA Medical Center, Madison, WI
| |
Collapse
|
27
|
Singh S, Zafar A, Khan S, Naseem I. Towards therapeutic advances in melanoma management: An overview. Life Sci 2017; 174:50-58. [PMID: 28238718 DOI: 10.1016/j.lfs.2017.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/29/2022]
Abstract
Melanoma is one of the most aggressive types of skin cancer with rapidly increasing incidence rate. The disease is largely considered incurable and the patients diagnosed with metastatic melanoma have a survival of not more than five years. Despite of the recent advances in anti-melanoma chemo- and immunotherapies, the available drugs are relatively toxic and responsive to only a limited subset of lesions. Currently, topical pharmacotherapy is demonstrated as an effective approach for the treatment of various skin cancers. Also, in vitro testing of melanoma cell lines and murine melanoma models has identified a number of relatively safe and effective phytochemicals. In this review, we described the use of topical pharmacotherapy for the treatment of skin cancers. Melanoma treatment by drugs targeting MAPK-pathway has also been discussed. Long non-coding RNAs and therapeutics targeting ER-associated pathways looks quite promising for the treatment of melanoma. Moreover, some natural anticancer compounds that have been reported to have anti-melanoma effects have also been described. At present a better understanding of genetics and epigenetics of initiation and progression of melanoma is needed for the identification of novel biomarkers and development of targeted therapeutics against melanoma.
Collapse
Affiliation(s)
- Swarnendra Singh
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
28
|
Moriyama H, Moriyama M, Ninomiya K, Morikawa T, Hayakawa T. Inhibitory Effects of Oligostilbenoids from the Bark of Shorea roxburghii on Malignant Melanoma Cell Growth: Implications for Novel Topical Anticancer Candidates. Biol Pharm Bull 2017; 39:1675-1682. [PMID: 27725445 DOI: 10.1248/bpb.b16-00420] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human malignant melanomas remain associated with dismal prognosis due to their resistance to apoptosis and chemotherapy. There is growing interest in plant oligostilbenoids owing to their pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. Recent studies have demonstrated that resveratrol, a well-known stilbenoid from red wine, exhibits cell cycle-disrupting and apoptosis-inducing activities on melanoma cells. The objective of our study was to evaluate the anti-melanoma effect of oligostilbenoids isolated from the bark of Shorea roxburghii. Among the isolates, four resveratrol oligomers, i.e., (-)-hopeaphenol, vaticanol B, hemsleyanol D, and (+)-α-viniferin, possessed more potent antiproliferative action than did resveratrol against SK-MEL-28 melanoma cells. Cell cycle analysis revealed that (-)-hopeaphenol, hemsleyanol D, and (+)-α-viniferin arrested cell division cycle at the G1 phase, whereas vaticanol B had little effect on the cell cycle. In addition, cell proliferation assay also revealed that (+)-α-viniferin induced DNA damage followed by induction of apoptosis in SK-MEL-28 cells, which was confirmed by an increased expression of γ-H2AX and cleaved caspase-3, respectively. The compounds vaticanol B, hemsleyanol D, and resveratrol significantly increased the expression of p21, suggesting that they are able to block cell cycle progression. Moreover, these oligostilbenoids downmodulated cylin D1 expression and extracellular signal-regulated kinase (ERK) activation. Furthermore, hemsleyanol D, (+)-α-viniferin, and resveratrol significantly decreased the expression of cyclin B1, which could also suppress cell cycle progression. The present study thus suggests that these plant oligostilbenoids are effective as therapeutic or chemopreventive agents against melanoma.
Collapse
|
29
|
Gillespie ZE, Pickering J, Eskiw CH. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan. Front Genet 2016; 7:142. [PMID: 27588026 PMCID: PMC4988992 DOI: 10.3389/fgene.2016.00142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth.
Collapse
Affiliation(s)
- Zoe E Gillespie
- Department of Food and Bioproduct Sciences, University of Saskatchewan Saskatoon, SK, Canada
| | - Joshua Pickering
- Department of Biochemistry, University of Saskatchewan Saskatoon, SK, Canada
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of SaskatchewanSaskatoon, SK, Canada; Department of Biochemistry, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
30
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Yue Z, Zhang W, Lu Y, Yang Q, Ding Q, Xia J, Chen Y. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties. PeerJ 2015; 3:e1425. [PMID: 26644976 PMCID: PMC4671159 DOI: 10.7717/peerj.1425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.
