1
|
Wang H, Shuai X, Ye S, Zhang R, Wu M, Jiang S, Li Y, Wu D, He J. Recent advances in the development of bitter gourd seed oil: from chemical composition to potential applications. Crit Rev Food Sci Nutr 2022; 63:10678-10690. [PMID: 35648048 DOI: 10.1080/10408398.2022.2081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-conventional seed oils are being considered novelty foods due to the unique properties of their chemical constituents. Numerous such seed oils serve as nutritional and functional supplements, making them a point of interest for scholars. Bitter gourd (Momordica charantia L.) seed oil (BGSO) has been widely used in folk medicine worldwide for the treatment of different pathologies, such as diabetes, cancer, and several inflammatory diseases. Therefore, its nutritional and medicinal value has been extensively studied. Considering the potential use of BGSO, it is imperative to have a comprehensive understanding of this product to develop and use its biologically active ingredients in innovative food and pharmaceutical products. An extensive understanding of BGSO would also help improve the economic feasibility of the bitter gourd seed processing industry and help prevent environmental pollution associated with the raw waste produced during the processing of bitter gourd seeds. This review addresses the potential uses of BGSO in terms of food and pharmaceuticals industry perspectives and comprehensively summarizes the oil extraction process, chemical composition, biological activity, and the application prospects of BGSO in clinical medicine.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Xiaoyan Shuai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Shuxin Ye
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Rui Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Muci Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Sijia Jiang
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Yubao Li
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Dong Wu
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Jingren He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| |
Collapse
|
2
|
Matta M, Huybrechts I, Biessy C, Casagrande C, Yammine S, Fournier A, Olsen KS, Lukic M, Gram IT, Ardanaz E, Sánchez MJ, Dossus L, Fortner RT, Srour B, Jannasch F, Schulze MB, Amiano P, Agudo A, Colorado-Yohar S, Quirós JR, Tumino R, Panico S, Masala G, Pala V, Sacerdote C, Tjønneland A, Olsen A, Dahm CC, Rosendahl AH, Borgquist S, Wennberg M, Heath AK, Aune D, Schmidt J, Weiderpass E, Chajes V, Gunter MJ, Murphy N. Dietary intake of trans fatty acids and breast cancer risk in 9 European countries. BMC Med 2021; 19:81. [PMID: 33781249 PMCID: PMC8008592 DOI: 10.1186/s12916-021-01952-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Trans fatty acids (TFAs) have been hypothesised to influence breast cancer risk. However, relatively few prospective studies have examined this relationship, and well-powered analyses according to hormone receptor-defined molecular subtypes, menopausal status, and body size have rarely been conducted. METHODS In the European Prospective Investigation into Cancer and Nutrition (EPIC), we investigated the associations between dietary intakes of TFAs (industrial trans fatty acids [ITFAs] and ruminant trans fatty acids [RTFAs]) and breast cancer risk among 318,607 women. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusted for other breast cancer risk factors. RESULTS After a median follow-up of 8.1 years, 13,241 breast cancer cases occurred. In the multivariable-adjusted model, higher total ITFA intake was associated with elevated breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06-1.23; P trend = 0.001). A similar positive association was found between intake of elaidic acid, the predominant ITFA, and breast cancer risk (HR for highest vs lowest quintile, 1.14, 95% CI 1.06-1.23; P trend = 0.001). Intake of total RTFAs was also associated with higher breast cancer risk (HR for highest vs lowest quintile, 1.09, 95% CI 1.01-1.17; P trend = 0.015). For individual RTFAs, we found positive associations with breast cancer risk for dietary intakes of two strongly correlated fatty acids (Spearman correlation r = 0.77), conjugated linoleic acid (HR for highest vs lowest quintile, 1.11, 95% CI 1.03-1.20; P trend = 0.001) and palmitelaidic acid (HR for highest vs lowest quintile, 1.08, 95% CI 1.01-1.16; P trend = 0.028). Similar associations were found for total ITFAs and RTFAs with breast cancer risk according to menopausal status, body mass index, and breast cancer subtypes. CONCLUSIONS These results support the hypothesis that higher dietary intakes of ITFAs, in particular elaidic acid, are associated with elevated breast cancer risk. Due to the high correlation between conjugated linoleic acid and palmitelaidic acid, we were unable to disentangle the positive associations found for these fatty acids with breast cancer risk. Further mechanistic studies are needed to identify biological pathways that may underlie these associations.
Collapse
Affiliation(s)
- Michèle Matta
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Carine Biessy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Corinne Casagrande
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Sahar Yammine
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Agnès Fournier
- CESP "Health Across Generations", INSERM, Univ Paris-Sud, UVSQ, Univ Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Karina Standahl Olsen
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Marco Lukic
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Inger Torhild Gram
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maria-José Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Centre (DFKZ), Heidelberg, Germany
| | - Bernard Srour
- Division of Cancer Epidemiology, German Cancer Research Centre (DFKZ), Heidelberg, Germany
| | - Franziska Jannasch
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Sandra Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica e Chirurgia, Federici II University, Naples, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, di Milano Via Venezian, 1, 20133, Milan, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Copenhagen University, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Ann H Rosendahl
- Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, Oslo, Norway
| | - Julie Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, Lyon, France
| | - Veronique Chajes
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France.
| |
Collapse
|
3
|
Abstract
Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.
Collapse
|
4
|
Bakhti-Suroosh A, Nesil T, Lynch WJ. Tamoxifen Blocks the Development of Motivational Features of an Addiction-Like Phenotype in Female Rats. Front Behav Neurosci 2019; 13:253. [PMID: 31780909 PMCID: PMC6856674 DOI: 10.3389/fnbeh.2019.00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Women become addicted sooner after initiating cocaine use as compared to men. Preclinical studies reveal a similar vulnerability in females, with findings from ovariectomized rats suggesting that estradiol mediates the enhanced vulnerability. However, since ovariectomy depletes not only estradiol, but all ovarian hormones, its role in a physiological context is not clear. Thus, the goal of this study was to determine the role of estradiol in the development of an addiction-like phenotype in ovary-intact females treated chronically with the selective estrogen receptor (ER) modulator tamoxifen. We hypothesized that tamoxifen, by antagonizing ERs, would block the development of an addiction-like phenotype as defined by an enhanced motivation for cocaine (assessed under a progressive-ratio schedule), and a heightened vulnerability to relapse (assessed under an extinction/cue-induced reinstatement procedure). Effects were examined following extended access cocaine self-administration (24-h/day; 4-discrete trials/h; 1.5 mg/kg/infusion) and 14-days of abstinence, conditions optimized for inducing an addiction-like phenotype. As predicted, motivation for cocaine was increased following extended-access self-administration and protracted abstinence in the vehicle (sesame oil) and no-injection control groups, but not in the tamoxifen group indicating that ER signaling is critical for the development of this feature of an addiction-like phenotype. Surprisingly, the increase in motivation for cocaine following abstinence was also attenuated in the vehicle group as compared to no-injection controls suggesting that oil/injections also affected its development. Contrary to our hypothesis, tamoxifen did not decrease vulnerability to relapse as this group responded at similar levels during initial extinction sessions and cue-induced reinstatement testing as compared to controls. Tamoxifen did, however, impair extinction learning as this group took longer to extinguish as compared to controls. Taken together, these findings indicate that estradiol is critical for the extinction of drug-associated cues and the development of motivational features of addiction.
Collapse
Affiliation(s)
- Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Francisco VCB, Okino‐Delgado CH, Zanutto Elgui MR, Fernandes CJDC, Facanali R, Silva RA, Zambuzzi WF, Marques MOM, Fleuri LF. Plant oil bioconversion into increase biological activity through lipases derived from wastes. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.13949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valesca Cristiane Benelli Francisco
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Clarissa Hamaio Okino‐Delgado
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Mirella R. Zanutto Elgui
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Roselaine Facanali
- Agronomic Institute of Campinas (IAC) Laboratory of Natural Products Campinas São Paulo 13020‐902 Brazil
| | - Rodrigo Augusto Silva
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Willian Fernando Zambuzzi
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| | - Márcia Ortiz Mayo Marques
- Agronomic Institute of Campinas (IAC) Laboratory of Natural Products Campinas São Paulo 13020‐902 Brazil
| | - Luciana Francisco Fleuri
- Department of Chemistry and Biochemistry São Paulo State University (UNESP) Institute of Biosciences of Botucatu (IBB) Botucatu São Paulo 18618‐970 Brazil
| |
Collapse
|
6
|
Optimization of the quenching and extraction procedures for a metabolomic analysis of Lactobacillus plantarum. Anal Biochem 2018; 557:62-68. [DOI: 10.1016/j.ab.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
7
|
Chen DJ, Yan LH, Li Q, Zhang CJ, Si CL, Li ZY, Song YJ, Zhou H, Zhang TC, Luo XG. Bioconversion of conjugated linoleic acid by Lactobacillus plantarum CGMCC8198 supplemented with Acer truncatum bunge seeds oil. Food Sci Biotechnol 2017; 26:1595-1611. [PMID: 30263697 PMCID: PMC6049728 DOI: 10.1007/s10068-017-0218-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/02/2017] [Accepted: 07/21/2017] [Indexed: 01/19/2023] Open
Abstract
Conjugated linoleic acid (CLA) isomers, c9, t11-CLA and t10, c12-CLA, have been proved to exhibit excellent biomedical properties for potential use in anti-cancer applications and in reducing obesity. Acer truncatum Bunge (ATB), which is rich in unsaturated fatty acids, including oleic acid, linoleic acid, and nervonic acid, is a new resource for edible oil. In the present study, we developed a new method for producing two CLA isomers from ATB-seed oil by fermentation using Lactobacillus plantarum CGMCC8198 (LP8198), a novel probiotics strain. Polymerase chain reaction results showed that there was a conserved linoleate isomerase (LIase) gene in LP8198, and its transcription could be induced by ATB-seed oil. Analyses by gas chromatography-mass spectrometry showed that the concentration of c9, t11-CLA and t10, c12-CLA in ATB-seed oil could be increased by about 9- and 2.25-fold, respectively, after being fermented by LP8198.