Collapse
Affiliation(s)
- Zhenyu Yue
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Wenna Zhang
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Yongming Lu
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Qiaoyue Yang
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Qiuying Ding
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| | - Junfeng Xia
- Institute of Health Sciences, Anhui University , Hefei, Anhui , China
| | - Yan Chen
- School of Life Sciences, Anhui University , Hefei, Anhui , China
| |
Collapse
|
32
|
Oi N, Yuan J, Malakhova M, Luo K, Li Y, Ryu J, Zhang L, Bode AM, Xu Z, Li Y, Lou Z, Dong Z. Resveratrol induces apoptosis by directly targeting Ras-GTPase-activating protein SH3 domain-binding protein 1. Oncogene 2015; 34:2660-71. [PMID: 24998844 PMCID: PMC4286533 DOI: 10.1038/onc.2014.194] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
Resveratrol (trans-3,5,4'-truhydroxystilbene) possesses a strong anticancer activity exhibited as the induction of apoptosis through p53 activation. However, the molecular mechanism and direct target(s) of resveratrol-induced p53 activation remain elusive. Here, the Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) was identified as a potential target of resveratrol, and in vitro binding assay results using resveratrol-conjugated Sepharose 4B beads confirmed their direct binding. Depletion of G3BP1 significantly diminishes resveratrol-induced p53 expression and apoptosis. We also found that G3BP1 negatively regulates p53 expression by interacting with ubiquitin-specific protease 10 (USP10), a deubiquitinating enzyme of p53. Disruption of the interaction of p53 with USP10 by G3BP1 interference leads to the suppression of p53 deubiquitination. Resveratrol, on the other hand, directly binds to G3BP1 and prevents the G3BP1/USP10 interaction, resulting in enhanced USP10-mediated deubiquitination of p53, and consequently increased p53 expression. These findings disclose a novel mechanism of resveratrol-induced p53 activation and resveratrol-induced apoptosis by direct targeting of G3BP1.
Collapse
Affiliation(s)
- Naomi Oi
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
| | - Margarita Malakhova
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Lei Zhang
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Zengguang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
| | - Yan Li
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| | - Zhenkun Lou
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Ave. NE, Austin, MN 55912, USA
| |
Collapse
|
33
|
Abstract
Resveratrol is a natural polyphenol found in a wide variety of plants, including grapes, berries, and peanuts. Resveratrol can modulate a wide spectrum of molecular targets, including those involved in cancer signaling pathways. Here, we evaluated the role of resveratrol in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and examined the molecular mechanisms in the human hepatocellular carcinoma cell line HepG2. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to assess cell viability, flow cytometry to analyze cell cycle and apoptosis, and immunoblotting to detect protein expression. Resveratrol decreased cell viability at a concentration of 100 μmol/l or higher. At a concentration of 50 μmol/l, resveratrol induced S phase arrest of the cell cycle without apoptosis. In addition, phospho-AMPK increased significantly in a dose-dependent manner. Resveratrol was found to synergistically augment TRAIL-induced apoptosis. The rates of early apoptosis were 3.4, 9.6, and 49.6% on treatment with 50 μmol/l resveratrol, 10 ng/ml TRAIL, and both reagents, respectively. Resveratrol significantly downregulated the expression of survivin in a dose-dependent manner. In conclusion, we found that that resveratrol could augment TRAIL sensitivity by downregulating survivin. These results suggest that combination resveratrol with TRAIL may be an effective new strategy for the treatment of hepatocellular carcinoma.
Collapse
|
34
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
35
|
Strickland LR, Pal HC, Elmets CA, Afaq F. Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Lett 2015; 359:20-35. [PMID: 25597784 DOI: 10.1016/j.canlet.2015.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/19/2022]
Abstract
Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway - the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib - have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies.