Collapse
Affiliation(s)
- Dong-Ju Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Li-Hua Yan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Qian Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Cai-jiao Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
8
|
Yang B, Qi H, Gu Z, Zhang H, Chen W, Chen H, Chen YQ. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation. J Appl Microbiol 2017; 123:1263-1273. [PMID: 28833935 DOI: 10.1111/jam.13570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
AIM To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. METHODS AND RESULTS CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. CONCLUSIONS The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. SIGNIFICANCE AND IMPACT OF THE STUDY Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development.
Collapse
Affiliation(s)
- B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Z Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - H Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Arab A, Akbarian SA, Ghiyasvand R, Miraghajani M. The effects of conjugated linoleic acids on breast cancer: A systematic review. Adv Biomed Res 2016; 5:115. [PMID: 27512684 PMCID: PMC4964663 DOI: 10.4103/2277-9175.185573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
Recently prevention strategies for breast cancer are focused on lifestyle modification such as diet. Some dietary factors such as Conjugated linoleic acid (CLA) can lower the risk of breast cancer, metastasis and some factors concerning this malignancy. Many studies have been established in this field, but their results are inconsistent. Therefore, we evaluated this association based on systematic review among published scientific literature. We performed an electronic search using PubMed, Cochrane, Scopus, Google Scholar and Persian database (Iran Medex, magiran) to identify relevant studies. We summarized the findings of 8 papers in this review. Although, three cohort studies were not overall identified a protective effect of CLA dietary intake or CLA content in breast tissue on breast cancer incidence, metastasis and death, one of them showed an inverse association after adjusting for age. Also, among case-control studies a weak inverse association between breast cancer risk and CLA dietary intake and serum levels among post-menopausal women was reported. Besides, a clinical trial showed that some indicator of breast tumor decreased after CLA administration among women with breast adenocarcinoma. Lacking published evidence suggested inconsistent results. So, further well-designed studies are required, particularly in considering the main breast cancer risk factors.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahab Aldin Akbarian
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiyasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hennessy AA, Ross P, Devery R, Stanton C. Bifidobacterially produced, C18:3 and C18:4 conjugated fatty acids exhibit in vitro anti-carcinogenic and anti-microbial activity. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alan A. Hennessy
- Teagasc Food Research Centre; Moorepark; Fermoy Co. Cork Ireland
- National Institute for Cellular Biotechnology; Dublin City University; Ireland
| | - Paul Ross
- Teagasc Food Research Centre; Moorepark; Fermoy Co. Cork Ireland
| | - Rosaleen Devery
- National Institute for Cellular Biotechnology; Dublin City University; Ireland
| | | |
Collapse
|
11
|
Kim JH, Kim YJ, Park Y. Conjugated Linoleic Acid and Postmenopausal Women's Health. J Food Sci 2015; 80:R1137-43. [DOI: 10.1111/1750-3841.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ho Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Young Jun Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Yeonhwa Park
- Dept. of Food Science; Univ. of Massachusetts; Amherst MA 01003 U.S.A
| |
Collapse
|
12
|
Rahman MM, Fernandes G, Williams P. Conjugated linoleic Acid prevents ovariectomy-induced bone loss in mice by modulating both osteoclastogenesis and osteoblastogenesis. Lipids 2013; 49:211-24. [PMID: 24338525 DOI: 10.1007/s11745-013-3872-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
Postmenopausal osteoporosis due to estrogen deficiency is associated with severe morbidity and mortality. Beneficial effects of conjugated linoleic acid (CLA) on bone mineral density (BMD) have been reported in mice, rats and humans, but the effect of long term CLA supplementation against ovariectomy-induced bone loss in mice and the mechanisms underlying this effect have not been studied yet. Eight-week old ovariectomized (Ovx) and sham operated C57BL/6 mice were fed either a diet containing 0.5 % safflower oil (SFO) or 0.5 % CLA for 24 weeks to examine BMD, bone turn over markers and osteotropic factors. Bone marrow (BM) cells were cultured to determine the effect on inflammation, osteoclastogenesis, and osteoblastogenesis. SFO/Ovx mice had significantly lower femoral, tibial and lumbar BMD compared to SFO/Sham mice; whereas, no difference was found between CLA/Ovx and CLA/Sham mice. CLA inhibited bone resorption markers whereas enhanced bone formation markers in Ovx mice as compared to SFO-fed mice. Reverse transcriptase polymerase chain reaction and fluorescence activated cell sorting analyses of splenocytes revealed that CLA inhibited pro-osteoclastogenic receptor activator of NF-κB (RANKL) and stimulated decoy receptor of RANKL, osteoprotegerin expression. CLA also inhibited pro-inflammatory cytokine and enhanced anti-inflammatory cytokine production of lipopolysaccharide-stimulated splenocytes and BM cells. Furthermore, CLA inhibited osteoclast differentiation in BM and stimulated osteoblast differentiation in BM stromal cells as confirmed by tartrate resistant acid phosphatase and Alizarin Red staining, respectively. In conclusion, CLA may prevent postmenopausal bone loss not only by inhibiting excessive bone resorption due to estrogen deficiency but also by stimulating new bone formation. CLA might be a potential alternative therapy against osteoporotic bone loss.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA,
| | | | | |
Collapse
|
13
|
Liu X, Joseph SV, Wakefield AP, Aukema HM, Jones PJH. High Dose trans-10,cis-12 CLA Increases Lean Body Mass in Hamsters, but Elevates Levels of Plasma Lipids and Liver Enzyme Biomarkers. Lipids 2011; 47:39-46. [DOI: 10.1007/s11745-011-3616-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
|
14
|
Larsson SC, Bergkvist L, Wolk A. Conjugated linoleic acid intake and breast cancer risk in a prospective cohort of Swedish women. Am J Clin Nutr 2009; 90:556-60. [PMID: 19491389 DOI: 10.3945/ajcn.2009.27480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Studies in animals and in vitro suggest that conjugated linoleic acids (CLAs), a group of fatty acids found mainly in dairy products and in the meat of ruminants, have protective effects against mammary carcinogenesis. However, findings from epidemiologic studies on CLA intake in relation to breast cancer risk are sparse and inconsistent. OBJECTIVE The objective was to examine prospectively the association between CLA intake and the incidence of invasive breast cancer in the Swedish Mammography Cohort. DESIGN In 1987-1990, 61,433 cancer-free women completed a food-frequency questionnaire from which we estimated each woman's CLA intake. Cox proportional hazards models were used to estimate relative risks, adjusted for breast cancer risk factors. RESULTS During a mean follow-up of 17.4 y, 2952 incident cases of breast cancer were ascertained. In multivariate analyses, no significant association was observed between dietary CLA intake and risk of breast cancer, overall or by estrogen receptor (ER) and progesterone receptor (PR) status. The multivariate relative risks (95% CI) for the highest quintile of CLA intake (> or =155.7 mg/d) compared with the lowest quintile (<78.1 mg/d) were 1.04 (0.92, 1.17) for overall breast cancer, 1.09 (0.90, 1.31) for ER+/PR+ tumors, 1.09 (0.78, 1.53) for ER+/PR- tumors, and 0.84 (0.57, 1.24) for ER-/PR- tumors. CONCLUSION The results provide no evidence of a protective effect of CLA against breast cancer development in women.
Collapse
Affiliation(s)
- Susanna C Larsson
- The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
15
|
Donnelly C, Olsen AM, Lewis LD, Eisenberg BL, Eastman A, Kinlaw WB. Conjugated linoleic acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutr Cancer 2009; 61:114-22. [PMID: 19116881 DOI: 10.1080/01635580802348666] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spot 14 (THRSP, S14) is a nuclear protein involved in the regulation of genes required for fatty acid synthesis in normal and malignant mammary epithelial and adipose cells. Harvatine and Bauman (1) reported that conjugated linoleic acid (CLA) inhibits S14 gene expression in bovine mammary and mouse adipose tissues and reduces milk fat production in cows. We hypothesized that CLA inhibits S14 gene expression in human breast cancer and liposarcoma cells and that this will retard their growth. Exposure of T47D breast cancer cells to a mixture of CLA isomers reduced the expression of the S14 and fatty acid synthase (FAS) genes. The mixture caused a dose-related inhibition of T47D cell growth, as did pure c9, t11 and t10, c12-CLA, but not linoleic acid. Similar effects were observed in MDA-MB-231 breast cancer cells. Provision of 8 mircoM palmitate fully (CLA mix, t10, c12-CLA) or partially (c9, t11-CLA) reversed the antiproliferative effect in T47D cells. CLA likewise suppressed levels of S14 and FAS mRNAs in liposarcoma cells and caused growth inhibition that was prevented by palmitic acid. CLA did not affect the growth of nonlipogenic HeLa cells or human fibroblasts. We conclude that as in bovine mammary and mouse adipose cells, CLA suppresses S14 and FAS gene expression in human breast cancer and liposarcoma cells. Rescue from the antiproliferative effect of CLA by palmitic acid indicates that reduced tumor lipogenesis is a major mechanism for the anticancer effects of CLA.