Collapse
Affiliation(s)
- Leah Ray Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Harish Chandra Pal
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Makam N S, Chidambara Murthy KN, Sultanpur CM, Rao RM. Natural molecules as tumour inhibitors: Promises and prospects. J Herb Med 2014. [DOI: 10.1016/j.hermed.2014.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Murzaku EC, Bronsnick T, Rao BK. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J Am Acad Dermatol 2014; 71:1053.e1-1053.e16. [PMID: 25454037 DOI: 10.1016/j.jaad.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
The roles of dietary factors in aggravating, preventing, or treating skin diseases are common questions encountered in dermatology practice. Part II of this two-part series reviews dietary modifications that can potentially be utilized in the management of melanoma, chronic urticaria, and psoriasis patients. Specifically, we examine the effect of alcohol consumption and supplementation with vitamins D and E, polyunsaturated fatty acids, selenium, green tea, resveratrol, and lycopene on melanoma risk. The relationships between chronic urticaria symptoms and dietary pseudoallergens, gluten, and vitamin D are analyzed. We explore weight loss, reduced alcohol consumption, and gluten avoidance as means of reducing psoriasis-associated morbidity, as well as the possible utility of supplementation with polyunsaturated fatty acids, folic acid, vitamin D, and antioxidants. With proper knowledge of the role of diet in these cutaneous disease processes, dermatologists can better answer patient inquiries and consider implementation of dietary modifications as adjuncts to other treatments and preventative measures.
Collapse
Affiliation(s)
- Era Caterina Murzaku
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Tara Bronsnick
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.
| | - Babar K Rao
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
38
|
Lee TH, Seo JO, Do MH, Ji E, Baek SH, Kim SY. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue. Biomol Ther (Seoul) 2014; 22:431-7. [PMID: 25414774 PMCID: PMC4201217 DOI: 10.4062/biomolther.2014.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 11/05/2022] Open
Abstract
Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.
Collapse
Affiliation(s)
- Taek Hwan Lee
- College of Pharmacy, Yonsei University, Incheon 406-840
| | - Jae Ok Seo
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Moon Ho Do
- College of Pharmacy, Gachon University, Incheon 406-799
| | - Eunhee Ji
- College of Pharmacy, Gachon University, Incheon 406-799
| | - So-Hyeon Baek
- National Institute of Crop Science, Rural Development Administration, Iksan 570-080
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 406-799 ; Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 ; Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-799, Republic of Korea
| |
Collapse
|
39
|
Fofaria NM, Srivastava SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 2014; 5:7051-64. [PMID: 25216522 PMCID: PMC4196183 DOI: 10.18632/oncotarget.2251] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Anoikis is an anchorage-independent cell death. Resistance to anoikis is one of the key features of metastatic cells. Here, we analyzed the role of STAT3 in anoikis resistance in melanoma cells leading to metastasis. When grown under anchorage-independent conditions, significant proportion of cells resisted anoikis and these resistant cells had higher rate of migration and invasion as compared to the cells grown under anchorage-dependent conditions. The anoikis resistant cells also had significantly higher expression and phosphorylation of STAT3 at Y705 than the cells that were attached to the basement membrane. STAT3 inhibitors, AG 490 and piplartine (PL) induced anoikis in a concentration-dependent manner in anoikis resistant cells. Over-expression of STAT3 or treatment with IL-6 not only increased anoikis resistance, but also protected the cancer cells from PL-induced anoikis. On the other hand, silencing STAT3 decreased the potential of cancer cells to resist anoikis and to migrate. STAT3 knock-down cells and PL treated cells did not form tumors as well as failed to metastasize in SCID-NSG mice as compared to untreated anchorage-independent cells, which formed big tumors and extensively metastasized. In summary, our results for the first time establish STAT3 as a critical player that renders anoikis resistance to melanoma cells and enhance their metastatic potential.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| |
Collapse
|
40
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
41