Collapse
Affiliation(s)
- Christina Donnelly
- Department of Medicine, Section of Endocrinology and Metabolism, and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | | | | | | | | | |
Collapse
|
16
|
Churruca I, Fernández-Quintela A, Portillo MP. Conjugated linoleic acid isomers: differences in metabolism and biological effects. Biofactors 2009; 35:105-11. [PMID: 19319853 DOI: 10.1002/biof.13] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.
Collapse
Affiliation(s)
- Itziar Churruca
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of the Basque Country, Paseo de la Universidad, 7. 01006 Vitoria, Spain
| | | | | |
Collapse
|
17
|
Wang LS, Huang YW, Liu S, Yan P, Lin YC. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue. BMC Cancer 2008; 8:208. [PMID: 18652667 PMCID: PMC2517598 DOI: 10.1186/1471-2407-8-208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 07/24/2008] [Indexed: 12/21/2022] Open
Abstract
Background Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. Conclusion These data, therefore, demonstrate that ERα plays important roles in CLA induced apoptosis in human breast tissues.
Collapse
Affiliation(s)
- Li-Shu Wang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
18
|
Yun HS, Do SH, Jeong WI, Yang HJ, Yuan DW, Hong IH, Lee HR, Lee IS, Kim YK, Choi MS, Kim HA, Jeong KS. Cytotoxic effects of the conjugated linoleic acid isomers t10c12, c9t11-CLA and mixed form on rat hepatic stellate cells and CCl4-induced hepatic fibrosis. J Nutr Biochem 2008; 19:175-83. [PMID: 17869086 DOI: 10.1016/j.jnutbio.2007.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 12/20/2006] [Accepted: 02/08/2007] [Indexed: 12/29/2022]
Abstract
Rat hepatic stellate cells (HSC-T6) were incubated for 24 h with 10-180 microM of t10c12 (98%), c9t11 (96%) and a mixed form (c9,t11:t10,c12; 41%:44%) of conjugated linoleic acid (CLA). The MTS dye reduction was measured to verify cell viability in a dose-dependent manner. Among the three CLAs, c9,t11-CLA exhibited the most intense cytotoxic effect on HSCs, the survival rate of which was reduced to 60% under 80 microM of treatment, while cell survival was slightly affected by the mixed form. Three CLA-induced cell deaths were determined by measuring DNA fragmentation using 4',6-diamidino-2-phenylindole staining. The degrees of DNA fragmentation were the most severe in HSC treated with 80 microM of c9,t11-CLA. The mitogen-activated protein kinase/extracellular signal-regulated kinase-kinase and mitogen-activated or extracellular signal-regulated protein kinase (MEK) 1 and 2 were not activated in the t10,c12-CLA treatment. This suggests that the MEK-dependent apoptosis signal is crucial in HSC, which is induced by c9,t11 and mixed CLA. In order to evaluate the protective effect of CLA on carbon tetrachloride (CCl4)-induced hepatic fibrosis in vivo, animals were treated with 10% CCl4 to induce hepatic fibrosis during all experimental periods. Rats were divided into two treatment groups: (1) control diet with tap water ad libitum (n=15) and (2) 1% CLA diet with tap water ad libitum (n=15). In the CLA-supplemented rat livers, alpha-smooth muscle actin-positive cells were significantly reduced around the portal vein. In addition, collagen fibers were not detected in the CLA-treated group. These results suggest that 9c,11t-CLA influences cytotoxic effect on HSC in an MEK-dependent manner and preserving liver from fibrosis.
Collapse
Affiliation(s)
- Hae-Sun Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Banu J, Bhattacharya A, Rahman M, Fernandes G. Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice. J Bone Miner Metab 2008; 26:436-45. [PMID: 18758901 DOI: 10.1007/s00774-008-0863-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 03/04/2008] [Indexed: 10/15/2022]
Abstract
Conjugated linoleic acids (CLA) are a group of polyunsaturated fatty acids that has recently been shown to have several beneficial effects on different diseases, including prevention of bone loss. The important feature of CLA is to reduce fat mass, thereby reducing body weight significantly. Although loss of body weight is known to increase bone loss, there is increasing evidence that CLA maybe beneficial to bone. Another factor that can reduce body weight is exercise (EX). It is well established that moderate EX stimulates bone formation. In this study, we analyzed the changes in bone using pQCT densitometry in middle-aged C57Bl/6 mice fed CLA (0.5%) and/or exercised. Twelve-month-old mice were divided into the following groups: group 1, corn oil, sedentary (CO SED); group 2, corn oil, exercise (CO EX); group 3, CLA, sedentary (CLA SED); and group 4, CLA, exercise (CLA EX). Mice were maintained in the respective experimental regimens for 10 weeks, after which mice were scanned using DEXA and killed. The lumbar vertebrae, femur, and tibia were analyzed using pQCT densitometry. CLA, when given alone or in combination with EX, significantly reduced body weight and increased lean mass. CLA treatment also significantly increased bone mass. Further, additional increase in bone mass was observed in mice treated with a combination of CLA and EX in almost all the bone sites analyzed. We conclude that CLA, when consumed as a dietary supplement along with moderate treadmill EX, significantly increases bone mass in middle-aged female mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
20
|
Markaverich BM, Crowley J, Rodriquez M, Shoulars K, Thompson T. Tetrahydrofurandiol stimulation of phospholipase A2, lipoxygenase, and cyclooxygenase gene expression and MCF-7 human breast cancer cell proliferation. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1727-1731. [PMID: 18087590 PMCID: PMC2137134 DOI: 10.1289/ehp.10659] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/30/2007] [Indexed: 05/25/2023]
Abstract
BACKGROUND We characterized an endocrine disruptor from ground corncob bedding material that interferes with male and female sexual behavior and ovarian cyclicity in rats and stimulates estrogen receptor (ER)-positive and ER-negative breast cancer cell proliferation. The agents were identified as an isomeric mixture of tetrahydrofurandiols (THF-diols; 9,12-oxy-10,13-dihydroxy-octadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid). Synthetic THF-diols inhibited rat male and female sexual behavior at oral concentrations of 0.5-1 ppm, and stimulated MCF-7 human breast cancer cell proliferation in vitro. OBJECTIVES Because THF-diols are derived from lipoxygenase and cyclooxygenase pathways, we suspected that these compounds may regulate cell proliferation by modulating specific enzymatic sites involved in linoleic acid metabolism including phospholipase A(2) (PLA2), lipoxygenases (LOX-5 and LOX-12), cyclooxygenases (COX-1 and COX-2), and closely coupled enzymes including aromatase (AROM). METHODS MCF-7 human breast cancer cells were treated with inhibitors for PLA2 (quinacrine), lipoxygenases (LOX-5 and LOX-12; baicalein, REV-5091, nordihydroguaiaretic acid), cyclooxygenases (COX-1, COX-2, indomethacin), and AROM (formestane). The effects of these enzyme inhibitors on cell proliferation in response to THF-diols or estradiol (E(2)) were assessed. THF-diol modulation of the expression (RNA and protein) of these enzymes was also evaluated by quantitative real-time PCR (QPCR) and Western blot analyses. RESULTS The enzyme inhibition and gene expression (RNA and protein) studies identified PLA2, LOX-5, LOX-12, COX-2, and perhaps AROM as likely sites of THF-diol regulation in MCF-7 cells. COX-1 was not affected by THF-diol treatment. DISCUSSION THF-diol stimulation of MCF-7 cell proliferation is mediated through effects on the expression of the PLA2, COX-2, LOX-5, and LOX-12 genes and/or their respective enzyme activities. The products of these enzymes, including prostaglandins, hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecenoic acids (HODEs), are well-established mitogens in normal and malignant cells. Therefore, it is likely that these compounds are involved in the mechanism of action of THF-diols in breast cancer cells. Although the formestane inhibition studies suggested that AROM activity might be modulated by THF-diols, this was not confirmed by the gene expression studies.
Collapse
Affiliation(s)
- Barry M Markaverich
- Department of Molecular and Cellular Biology, Baylor Colloege of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
21
|
Roberts CG, Gurisik E, Biden TJ, Sutherland RL, Butt AJ. Synergistic cytotoxicity between tamoxifen and the plant toxin persin in human breast cancer cells is dependent on Bim expression and mediated by modulation of ceramide metabolism. Mol Cancer Ther 2007; 6:2777-85. [PMID: 17913853 DOI: 10.1158/1535-7163.mct-07-0374] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytochemicals have provided an abundant source of novel therapeutics for the treatment of human cancers. We have previously described a novel plant toxin, persin, derived from avocado leaves, which has unique in vivo actions in the mammary epithelium and Bim-dependent, cytotoxic effects in human breast cancer cells in vitro. Compounds structurally similar to persin, such as the polyunsaturated fatty acid, conjugated linoleic acid, can attenuate steroid hormone receptor signaling and modulate the response of breast cancer cells to antiestrogens. Here, we provide evidence that persin may have similar effects by showing its potent proapoptotic synergy with the antiestrogen 4-hydroxytamoxifen. However, although persin transcriptionally down-regulates estrogen receptor (ER) expression, unlike conjugated linoleic acid, it also shows efficacy in ER-negative breast cancer cells, both alone and in combination with 4-hydroxytamoxifen, whereas normal breast epithelial cells are unaffected, suggesting it may act via a distinct, ER-independent mechanism. These proapoptotic synergistic interactions are associated with increased de novo ceramide synthesis and are dependent on expression of the proapoptotic protein Bim. These data show that persin should be further investigated as a potential novel cancer therapeutic agent because it significantly enhances the sensitivity of breast cancer cells to the cytotoxic effects of tamoxifen, regardless of their ER status, while displaying apparent specificity for the malignant phenotype.