|
Tong LX, Young LC. Nutrition: The future of melanoma prevention? J Am Acad Dermatol 2014; 71:151-60. [DOI: 10.1016/j.jaad.2014.01.910] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
|
42
|
HABIBIE, YOKOYAMA SATORU, ABDELHAMED SHERIF, AWALE SURESH, SAKURAI HIROAKI, HAYAKAWA YOSHIHIRO, SAIKI IKUO. Survivin suppression through STAT3/β-catenin is essential for resveratrol-induced melanoma apoptosis. Int J Oncol 2014; 45:895-901. [DOI: 10.3892/ijo.2014.2480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/25/2014] [Indexed: 11/06/2022] Open
|
43
|
Wang M, Yu T, Zhu C, Sun H, Qiu Y, Zhu X, Li J. Resveratrol triggers protective autophagy through the ceramide/Akt/mTOR pathway in melanoma B16 cells. Nutr Cancer 2014; 66:435-40. [PMID: 24579778 DOI: 10.1080/01635581.2013.878738] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV), a natural polyphenolic compound, is known as a promising anti-cancer agent. In this study, we showed that RSV could inhibit the growth of B16 cells via induction of apoptosis. Moreover, our results showed for the first time that RSV induced autophagy in B16 cells, which might occur through ceramide accumulation and Akt/mTOR pathway inhibition. Inhibition of autophagy by an autophagic inhibitor 3-methyladenine (3-MA) or si-Beclin 1 enhanced RSV-induced cytotoxicity and apoptosis. Thus, autophagy inhibition represents a promising approach to improve the efficacy of RSV in the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Meng Wang
- a Department of Oncology , Shandong Jining No.1 People's Hospital , Jining , China
| | | | | | | | | | | | | |
Collapse
|
44
|
Lao CD, Demierre MF, Sondak VK. Targeting events in melanoma carcinogenesis for the prevention of melanoma. Expert Rev Anticancer Ther 2014; 6:1559-68. [PMID: 17134361 DOI: 10.1586/14737140.6.11.1559] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma is one of the few tumors that have increased in incidence over the last few decades. Strategies devoted solely to protecting against ultraviolet radiation have, at best, had a modest impact on the development of melanoma. Chemoprevention is an under-explored approach that could significantly decrease the morbidity and mortality from this deadly cancer. However, the scientific and logistical challenges of performing clinical studies in chemoprevention require innovative approaches to prove the effectiveness of putative preventive agents. There are several pharmacological and nutriceutical agents that are mechanistically linked to events in melanoma carcinogenesis that are candidates for advanced human studies. We will review the data for several promising agents, including statins, curcumin, resveratrol, silymarin and green tea, and discuss some importance issues and concepts that should be considered in any melanoma chemoprevention strategy.
Collapse
Affiliation(s)
- Christopher D Lao
- University of Michigan, 1500 East Medical Center DriveAnn Arbor, MI 48109-0848, USA.
| | | | | |
Collapse
|
45
|
Uzarska M, Czajkowski R, Schwartz RA, Bajek A, Zegarska B, Drewa T. Chemoprevention of skin melanoma: facts and myths. Melanoma Res 2013; 23:426-33. [PMID: 24077511 DOI: 10.1097/cmr.0000000000000016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Melanoma is the most dangerous type of skin cancer. Despite the rise of public awareness, the incidence rate among the white population has been rising constantly for several decades. Systematic improvement in knowledge about the biology of pigment cells and molecular mechanisms of their neoplastic transformation has enhanced the possibility of melanoma chemoprevention. Hence, chemopreventive agents that prevent, inhibit, or reverse melanoma development are being investigated intensively. Among synthetic compounds, especially well studied are lipid-lowering drugs and cyclooxygenase inhibitors. Substances found in everyday diet, such as genistein, apigenin, quercetin, resveratrol, and curcumin may also have potential chemopreventive qualities. However, studies examining the chemopreventive activity of these compounds have shown widely varying results. Early reports on the possible chemopreventive activity of statins and fibrates were not proved by the results of randomized clinical trials. Similarly, case-control studies examining the influence of NSAIDs on the risk of melanoma do not confirm the antitumor activity of cyclooxygenase inhibitors. Further clinical trials involving carefully selected target populations as well as the identification of specific biomarkers of prognostic and predictive value seem to be essential for the evaluation of the chemopreventive activity of the studied substances.