Collapse
Affiliation(s)
- Caroline G Roberts
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | |
Collapse
|
22
|
Liu J, Sidell N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation. Breast Cancer Res Treat 2007; 94:161-9. [PMID: 16261415 DOI: 10.1007/s10549-005-6942-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously showed that conjugated linoleic acids (CLA) can inhibit transcriptional activation mediated by estrogen response elements (EREs) and that this activity can, at least in part, account for the reported anti-tumor effects of these compounds on breast cancer cells. Using estrogen receptor positive (ER+) MCF-7 cells, we now demonstrate that CLA inhibited both the transactivation of artificial reporter constructs driven by canonical EREs, and the expression of endogenous progesterone receptors, a gene which is transcriptionally regulated by estrogen through novel ER-binding sites. This inhibition was accompanied by downregulation of ER alpha expression and decreased ER alpha-ERE binding activity. These effects on ER alpha were not causally linked since transfection of an ER alpha expression plasmid in MCF-7 cells failed to antagonize CLA downregulation of ER alpha-ERE binding. Immunoprecipitation/Western blot studies revealed that CLA dose-dependently suppressed the degree of phosphorylation of ER alpha, a modification known to inhibit receptor-ERE interactions. As a mechanism that may account for this induced dephosphorylation of ER alpha in MCF-7, we found that CLA specifically stimulated protein phosphatase 2A (PP2A) activity. Experiments using the PP2A inhibitor okadaic acid (OA) showed that OA antagonized both the dephosphorylation effects of CLA on ER alpha and its inhibition of ER alpha-ERE binding. These results provide evidence that the anti-estrogenic activity of CLA is caused by inducing the dephosphorylation of ER alpha through stimulation of PP2A activity.
Collapse
Affiliation(s)
- Jingbo Liu
- Department of Gynecology and Obstetrics, Division of Research, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
23
|
Tsuzuki T, Shibata A, Kawakami Y, Nakagaya K, Miyazawa T. Anti-angiogenic effects of conjugated docosahexaenoic acid in vitro and in vivo. Biosci Biotechnol Biochem 2007; 71:1902-10. [PMID: 17690464 DOI: 10.1271/bbb.70114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The anti-angiogenic effects of conjugated docosahexaenoic acid (CDHA), which was prepared by an alkaline treatment of docosahexaenoic acid and contained conjugated double bonds, were investigated in vitro and in vivo. CDHA inhibited tube formation by the bovine aortic endothelial cell (BAEC), and also inhibited the proliferation of BAEC at a concentration of CDHA that suppressed tube formation, but did not influence cell migration. The inhibition of BAEC growth caused by CDHA was accompanied by a marked change in cellular morphology. Nuclear condensation and brightness were observed in Hoechst 33342-stained cells treated with CDHA, indicating that CDHA induced apoptosis in BAEC. We also evaluated the angiogenesis inhibition of CDHA in vivo. The vessel formation which was triggered by tumor cells was clearly suppressed in mice orally given CDHA. Our findings suggest that CDHA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of octadecadienoic acid in which the double bonds are conjugated, i.e. contiguous. CLA was identified as a component of milk and dairy products over 20 years ago. It is formed as an intermediate in the course of the conversion of linoleic acid to oleic acid in the rumen. The predominant naturally occurring isomer is the cis-9, trans-11 modification. Treatment of linoleic acid-rich oils such as safflower oil, soyabean oil, or maize oil with base and heat will result in the formation of CLA. Two isomers predominate in the synthetic preparation, c9,t11 and t10,c12. CLA has been shown to inhibit chemically-induced skin, stomach, mammary or colon tumours in mice and rats. The inhibition of mammary tumours in rats is effective regardless of type of carcinogen or type or amount of dietary fat. CLA has also been shown to inhibit cholesterol-induced atherosclerosis in rabbits. When young animals (mice, pigs) are placed on CLA-containing diets after weaning they accumulate more body protein and less fat. Since CLA is derived from the milk of ruminant animals and is found primarily in their meat and in products derived from their milk there is a concerted world-wide effort to increase CLA content of milk by dietary means. Its effect on growth (less fat, more protein) is also a subject of active research. The mechanisms underlying the effects of CLA are still moot.
Collapse
|
25
|
Tsuzuki T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T. Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells. J Nutr 2007; 137:641-6. [PMID: 17311953 DOI: 10.1093/jn/137.3.641] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that conjugated eicosapentaenoic acid (CEPA), which is prepared by alkaline treatment of eicosapentaenoic acid and contains conjugated double bonds, suppresses tumor growth in vivo. In this earlier study, blood vessels were observed on the tumor surface in control mice, whereas in CEPA-treated mice, no such vessels were observed and the inner part of the tumor was discolored. These observations suggest that CEPA might suppress cancer cell growth through malnutrition due to a suppressive effect on tumor angiogenesis. In this study, the antiangiogenic effects of CEPA were investigated in vitro. CEPA at 5 micromol/L inhibited vascular endothelial growth factor (VEGF)-stimulated tube formation by human umbilical vein endothelial cells (HUVEC) (P < 0.05) and also inhibited VEGF-stimulated migration of HUVEC at a concentration of CEPA that suppressed tube formation (P < 0.05) but did not influence cell proliferation. The antiangiogenic mechanism of CEPA was investigated in vitro by measuring the secretion and expression of well-characterized angiogenic factors associated with cell migration, such as matrix metalloproteinases (MMP). CEPA at a concentration that suppressed tube formation inhibited secretion and mRNA expression of MMP2 and MMP9 in VEGF-stimulated HUVEC (P < 0.05). Our findings suggest that CEPA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food and Biodynamic Chemistry Lab, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | |
Collapse
|
26
|
Chen S, Oh SR, Phung S, Hur G, Ye JJ, Kwok SL, Shrode GE, Belury M, Adams LS, Williams D. Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res 2007; 66:12026-34. [PMID: 17178902 DOI: 10.1158/0008-5472.can-06-2206] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
White button mushrooms (Agaricus bisporous) are a potential breast cancer chemopreventive agent, as they suppress aromatase activity and estrogen biosynthesis. Therefore, we evaluated the activity of mushroom extracts in the estrogen receptor-positive/aromatase-positive MCF-7aro cell line in vitro and in vivo. Mushroom extract decreased testosterone-induced cell proliferation in MCF-7aro cells but had no effect on MCF-10A, a nontumorigenic cell line. Most potent mushroom chemicals are soluble in ethyl acetate. The major active compounds found in the ethyl acetate fraction are unsaturated fatty acids such as linoleic acid, linolenic acid, and conjugated linoleic acid. The interaction of linoleic acid and conjugated linoleic acid with aromatase mutants expressed in Chinese hamster ovary cells showed that these fatty acids inhibit aromatase with similar potency and that mutations at the active site regions affect its interaction with these two fatty acids. Whereas these results suggest that these two compounds bind to the active site of aromatase, the inhibition kinetic analysis indicates that they are noncompetitive inhibitors with respect to androstenedione. Because only conjugated linoleic acid was found to inhibit the testosterone-dependent proliferation of MCF-7aro cells, the physiologically relevant aromatase inhibitors in mushrooms are most likely conjugated linoleic acid and its derivatives. The in vivo action of mushroom chemicals was shown using nude mice injected with MCF-7aro cells. The studies showed that mushroom extract decreased both tumor cell proliferation and tumor weight with no effect on rate of apoptosis. Therefore, our studies illustrate the anticancer activity in vitro and in vivo of mushroom extract and its major fatty acid constituents.
Collapse
Affiliation(s)
- Shiuan Chen
- Department of Surgical Research, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsuzuki T, Kambe T, Shibata A, Kawakami Y, Nakagawa K, Miyazawa T. Conjugated EPA activates mutant p53 via lipid peroxidation and induces p53-dependent apoptosis in DLD-1 colorectal adenocarcinoma human cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:20-30. [PMID: 17196878 DOI: 10.1016/j.bbalip.2006.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 11/05/2006] [Accepted: 11/17/2006] [Indexed: 11/30/2022]
Abstract
Both conjugated linoleic acid (CLA), which contains conjugated double bonds, and eicosapentaenoic acid (EPA), an n-3 polyunsaturated fatty acid, have antitumor effects. Hence, we hypothesized that a combination of conjugated double bonds and an n-3 highly unsaturated fatty acid may produce a stronger antitumor effect, and we have previously shown that conjugated EPA (CEPA), prepared by alkaline treatment of EPA, induces strong and selective apoptosis in vitro and in vivo, with the mechanism proceeding via lipid peroxidation. In this study, we examined CEPA-induced gene expression in DLD-1 colorectal adenocarcinoma human cells carrying a mutant p53, in order to understand the details of CEPA-induced apoptosis via lipid peroxidation. DNA microarray analysis of 9970 genes was performed by comparison of CEPA-treated DLD-1 cells with untreated DLD-1 cells, thereby allowing determination of the differential gene expression profile induced by CEPA in these cells. CEPA treatment caused up-regulation of expression of genes induced by p53 and activation of the mitochondrial apoptosis pathway via Bax and the death pathway via TRAIL, leading to apoptosis of DLD-1 cells. In addition, activation of the mutant p53 was also induced by CEPA, and these effects showed lipid-peroxidation dependency. This is the first such gene expression analysis of the effects of CEPA, and our results confirm that CEPA induces lipid peroxidation, activates mutant p53, and causes p53-dependent apoptosis in DLD-1 cells.
Collapse
Affiliation(s)
- Tsuyoshi Tsuzuki
- Food and Biodynamic Chemistry Lab, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Coakley M, Johnson MC, McGrath E, Rahman S, Ross RP, Fitzgerald GF, Devery R, Stanton C. Intestinal bifidobacteria that produce trans-9, trans-11 conjugated linoleic acid: a fatty acid with antiproliferative activity against human colon SW480 and HT-29 cancer cells. Nutr Cancer 2006; 56:95-102. [PMID: 17176223 DOI: 10.1207/s15327914nc5601_13] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Bifidobacterium breve species of human intestinal origin have the ability to synthesize cis-9, trans-11 (c9, t11) conjugated linoleic acid (CLA) from free linoleic acid. In this study, the ability of Bifidobacterium species to isomerize C(18) polyunsaturated fatty acids was investigated, and the antiproliferative activities of the two main microbially produced CLA isomers were assessed. Linoleic acid was converted principally to c9, t11 CLA and lesser amounts of t9, t11 CLA, whereas c9, t11 CLA was converted mainly to t9, t11 CLA. Likewise, t10, c12 CLA was converted principally to t9, t11 CLA, which was incorporated into the bacterial cell membranes. To examine the antiproliferative effect of the two main CLA isomers formed, SW480 and HT-29 human colon cancer cells were cultured in the presence of c9, t11 CLA and t9, t11 CLA. The t9, t11 CLA had a more potent antiproliferative effect than c9, t11 CLA. It is tempting to suggest that the ability of Bifidobacterium to produce such bioactive metabolites may be associated with the beneficial effects of bifidobacteria present in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Mairéad Coakley
- Teagasc, Moorepark Food Research Centre, Fermoy, County Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Moon HS, Lee HG, Seo JH, Chung CS, Kim TG, Kim IY, Lim KW, Seo SJ, Choi YJ, Cho CS. Down-regulation of PPARgamma2-induced adipogenesis by PEGylated conjugated linoleic acid as the pro-drug: Attenuation of lipid accumulation and reduction of apoptosis. Arch Biochem Biophys 2006; 456:19-29. [PMID: 17084379 DOI: 10.1016/j.abb.2006.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
This study is designed to evaluate whether the PEGylated conjugated linoleic acid (PCLA) as the pro-drug can have favorable stability, bioavailability, and anti-adipogenic activity in 3T3-L1 cells for anti-obesity when compared with conjugated linoleic acid (CLA) itself. The CLA was simply coupled to poly(ethylene glycol) (PEG) at the melting state without solvents or catalysts through ester linkages between the carboxylic group of CLA and the hydroxyl group of PEG. To confirm of PCLA as the pro-drug, CLA release from PCLA was investigated by using high-performance liquid chromatographic (HPLC), showing that CLA release from PCLA was almost 90% in a nearly continuous fashion over the next 75h. Apoptosis was promoted by both CLA- and PCLA-treatments with increasing concentrations. However, the level of cell apoptosis induced by PCLA was lower than that induced by CLA owing to the biocompatible and hydrophilic properties of PEG. Moreover, the PCLA decreased glycerol-3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 cells by acting upon major adipocyte marker proteins such as PPARgamma2, C/EBPalpha, and aP2 modulators. Furthermore, either CLA or PCLA stimulated basal, but not isoproterenol-sensitive, lipolysis in our cell model, suggesting that both CLA and PCLA may stimulate lipolysis via hormone sensitive lipase (HSL)-independent mechanisms. These results suggest that the PCLA may prove to be a stable pro-drug to control the deposition of fat in the human body, and that the anti-adipogenic effect of the PCLA on 3T3-L1 cells will offer a challenging approach for anti-obesity.
Collapse
Affiliation(s)
- H S Moon
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rahman MM, Bhattacharya A, Banu J, Fernandes G. Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 2006; 18:467-74. [PMID: 16997541 DOI: 10.1016/j.jnutbio.2006.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/18/2006] [Accepted: 08/08/2006] [Indexed: 11/23/2022]
Abstract
Osteoporosis is one of the major causes of morbidity in the elderly. Inflammation exerts a significant influence on bone turnover, inducing the chronic form of osteoporosis. Dietary nutrition has the capacity to modulate inflammatory response. Therefore, nutritional strategies and lifestyle changes may prevent age-related osteoporosis, thereby improving the quality of life of the elderly population. Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Hence, this study was undertaken to examine the effect of CLA on bone mineral density (BMD) in middle-aged C57BL/6 female mice. After 10 weeks on diet, CLA-fed mice (14 months) maintained a higher BMD in different bone regions than corn oil (CO)-fed mice. The increased BMD was accompanied by a decreased activity of proinflammatory cytokines (such as tumor necrosis factor alpha, interleukin-6 and the receptor activator of NF-kappaB ligand) and decreased osteoclast function. Furthermore, a significant decrease in fat mass and an increase in muscle mass were also observed in CLA-fed mice compared to CO-fed mice. In conclusion, these findings suggest that CLA may prevent the loss of bone and muscle mass by modulating markers of inflammation and osteoclastogenic factors.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
31
|
Rahman MM, Bhattacharya A, Fernandes G. Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J Lipid Res 2006; 47:1739-48. [PMID: 16702601 DOI: 10.1194/jlr.m600151-jlr200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone destruction is a pathological hallmark of several chronic inflammatory diseases, including rheumatoid arthritis, periodontitis, and osteoporosis. Inflammation-induced bone loss of this sort results from increased numbers of bone-resorbing osteoclasts. Numerous studies have indicated that conjugated linoleic acid (CLA) positively influences calcium and bone metabolism. Gene-deletion studies have shown that receptor activator of nuclear factor-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. In this report, we examine the ability of CLA to suppress RANKL signaling and osteoclastogenesis in RAW264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated nuclear factor-kappaB (NF-kappaB), and preexposure of the cells to CLA significantly suppressed RANKL-induced NF-kappaB activation, including phosphorylation of I-kappaBalpha, degradation of I-kappaBalpha, and nuclear translocation of p65. RANKL induced osteoclastogenesis in these monocytic cells, and CLA inhibited RANKL-induced tumor necrosis factor-alpha production and osteoclast differentiation, including osteoclast-specific genes such as tartrate-resistant acid phosphatase, cathepsin K, calcitonin receptor, and matrix metalloproteinase-9 expression and osteoclast-specific transcription factors such as c-Fos, nuclear factor of activated T-cells expression, and bone resorption pit formation. CLA also inhibited RANKL-induced activation of mitogen-activated protein kinase p38 but had little effect on c-Jun N-terminal kinase activation. Collectively, these data demonstrate for the first time that CLA inhibits osteoclastogenesis by modulating RANKL signaling. Thus, CLA may have important therapeutic implications for the treatment of bone diseases associated with enhanced bone resorption by excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | |
Collapse
|
32
|
Lai KL, Torres-Duarte AP, Vanderhoek JY. 9-trans, 11-trans-CLA: antiproliferative and proapoptotic effects on bovine endothelial cells. Lipids 2006; 40:1107-16. [PMID: 16459922 DOI: 10.1007/s11745-005-1474-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endothelial cell function can be influenced by nutrition, especially dietary FA and antioxidants. One class of dietary FA that is found in meat and dairy products derived from ruminant animals is conjugated linoleic acids (CLA). We have examined the effects of several CLA isomers on endothelial cell proliferation. 9t,11t-CLA was the only isomer that inhibited bovine aortic endothelial cell (BAEC) [3H]methylthymidine incorporation (I50 = 35 microM), and this antiproliferative effect was time-dependent. A small decrease (20%) in cell number was observed only at the highest concentration (60 microM) tested. The 9c,11t-, 9c,11c-, 10t 12c-, and 11c,13t-CLA isomers did not exhibit any antiproliferative effects over a 5-60 microM concentration range. alpha-Tocopherol and BHT decreased BAEC proliferation, but pretreatment of cells with either of these antioxidants substantially attenuated the antiproliferative effect of 9t,11 t-CLA. No difference in lipid peroxidation, as measured by the thiobarbituric acid assay for malondialdehyde, was observed on treatment of endothelial cells with either 9t,11 t- or 9c,11 t-CLA. However, a 43% increase in caspase-3 activity was observed after incubating BAEC with 9t,11 t-CLA, suggesting that the antiproliferative effect of this isomer is partially due to an apoptotic pathway. In contrast to the above results with normal endothelial cells, these five CLA isomers all inhibited proliferation of the human leukemic cell line THP-1, with the 9t,11 t isomer again being the most (I50 = 60 microM) effective. These results confirm that different CLA isomers have different inhibitory potencies on the proliferation of normal and leukemic cells.
Collapse
Affiliation(s)
- Kuan-Lin Lai
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, DC 20037, USA
| | | | | |
Collapse
|
33
|
Miglietta A, Bozzo F, Bocca C, Gabriel L, Trombetta A, Belotti S, Canuto RA. Conjugated linoleic acid induces apoptosis in MDA-MB-231 breast cancer cells through ERK/MAPK signalling and mitochondrial pathway. Cancer Lett 2006; 234:149-57. [PMID: 15885890 DOI: 10.1016/j.canlet.2005.03.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/18/2005] [Accepted: 03/20/2005] [Indexed: 12/22/2022]
Abstract
We investigated the molecular mechanisms involved in the anti-proliferative activity exerted by conjugated linoleic acid (CLA) on the estrogen unresponsive MDA-MB-231 human breast cancer cell line. The effects on cell proliferation, cell cycle progression and induction of apoptosis were examined. CLA caused the reduction of cell proliferation along with the accumulation of cells in the S phase of the cycle. The occurrence of apoptosis in these cells was indicated by flow cytometry data and further confirmed by the onset of cells with morphological features typical of apoptosis. ERK1/2 reduction and upregulation of pro-apoptotic protein Bak were induced. These events were associated with: (a) reduced levels of the anti-apoptotic protein Bcl-x(L), (b) the translocation of cytochrome c from the mitochondria to the cytosol, (c) the cleavage of pro-caspase-9 and pro-caspase-3. From the above data, we are induced to think that CLA may trigger apoptosis in the estrogen unresponsive MDA-MB-231 cell line via mechanisms involving above all the mitochondrial pathway.