Collapse
Affiliation(s)
- Małgorzata Uzarska
- Departments of aTissue Engineering bDermatology, Sexually Transmitted Diseases and Immunodermatology cCosmetology and Esthetic Dermatology dUrology Department, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland eDepartment of Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 2013; 10:3871-81. [PMID: 23968375 PMCID: PMC4100701 DOI: 10.1021/mp400342f] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoencapsulation of antiproliferative and chemopreventive phytoalexin trans-resveratrol (RSV) is likely to provide protection against degradation, enhancement of bioavailability, improvement in intracellular penetration and control delivery. In this study, polymeric nanoparticles (NPs) encapsulating RSV (nano-RSV) as novel prototypes for prostate cancer (PCa) treatment were designed, characterized and evaluated using human PCa cells. Nanosystems, composed of a biocompatible blend of poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) conjugate (PLGA-PEG-COOH), were prepared by a nanoprecipitation method, and characterized in terms of morphology, particle size and zeta potential, encapsulation efficiency, thermal analyses, and in vitro release studies. Cellular uptake of NPs was then evaluated in PCa cell lines DU-145, PC-3, and LNCaP using confocal fluorescence microscopy, and antiproliferative efficacy was assessed using MTT assay. With encapsulation efficiencies ranging from 74% to 98%, RSV was successfully loaded in PCL:PLGA-PEG-COOH NPs, which showed an average diameter of 150 nm. NPs were able to control the RSV release at pH 6.5 and 7.4, mimicking the acidic tumoral microenvironment and physiological conditions, respectively, with only 55% of RSV released within 7 h. In gastrointestinal simulated fluids, NPs released about 55% of RSV in the first 2 h in acidic medium, and their total RSV content within the subsequent 5 h at pH 7.4. Confocal fluorescence microscopy observations revealed that NPs were efficiently taken up by PCa cell lines. Furthermore, nano-RSV significantly improved the cytotoxicity compared to that of free RSV toward all three cell lines, at all tested concentrations (from 10 μM to 40 μM), proving a consistent sensitivity toward both the androgen-independent DU-145 and hormone-sensitive LNCaP cells. Our findings support the potential use of developed nanoprototypes for the controlled delivery of bioactive RSV for PCa chemoprevention/chemotherapy.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Imtiaz Ahmad Siddiqui
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Mario Sechi
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine, University of Sassari, 07100 Sassari, Italy
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Hasan Mukhtar
- Department of Dermatology, Medical Sciences Center, University of Wisconsin—Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Pemetrexed downregulates ERCC1 expression and enhances cytotoxicity effected by resveratrol in human nonsmall cell lung cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:1047-59. [PMID: 23912706 DOI: 10.1007/s00210-013-0905-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
The multitargeted antifolate pemetrexed has demonstrated certain clinical activities against nonsmall cell lung cancer (NSCLC). Resveratrol (3,5,4-trihydroxy-trans-stilbene) is a polyphenol found in grapes and other plants and has great potential as a preventative and therapeutic agent due to its anticarcinogenic activity. The efficacy of adding resveratrol to pemetrexed to prolong the survival of patients with NSCLC still remains unclear. The excision repair cross-complementation 1 (ERCC1) is a DNA repair gene coding 5' endonuclease in nucleotide excision repair and is overexpressed in chemo- or radioresistant carcinomas. In this study, resveratrol (10-50 μM) inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with resveratrol increased ERCC1 messenger RNA and protein levels in a MKK3/6-p38 MAPK signal activation-dependent manner. Furthermore, blocking p38 MAPK activation by SB202190 or knocking down ERCC1 expression by transfection with small interfering RNA of ERCC1 enhanced the cytotoxicity of resveratrol. Combining resveratrol with pemetrexed resulted in a synergistic cytotoxic effect, accompanied with the reduction of phospho-p38 MAPK and ERCC1 protein levels, and a DNA repair capacity. Expression of constitutively active MKK6 (MKK6E) or HA-p38 MAPK vectors significantly rescued the decreased p38 MAPK activity, and restored ERCC1 protein levels and cell survival in resveratrol and pemetrexed cotreated NSCLC cells. In this study, for the first time, we have demonstrated the synergistic effect of combined treatment with resveratrol and pemetrexed in human NSCLC cells through downregulation of the MKK3/6-p38 MAPK-ERCC1 signal, suggesting a potential benefit of combining resveratrol and pemetrexed to treat lung cancer in the future.
Collapse
|
48
|
Koller VJ, Dirsch VM, Beres H, Donath O, Reznicek G, Lubitz W, Kudela P. Modulation of bacterial ghosts--induced nitric oxide production in macrophages by bacterial ghost-delivered resveratrol. FEBS J 2013; 280:1214-25. [PMID: 23289719 DOI: 10.1111/febs.12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 01/01/2013] [Indexed: 12/17/2022]
Abstract
The present study aimed to investigate the capacity of resveratrol (RV) delivered into macrophages by bacterial ghosts (BGs), representing intact empty nonliving envelopes of Gram-negative bacteria, to modulate nitric oxide (NO) production related to the presence of the pathogen-associated molecular patterns on the surface of BGs. Incubation of the murine macrophage cell line RAW 264.7 with BGs leads to a dose-dependent activation of inducible NO synthase. To modify BG-induced NO formation in RAW 264.7 cells by RV; BGs were loaded with RV (RV-BGs) and incubated with murine macrophages in a dose-dependent manner. RV-BGs delivering RV to the target macrophages significantly reduced BG-induced NO production with concentration of RV more than one order of magnitude lower than the amount of RV capable of reducing NO formation when applied directly. Moreover, no cytotoxic impact of BGs on the viability of RAW 264.7 cells added to macrophages alone or loaded with RV was detected after a mutual 24 h incubation, whereas cell viability slightly decreased (~ 10%) when RV concentrations of 30 μm alone were applied. The results obtained in the present study clearly indicate that the intracellular delivery of RV by BGs significantly enhances the total RV effect.