Collapse
Affiliation(s)
- Antonella Miglietta
- Department of Experimental Medicine and Oncology, University of Torino, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789-810. [PMID: 16650752 DOI: 10.1016/j.jnutbio.2006.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/20/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6] commonly found in beef, lamb and dairy products. The most abundant isomer of CLA in nature is the cis-9, trans-11 (c9t11) isomer. Commercially available CLA is usually a 1:1 mixture of c9t11 and trans-10, cis-12 (t10c12) isomers with other isomers as minor components. Conjugated LA isomer mixture and c9t11 and t10c12 isomers alone have been attributed to provide several health benefits that are largely based on animal and in vitro studies. Conjugated LA has been attributed many beneficial effects in prevention of atherosclerosis, different types of cancer, hypertension and also known to improve immune function. More recent literature with availability of purified c9t11 and t10c12 isomers suggests that t10c12 is the sole isomer involved in antiadipogenic role of CLA. Other studies in animals and cell lines suggest that the two isomers may act similarly or antagonistically to alter cellular function and metabolism, and may also act through different signaling pathways. The effect of CLA and individual isomers shows considerable variation between different strains (BALB/C mice vs. C57BL/6 mice) and species (e.g., rats vs. mice). The dramatic effects seen in animal studies have not been reflected in some clinical studies. This review comprehensively discusses the recent studies on the effects of CLA and individual isomers on body composition, cardiovascular disease, bone health, insulin resistance, mediators of inflammatory response and different types of cancer, obtained from both in vitro and animal studies. This review also discusses the latest available information from clinical studies in these areas of research.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
35
|
Banu J, Bhattacharya A, Rahman M, O'Shea M, Fernandes G. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 2006; 5:7. [PMID: 16556311 PMCID: PMC1440862 DOI: 10.1186/1476-511x-5-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Arunabh Bhattacharya
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | | | - Gabriel Fernandes
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| |
Collapse
|
36
|
Dhiman TR, Nam SH, Ure AL. Factors affecting conjugated linoleic acid content in milk and meat. Crit Rev Food Sci Nutr 2006; 45:463-82. [PMID: 16183568 DOI: 10.1080/10408390591034463] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Conjugated linoleic acid (CLA) has been recently studied mainly because of its potential in protecting against cancer, atherogenesis, and diabetes. Conjugated linoleic acid (CLA) is a collective term for a series of conjugated dienoic positional and geometrical isomers of linoleic acid, which are found in relative abundance in milk and tissue fat of ruminants compared with other foods. The cis-9, trans-11 isomer is the principle dietary form of CLA found in ruminant products and is produced by partial ruminal biohydrogenation of linoleic acid or by endogenous synthesis in the tissues themselves. The CLA content in milk and meat is affected by several factors, such as animal's breed, age, diet, and management factors related to feed supplements affecting the diet. Conjugated linoleic acid in milk or meat has been shown to be a stable compound under normal cooking and storage conditions. Total CLA content in milk or dairy products ranges from 0.34 to 1.07% of total fat. Total CLA content in raw or processed beef ranges from 0.12 to 0.68% of total fat. It is currently estimated that the average adult consumes only one third to one half of the amount of CLA that has been shown to reduce cancer in animal studies. For this reason, increasing the CLA contents of milk and meat has the potential to raise the nutritive and therapeutic values of dairy products and meat.
Collapse
Affiliation(s)
- Tilak R Dhiman
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-4815, USA.
| | | | | |
Collapse
|
37
|
Markaverich BM, Crowley JR, Alejandro MA, Shoulars K, Casajuna N, Mani S, Reyna A, Sharp J. Leukotoxin diols from ground corncob bedding disrupt estrous cyclicity in rats and stimulate MCF-7 breast cancer cell proliferation. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:1698-704. [PMID: 16330350 PMCID: PMC1314908 DOI: 10.1289/ehp.8231] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies in our laboratory demonstrated that high-performance liquid chromatography (HPLC) analysis of ground corncob bedding extracts characterized two components (peak I and peak II) that disrupted endocrine function in male and female rats and stimulated breast and prostate cancer cell proliferation in vitro and in vivo. The active substances in peak I were identified as an isomeric mixture of 9,12-oxy-10,13-dihydroxyoctadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid, collectively designated tetrahydrofurandiols (THF-diols). Studies presented here describe the purification and identification of the HPLC peak II component as 9,10-dihydroxy-12-octadecenoic acid (leukotoxin diol; LTX-diol), a well-known leukotoxin. A synthetic mixture of LTX-diol and 12,13-dihydroxy-9-octadecenoic acid (iso-leukotoxin diol; i-LTX-diol) isomers was separated by HPLC, and each isomer stimulated (p < 0.001) MCF-7 cell proliferation in an equivalent fashion. The LTX-diol isomers failed to compete for [3H]estradiol binding to the estrogen receptor or nuclear type II sites, even though oral administration of very low doses of these compounds (>> 0.8 mg/kg body weight/day) disrupted estrous cyclicity in female rats. The LTX-diols did not disrupt male sexual behavior, suggesting that sex differences exist in response to these endocrine-disruptive agents.
Collapse
Affiliation(s)
- Barry M Markaverich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Albright CD, Klem E, Shah AA, Gallagher P. Breast cancer cell-targeted oxidative stress: enhancement of cancer cell uptake of conjugated linoleic acid, activation of p53, and inhibition of proliferation. Exp Mol Pathol 2005; 79:118-25. [PMID: 15992797 DOI: 10.1016/j.yexmp.2005.05.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 05/18/2005] [Indexed: 11/20/2022]
Abstract
We investigated the mechanism of inhibition of cell proliferation by mixed isomers of CLA (9-cis, 11-trans CLA; 10-trans, 12-cis CLA) on human, non-tumorigenic MCF10A cells that were derived from mammary ductal epithelial cells and MCF7 cells that were derived from a well differentiation mammary adenocarcinoma. When treated in the log phase of growth, the uptake of CLA by MCF7 exceeded the levels measured in MCF10A cells. Treatment with CLA in the presence of HPO doubled the incorporation of CLA in MCF7 cells, independent of the isomer, but reduced the incorporation of CLA by MCF10A cells. CLA caused tumor cell-targeted increased expression of 4-hydroxy-2-nonenal (4HNE), a product of lipid peroxidation, and decreased proliferation in MCF7 cells, as measured by the incorporation of bromodeoxyuridine (BrdU) and expression of phosphorylated histone H3, and the effects of CLA in combination with HPO on mitosis were greater than the effects of either agent alone. Decreased cell proliferation in CLA-treated MCF7 cells coincided with increased nuclear localization of phosphorylated, activated p53 protein, and decreased nuclear localization of the transcription factor FKHRSer256. Importantly, CLA-treated MCF7 cells were more sensitive than MCF10A cells to HPO-induced 4HNE, expression of p53, and decreased mitotic activity. These studies suggest that tumor cell-targeted increased sensitivity to oxidative stress and activation of p53 play important roles in the regulation of human breast cancer cell proliferation by CLA.
Collapse
Affiliation(s)
- Craig D Albright
- Department of Nutrition, McGavran-Greenberg Building, School of Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7461, USA.
| | | | | | | |
Collapse
|
39
|
Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 2005; 73:113-9. [PMID: 15961301 DOI: 10.1016/j.plefa.2005.04.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/06/2005] [Accepted: 04/23/2005] [Indexed: 01/03/2023]
Abstract
Bitter gourd (Momordica charantia) seed oil (BGO) is a unique oil which contains 9cis, 11trans, 13trans-conjugated linolenic acid (9c,11t,13t-CLN) at a high level of more than 60%. In this study, we investigated the anti-proliferative and apoptosis-inducing effects of free fatty acids prepared from BGO (BGO-FFA) using colon cancer Caco-2 cells. BGO-FFA and purified 9c,11t,13t-CLN remarkably reduced the cell viability of Caco-2. In Caco-2 cells treated with BGO-FFA, DNA fragmentation of apoptosis indicators was observed in a dose-dependent manner. The expression level of apoptosis suppressor Bcl-2 protein was also decreased by BGO-FFA treatment. The GADD45 and p53, which play an important role in apoptosis-inducing pathways, were remarkably up-regulated by BGO-FFA treatment in Caco-2 cells. Up-regulation of PPARgamma mRNA and protein were also observed during apoptosis induced by BGO-FFA. These results suggest that BGO-FFA rich in 9c,11t,13t-CLN may induce apoptosis in Caco-2 cells through up-regulation of GADD45, p53 and PPARgamma.
Collapse
Affiliation(s)
- Yumiko Yasui
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lampen A, Leifheit M, Voss J, Nau H. Molecular and cellular effects of cis-9, trans-11-conjugated linoleic acid in enterocytes: Effects on proliferation, differentiation, and gene expression. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:30-40. [PMID: 15935729 DOI: 10.1016/j.bbalip.2005.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 11/15/2022]
Abstract
It has been hypothesized that dietary conjugated linoleic acids (CLA) may inhibit colon tumorigenesis. The aim of our study was to investigate the cellular and molecular effects of cis-9 (9Z), trans-11 (11E)-CLA on the proliferation, differentiation, interaction with peroxisome proliferator-activated receptors (PPARs), and expression of genes relevant in the APC-beta-catenin-TCF4 signalling pathway in human HT-29 and Caco-2 colon cells. We found that 9Z,11E-CLA inhibited the proliferation of HT-29 and Caco-2 cells. Trans-vaccenic acid (VA) showed no antiproliferative effects at all. We determined that 9Z,11E-CLA induced cell differentiation as measured by intestinal alkaline phosphatase (IAP) enzyme activity in Caco-2 cells, mRNA expression of IAP, and activation of a 5' flanking region of IAP. The 9Z,11E-CLA activated human PPARdelta as measured in a reporter gene assay. Treatment of HT29 cells in the poliferation phase with 9Z,11E-CLA repressed mRNA-expression of proliferation genes such as c-myc, cyclin D1 and c-jun in a concentration dependent manner. The promoter activities of c-myc and AP1 were also inhibited after incubation with 9Z,11E-CLA. beta-Catenin mRNA and protein expression was also repressed by the treatment with 9Z,11E-CLA. In addition, the mRNA expression of PPARdelta was repressed by treatment of the HT-29 cells with 9Z,11E-CLA. We conclude that 9Z,11E-CLA has an antiproliferative effect at the cellular and molecular levels in human colon cells. The results indicate that the preventive effects of CLA in the development of colon cancer may be due to their downregulation of some target genes of the APC-beta-catenin-TCF-4- and PPARdelta signalling pathway.
Collapse
Affiliation(s)
- A Lampen
- Institut für Lebensmitteltoxikologie, Stiftung Tierärztliche Hochschule Hannover, Germany.
| | | | | | | |
Collapse
|
41
|
Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O'Shea M, Fernandes G. The Combination of Dietary Conjugated Linoleic Acid and Treadmill Exercise Lowers Gain in Body Fat Mass and Enhances Lean Body Mass in High Fat–Fed Male Balb/C Mice. J Nutr 2005; 135:1124-30. [PMID: 15867292 DOI: 10.1093/jn/135.5.1124] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nearly half of the U.S. adult population is overweight or obese, which may be related to increased energy intake combined with lack of physical activity. Obesity increases the risk of several chronic diseases including diabetes, coronary heart disease, hypertension, and stroke. Conjugated linoleic acids (CLA) were shown to decrease fat and increase lean mass in several animal studies. However, the effects of CLA in combination with exercise (Ex) on body composition have not been studied in an animal model. We examined the effect of a low concentration of either safflower oil as control (0.5%) or mixed isomers of CLA (0.4%) along with treadmill exercise on body composition in male Balb/C mice fed a high-fat diet (20% corn oil) in a 2 x 2 factorial design. CLA consumption lowered change in fat mass (P < 0.001) confirming the results of other studies, and change in fat mass decreased further (P < 0.001) with CLA and exercise. Change in lean mass did not increase with exercise alone; it increased, although not significantly, with CLA alone and increased significantly (P < 0.05) due to the combination of CLA and exercise. This effect was accompanied by decreased serum leptin levels and lower leptin mRNA expression in peritoneal fat (P < 0.001). Serum insulin, glucose, tumor necrosis factor (TNF)-alpha, and interleukin-6 were lower in CLA-fed mice than in controls (P < 0.05), whereas serum TNF-alpha was increased by exercise (P < 0.05). Exercise increased oxygen consumption and energy expenditure when measured under resting conditions (P < 0.05). In summary, the combination of dietary CLA and exercise decreased fat mass and increased lean mass in mice fed a high-fat diet, and these effects may be related in part to decreased serum leptin and exercise-induced increases in oxygen consumption and energy expenditure.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Department of Medicine, Division of Clinical Immunology, University of Texas Health Science Center, San Antonio 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee KW, Lee HJ, Cho HY, Kim YJ. Role of the Conjugated Linoleic Acid in the Prevention of Cancer. Crit Rev Food Sci Nutr 2005; 45:135-44. [PMID: 15941017 DOI: 10.1080/10408690490911800] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are multiple lines of evidence that a variety of natural fatty acids are effective in health promotion. Among these fatty acids, conjugated linoleic acid (CLA)--a collective term referring to a mixture of positional and geometric isomers of linoleic acid (LA, cis-9, cis-12-octadecadienoic acid)--is currently under intensive investigation due to its health-promotion potential. The antitumor activity of CLA is of special interest, since it shows inhibitory effects against multistage carcinogenesis at relatively low dietary levels. Many studies using in vivo and in vitro models have shown that CLA suppresses the development of multistage carcinogenesis at different sites. The research to date on CLA has provided a vast amount of information about the mechanism on how CLA functions in the prevention of cancer. This article discusses characteristics of CLA in the prevention of cancer in both in vivo and in vitro studies and the possible underlying chemoprevention mechanisms.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
43
|
DeGraffenried LA, Fulcher L, Friedrichs WE, Grünwald V, Ray RB, Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 2005; 15:1510-6. [PMID: 15367412 DOI: 10.1093/annonc/mdh388] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The PTEN protein is a lipid phosphatase with putative tumor suppressing abilities, including inhibition of the PI3K/Akt signaling pathway. Inactivating mutations or deletions of the PTEN gene, which result in hyper-activation of the PI3K/Akt signaling pathway, are increasingly being reported in human malignancies, including breast cancer, and have been related to features of poor prognosis and resistance to chemotherapy and hormone therapy. Prior studies in different tumor models have shown that, under conditions of PTEN deficiency, the PI3K/Akt signaling pathway becomes a fundamental proliferative and survival pathway, and that pharmacological inhibition of this pathway results in tumor growth inhibition. This study aimed to explore further this hypothesis in breast cancer cells. To this end, we have determined the growth response to inhibition of the PI3K/Akt signaling pathway in a series of breast cancer cell lines with different PTEN levels. The PTEN-negative cell line displayed greater sensitivity to the growth inhibitory effects of the PI3K inhibitor, LY294002 and rapamycin, an inhibitor of the PI3K/Akt downstream mediator mTOR, compared with the PTEN-positive cell lines. To determine whether or not these differences in response are specifically due to effects of PTEN, we developed a series of cell lines with reduced PTEN protein expression compared with the parental cell line. These reduced PTEN cells demonstrated an increased sensitivity to the anti-proliferative effects induced by LY294002 and rapamycin compared with the parental cells, which corresponded to alterations in cell cycle response. These findings indicate that inhibitors of mTOR, some of which are already in clinical development (CCI-779, an ester of rapamycin), have the potential to be effective in the treatment of breast cancer patients with PTEN-negative tumors and should be evaluated in this setting.
Collapse
Affiliation(s)
- L A DeGraffenried
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ostrowska E, Cross RF, Warner RD, Muralitharan M, Bauman DE, Dunshea FR. Dietary conjugated linoleic acid improves carcass leanness without altering meat quality in the growing pig. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ea04144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One constraint facing the pig industry is that ad libitum feeding can often result in high levels of body fat and technologies which can reduce the ratio of lean to fat deposition in the pig are continually being explored. Conjugated linoleic acids have been shown to decrease body fat content in pigs. Therefore, the aim of this study was to determine whether dietary conjugated linoleic acids supplementation has any effect on meat quality and carcass characteristics in finisher pigs. Sixty female crossbred (Large White × Landrace) pigs (average initial weight 56.6 ± 1.9 kg and average initial P2 backfat 11.4 ± 1.3 mm) were used in the present study. Pigs were individually housed and randomly allocated to 1 of 6 dietary treatments: 0, 0.125, 0.25, 0.50, 0.75 or 1.0% (w/w) of conjugated linoleic acids-55. The wheat-based diets were formulated to contain 14.3 MJ DE and 9.3 g available lysine per kg and were fed ad libitum for 8 weeks. Pigs were slaughtered and meat quality was determined on the longissimus thoracis using standard techniques. Dietary conjugated linoleic acids reduced subcutaneous back fat in a linear manner with effects being most pronounced in the middle back fat layer. There was also a linear (P<0.001) decrease in intramuscular fat with increasing dietary conjugated linoleic acids supplementation. However, there was no effect of conjugated linoleic acids on subjective measures of marbling of the loin. Also, loin muscle ultimate pH (P = 0.94), lightness values (P = 0.46) subjective colour scores (P = 0.79), cooking loss (P = 0.71), drip loss (P = 0.40), shear force (P = 0.61) and subjective measures of wetness/firmness (P = 0.19) were unaffected. Dietary conjugated linoleic acids did not alter oxidation, as measured by the level of TBARs at day 1 post-slaughter (P = 0.38) or after 9 days of simulated retail display (P = 0.35). These data confirm that dietary conjugated linoleic acids can improve carcass quality by decreasing back fat depths without having any detrimental effects on meat quality.