Collapse
Affiliation(s)
- Verena J Koller
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
49
|
Stakleff KS, Sloan T, Blanco D, Marcanthony S, Booth TD, Bishayee A. Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac J Cancer Prev 2013; 13:1333-40. [PMID: 22799328 DOI: 10.7314/apjcp.2012.13.4.1333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epithelial ovarian cancer represents the most lethal gynecological cancer, and the high mortality rate makes this malignancy a major health concern. Poor prognosis results from an inability to detect ovarian cancers at an early, curable stage, as well as from the lack of an effective therapy. Thus, effective and novel strategies for prevention and treatment with non-toxic agents merit serious consideration. Resveratrol, obtained from grapes, berries, peanuts and red wine, has been shown to have a potent growth-inhibitory effect against various human cancer cells as well as in in vivo preclinical cancer models. The objective here was to evaluate potential antitumor effects of resveratrol in both in vitro and in vivo NuTu-19 ovarian cancer models. In vitro an invasion assay was performed. After 48 h, the numbers of viable cells that invaded the extracellular matrix layer were reduced by 94% with resveratrol in comparison to control. For the in vivo anti-tumor assessment, 10 rats were injected with NuTu-19 cells into the ovarian bursa. Thereafter, half were provided with a diet mixed with a dose of 100 mg resveratrol/kg body weight/day for 28 days. Following sacrifice, anticancer effects were assessed by histological evaluation of ovarian as well as surrounding tissues, and immunohistochemical detection of cell proliferation and apoptosis, but there were no observable differences between the control and resveratrol-treated groups for any of the biological endpoints. While resveratrol is effective in suppressing the in vitro cellular invasion of NuTu-19 ovarian cancer cells, these effects do not appear to impact on in vivo NuTu-19 ovarian cancers in rats.
Collapse
|
50
|
Ferraz da Costa DC, Casanova FA, Quarti J, Malheiros MS, Sanches D, dos Santos PS, Fialho E, Silva JL. Transient transfection of a wild-type p53 gene triggers resveratrol-induced apoptosis in cancer cells. PLoS One 2012; 7:e48746. [PMID: 23152798 PMCID: PMC3495968 DOI: 10.1371/journal.pone.0048746] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a promising chemopreventive agent that mediates many cellular targets involved in cancer signaling pathways. p53 has been suggested to play a role in the anticancer properties of resveratrol. We investigated resveratrol-induced cytotoxicity in H1299 cells, which are non-small lung cancer cells that have a partial deletion of the gene that encodes the p53 protein. The results for H1299 cells were compared with those for three cell lines that constitutively express wild-type p53: breast cancer MCF-7, adenocarcinomic alveolar basal epithelia A549 and non-small lung cancer H460. Cell viability assays revealed that resveratrol reduced the viability of all four of these cell lines in a dose- and time-dependent manner. MCF-7, A549 and H460 cells were more sensitive to resveratrol than were H1299 cells when exposed to the drug for 24 h at concentrations above 100 µM. Resveratrol also increased the p53 protein levels in MCF-7 cells without altering the p53 mRNA levels, suggesting a post-translational modulation of the protein. The resveratrol-induced cytotoxicity in these cells was partially mediated by p53 and involved the activation of caspases 9 and 7 and the cleavage of PARP. In H1299 cells, resveratrol-induced cytotoxicity was less pronounced and (in contrast to MCF-7 cells) cell death was not accompanied by caspase activation. These findings are consistent with the observation that MCF-7 cells were positively labeled by TUNEL following exposure to 100 µM resveratrol whereas H1299 cells under similar conditions were not labeled by TUNEL. The transient transfection of a wild-type p53-GFP gene caused H1299 cells to become more responsive to the pro-apoptotic properties of resveratrol, similarly to findings in the p53-positive MCF-7 cells. Our results suggest a possible therapeutic strategy based on the use of resveratrol for the treatment of tumors that are typically unresponsive to conventional therapies because of the loss of normal p53 function.
Collapse
Affiliation(s)
- Danielly Cristiny Ferraz da Costa
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Alves Casanova
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maitê Santos Malheiros
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Sanches
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Souza dos Santos
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Fialho
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|