Collapse
|
45
|
Wahle KWJ, Heys SD, Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 2004; 43:553-87. [PMID: 15522764 DOI: 10.1016/j.plipres.2004.08.002] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/12/2004] [Accepted: 08/23/2004] [Indexed: 11/29/2022]
Abstract
Conjugated linoleic acids (CLAs) comprise a family of positional and geometric isomers of linoleic acid (18:2n-6; LA) that are formed by biohydrogenation and oxidation processes in nature. The major dietary sources of these unusual fatty acids are foods derived from ruminant animals, in particular dairy products. The main form of CLA, cis-9, trans-11-18:2, can be produced directly by bacterial hydrogenation in the rumen or by delta-9 desaturation of the co-product vaccenic acid (trans-11-18:1) in most mammalian tissues including man. The second most abundant isomer of CLA is the trans-10, cis-12-18:2 form. Initially identified in grilled beef as a potential anti-carcinogen a surprising number of health benefits have subsequently been attributed to CLA mixtures and more recently to the main individual isoforms. It is also clear from recent studies that the two main isoforms can have different effects on metabolism and cell functions and can act through different cell signalling pathways. The majority of studies on body compositional effects (i.e. fat loss, lean gain), on cancer and cardiovascular disease attenuation, on insulin sensitivity and diabetes and on immune function have been conducted with a variety of animal models. Observations clearly emphasise that differences exist between mammalian species in their response to CLAs with mice being the most sensitive. Recent studies indicate that some but not all of the effects observed in animals also pertain to human volunteers. Reports of detrimental effects of CLA intake appear to be largely in mice and due mainly to the trans-10, cis-12 isomer. Suggestions of possible deleterious effects in man due to an increase in oxidative lipid products (isoprostanes) with trans-10, cis-12 CLA ingestion require substantiation. Unresponsiveness to antioxidants of these non-enzymatic oxidation products casts some doubt on their physiological relevance. Recent reports, albeit in the minority, that CLAs, particularly the trans-10, cis-12 isomer, can elicit pro-carcinogenic effects in animal models of colon and prostate cancer and can increase prostaglandin production in cells also warrant further investigation and critical evaluation in relation to the many published anti-cancer and anti-prostaglandin effects of CLAs.
Collapse
Affiliation(s)
- Klaus W J Wahle
- School of Life Sciences, The Robert Gordon University, Aberdeen AB 25 1GH, UK.
| | | | | |
Collapse
|
46
|
Mizushina Y, Tsuzuki T, Eitsuka T, Miyazawa T, Kobayashi K, Ikawa H, Kuriyama I, Yonezawa Y, Takemura M, Yoshida H, Sakaguchi K. Inhibitory action of conjugated C18-fatty acids on DNA polymerases and DNA topoisomerases. Lipids 2004; 39:977-83. [PMID: 15691019 DOI: 10.1007/s11745-004-1319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We reported previously that unsaturated linear-chain FA of the cis-configuration with a C18-hydrocarbon chain such as linoleic acid (18:2delta9c,12c) could potently inhibit the activities of mammalian DNA polymerases and DNA topoisomerases, but their saturated forms could not. There are chemically two classes of unsaturated FA, normal and conjugated, but only the conjugated forms show potent antitumor activity. In this report, we study the inhibitory effects of chemically synthesized conjugated C18-FA on mammalian DNA polymerases and DNA topoisomerases as compared with normal unsaturated FA. The conjugated alpha-eleostearic acid (18:3delta9c,11t, 13t) was the strongest of all the FA tested. For the inhibition, the conjugated form is crucially important. The energy-minimized 3-D structures of the FA were calculated, and both a length of less than 20 A and a width of 8.13-9.24 A in the C18-FA structure were found to be important for enzyme inhibition. The 3-D structure of the active site of both DNA polymerases and topoisomerases must have had a pocket to join alpha-eleostearic acid, and this pocket was 12.03 A long and 9.24 A wide.
Collapse
Affiliation(s)
- Yoshiyuki Mizushina
- Laboratory of Food & Nutritional Sciences, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Agatha G, Voigt A, Kauf E, Zintl F. Conjugated linoleic acid modulation of cell membrane in leukemia cells. Cancer Lett 2004; 209:87-103. [PMID: 15145524 DOI: 10.1016/j.canlet.2003.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 11/20/2003] [Accepted: 11/26/2003] [Indexed: 11/26/2022]
Abstract
This study compared the cellular uptake of pure conjugated linoleic acid isomers (CLA(9c,11t) and CLA(9c,11c)) to linoleic acid (LA) and their effects on polyunsaturated fatty acid (PUFA) synthesis, its metabolism into conjugated long chain fatty acids (FAs) by desaturation and chain-elongation as well as cell proliferation and the associated anticarcinogenic effects on various human leukemia cell lines (K562, REH, CCRF-CEM and U937 cells). Furthermore, selective effects of this individual isomers of CLA on desaturation steps involved in the biosynthesis of PUFAs associated with cell growth were investigated. CLA isomers supplemented in the culture medium was readily incorporated and esterified into phospholipids (PLs) in the four cell lines in a concentration- and time-dependent manner. The incorporation of the specific CLA isomers in PLs was similar to LA. All four incubating leukemia cells (40 microM CLA for 48 h) showed very high cellular CLA content in PLs (range: 32-63 g FA/100 g total phospholipid fatty acid) affected by the nature of CLA and the cell type. Supplementation with CLA or LA altered also cell membrane composition by n-6 PUFA synthesis. Accordingly, CLA metabolism interferes with LA metabolism. We were able to show that CLA isomers are converted by the leukemia cells of the same metabolic pathway into conjugated diene fatty acids (CDFAs) as LA into non-conjugated PUFAs. In this view, the gas chromatography-flame ionization detector detection of major CDFAs (CD-18:3, CD-20:2 and CD-20:3) in cell membrane of CLA-treated cultures resulted from successive Delta6-desaturation, elongation and Delta5-desaturation of CLA isomers. However, in comparison to LA, relatively lower amounts of elongation and/or desaturation metabolites were detected for CLA(9c,11t), and only minor amounts or trace CDFAs were observed for CLA(9c,11c). Furthermore, CLA(9c,11t) revealed only very low levels of CD-20:4 FA and no CLA(9c,11c)-conversion could be detected. The metabolization of CLA indicated that CLA(9c,11c)<CLA(9c,11t) were a poorer substrates in compared to LA for the Delta5,6-desaturation/elongation in REH, CCRF-CEM and U937 cells or for the Delta5-desaturation/elongation in the K562 cells. CLA(9c,11t) suppresses Delta6-desaturation in CCRF-CEM, REH, and U937 cells (43.5, 54.6 and 58.8% Delta6-inhibition, respectively) and as well Delta9-desaturation in all four cell lines (Delta9-inhibition; 47.1, 33.9, 29.8 and 25.9% for CCRF-CEM, REH, K562 and U937 cells, respectively). However, CLA(9c,11c) does not inhibit or only slightly affected these desaturations. CLA(9c,11t) isomer was found as an Delta6-desaturase inhibitor with a dose-dependent relationship between inhibition of Delta6-desaturase activity and decreases in cell growth. The growth inhibitory effects of CLA (with 30-120 microM) on leukemia cells were dependent upon the type and concentration of CLA isomers present. CLA-supplemented cells with low concentrations (<60 microM) were not sufficient to impair cell proliferation. Nevertheless, higher amounts of CLAs (>60 microM) had the CLA type dependent antiproliferative effects. Thus, the 9cis,11trans- and the 9cis,11cis-CLA isomers regulate cell growth and survival in different leukemia cell types through their existence alone and/or by their inhibitory effects of desaturase activity.
Collapse
Affiliation(s)
- Gerhard Agatha
- Friedrich-Schiller-University of Jena, Children's Hospital, Department of Pediatrics, Endocrinology and Metabolism, Kochstrasse 2, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
48
|
|
49
|
Tanmahasamut P, Liu J, Hendry LB, Sidell N. Conjugated linoleic acid blocks estrogen signaling in human breast cancer cells. J Nutr 2004; 134:674-80. [PMID: 14988466 DOI: 10.1093/jn/134.3.674] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA), a mixture of positional and geometric isomers of linoleic acid found in dairy products and meat from ruminants, has been widely shown to possess anticarcinogenic activity against breast cancer both in vitro and in animal models. However, little information is available concerning the mechanisms of the antitumor effects of these compounds. In this study, we investigated whether CLA has direct antiestrogenic activity in estrogen receptor positive (ER+) breast cancer cells. Treatment of the ER+ cell line, MCF-7, with 5 purified CLA isomers as well as "mixed" CLA showed a dose-dependent growth inhibition with the 9cis,11cis and 9cis,11trans being the most and least potent isomers, respectively. In assessing effects on a number of variables that play obligatory roles in the estrogen signaling pathway, we determined that CLA treatment downregulated ERalpha expression at both mRNA and protein levels and decreased binding activity of nuclear protein to a canonical estrogen response element (ERE(v)). Using a reporter gene construct (ERE(v)-tk-Luc) that was transiently transfected into MCF-7 cells, we also demonstrated inhibition of promoter activity by CLA that was directly mediated by blockage of activity through the ERE. The results indicated that the order of potency of the CLA isomers for inhibiting activation of ERE(v) was similar to that demonstrated for their antiproliferative activity on MCF-7 cells. Taken together, these findings demonstrate that CLA compounds possess potent antiestrogenic properties that may at least partly account for their antitumor activity on breast cancer cells.
Collapse
Affiliation(s)
- Prasong Tanmahasamut
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
50
|
Drouin G, Douillette A, Lacasse P, Paquette B. Effet radiosensibilisateur de l'acide linoléique conjugué chez les cellules cancéreuses du sein MCF-7 et MDA-MB-231. Can J Physiol Pharmacol 2004; 82:94-102. [PMID: 15052290 DOI: 10.1139/y04-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO®-1, the CLA-9cis 11cis at 50 µmol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma.Key words: breast cancer, conjugated linoleic acid (CLA), radiotherapy, apoptosis.
Collapse
Affiliation(s)
- Geneviève Drouin
- Départment de médicine mucléaire et radiobiologie, Faculté de médecine, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | |
Collapse
|