1
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
2
|
Augustin V, Kins S. Fe65: A Scaffolding Protein of Actin Regulators. Cells 2021; 10:cells10071599. [PMID: 34202290 PMCID: PMC8304848 DOI: 10.3390/cells10071599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Collapse
|
3
|
Schrötter A, Mastalski T, Nensa FM, Neumann M, Loosse C, Pfeiffer K, Magraoui FE, Platta HW, Erdmann R, Theiss C, Uszkoreit J, Eisenacher M, Meyer HE, Marcus K, Müller T. FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres – potential relevance to Alzheimer's disease. J Cell Sci 2013; 126:2480-92. [DOI: 10.1242/jcs.121004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The intracellular domain of the amyloid precursor protein (AICD) is generated following cleavage of the precursor by the γ-secretase complex and is involved in membrane to nucleus signaling, for which the binding of AICD to the adapter protein FE65 is essential. Here we show that FE65 knockdown causes a down regulation of the protein BLM and the MCM protein family and that elevated nuclear levels of FE65 result in stabilization of the BLM protein in nuclear mobile spheres. These spheres are able to grow and fuse, and potentially correspond to the nuclear domain 10. BLM plays a role in DNA replication and repair mechanisms and FE65 was also shown to play a role in the cell's response to DNA damage. A set of proliferation assays in our work revealed that FE65 knockdown cells exhibit reduced cell replication in HEK293T cells. On the basis of these results, we hypothesize that nuclear FE65 levels (nuclear FE65/BLM containing spheres) may regulate cell cycle re-entry in neurons due to increased interaction of FE65 with BLM and/or an increase in MCM protein levels. Thus, FE65 interactions with BLM and MCM proteins may contribute to the neuronal cell cycle re-entry observed in Alzheimer disease brains.
Collapse
|
4
|
Cool BH, Zitnik G, Martin GM, Hu Q. Structural and functional characterization of a novel FE65 protein product up-regulated in cognitively impaired FE65 knockout mice. J Neurochem 2009; 112:410-9. [PMID: 19860855 DOI: 10.1111/j.1471-4159.2009.06456.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FE65 is a multi-modular adaptor protein that binds the cytoplasmic tail of the beta-amyloid precursor protein (APP). Genetic evidence suggests that APP is intimately involved in the pathogenesis of dementias of the Alzheimer type, neurodegenerative disorders that affect multiple cognitive domains, including learning and memory. Evidence from p97FE65-specific knockout mice (lacking the 97 kDa full-length FE65 protein, p97FE65) suggests an important role for FE65 in learning and memory. Interpretation of the learning and memory phenotype, however, is complicated by the up-regulation (compared with wild-type mice) of a novel 60 kDa FE65 isoform (p60FE65). Here, we report an evidence that p60FE65 is translated from an alternative methionine, M261, on the p97FE65 transcript. Thus, p60FE65 has a shortened N-terminus, lacking part of the WW domain that is considered important for nuclear translocation and transactivation of gene expression. Consistently, p60FE65 exhibits an attenuated ability for APP-Gal4-mediated transcription as compared with p97FE65. Similar to p97FE65, however, both transfected and endogenous p60FE65 are able to translocate to the nucleus in cultured cells and in neurons. These results are consistent with earlier evidence from our laboratory that reduced FE65 nuclear signaling may contribute, in part, to the phenotypes observed in p97FE65 knockout mice.
Collapse
Affiliation(s)
- Bethany H Cool
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
5
|
Chen GB, Payne TJ, Lou XY, Ma JZ, Zhu J, Li MD. Association of amyloid precursor protein-binding protein, family B, member 1 with nicotine dependence in African and European American smokers. Hum Genet 2008; 124:393-8. [PMID: 18777128 DOI: 10.1007/s00439-008-0558-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 09/01/2008] [Indexed: 01/16/2023]
Abstract
Although epidemiological studies reveal that cigarette smoking is inversely associated with Alzheimer's disease (AD) and Parkinson's disease (PD), the underlying mechanism remains largely unknown. Considering the facts that amyloid precursor protein-binding protein, family B, member 1 (APBB1) is mapped to a suggestive linkage region on chromosome 11 for nicotine dependence (ND), and has been implicated in the pathogenesis of AD and PD, it represents a plausible candidate for genetic study of ND. Five single nucleotide polymorphisms (SNPs) within APBB1 were genotyped in a sample consisting of 2,037 participants of either African-American (AA) or European-American (EA) origin, and examined their associations with ND assessed by three commonly used measures: Smoking Quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerström Test for ND (FTND). Individual SNP-based association analysis showed that all five SNPs are associated with at least one ND measure in one of the three samples; however, only the association of SNP rs4758416 with SQ and HSI remained significant after correction for multiple testing in the pooled sample. Haplotype analysis demonstrated three major haplotypes significantly associated with ND after Bonferroni correction. Formed by rs4758416-rs10839562-rs1079199, haplotype C-C-T showed positive association with FTND in the AA and pooled samples, and conversely, haplotype G-C-T showed negative association with SQ and HSI in AA and EA samples. Another haplotype, C-T-G, formed by rs10839562-rs1079199-rs8164, was significantly associated with HSI in the EA sample. Based on these findings, we conclude that APBB1 represents an important candidate gene in the genetic study on ND and neurodegenerative diseases and warrants further investigation in future.
Collapse
Affiliation(s)
- Guo-Bo Chen
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Berry AS, Tomidokoro Y, Ghiso J, Thornton J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-beta levels in female rats. Horm Behav 2008; 54:143-52. [PMID: 18413150 PMCID: PMC2613844 DOI: 10.1016/j.yhbeh.2008.02.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 02/03/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Numerous studies have suggested that estradiol (E) improves spatial memory as female rats with E perform better than those without E. However there is an inverse relationship between E and luteinizing hormone (LH) levels and LH could play a role. We examined whether treatment with the LH homologue human chorionic gonadotropin (hCG), would impair spatial memory of adult E-treated female rats. In the object location memory task, ovariectomized (ovxed) rats treated with E and either a single high dose (400 IU/kg) or a lower repeated dose of hCG (75 IU/kg hourly for 8 h) showed spatial memory disruption compared to ovxed rats treated with estradiol alone. Impairment was attributed to memory disruption as performance improved with shortened delay between task exposure and testing. Tests on another spatial memory task, the Barnes maze, confirmed that hCG (400 IU/kg) can impair memory: although E+veh treated animals made significantly fewer hole errors across time, E+hCG-treated did not. In humans, high LH levels have been correlated with Alzheimer's disease (AD). Because brain amyloid-beta (Abeta) species have been implicated as a toxic factor thought to cause memory loss in AD, we analyzed whether hCG-treated animals had increased Abeta levels. Levels of Abeta from whole brains or hippocampi were assessed by Western blot. hCG treatment to E-implanted females significantly increased soluble Abeta40 and Abeta42 levels. These results indicate that high levels of LH/hCG can impair spatial memory, and an increase in brain Abeta species may account for the memory impairment in hCG-treated rats.
Collapse
Affiliation(s)
- Anne S. Berry
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
| | - Yasushi Tomidokoro
- Department of Pathology, New York University School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, 550 First Ave, New York, NY 10016 USA
| | - Jan Thornton
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
- Biology Department, Oberlin College, 119 Woodland Street, Oberlin OH 44074 USA
| |
Collapse
|
7
|
Abstract
The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However, its role varies in diverse cell types and includes proliferation, differentiation, and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination, and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, USA.
| | | |
Collapse
|
8
|
Llorca J, Rodríguez-Rodríguez E, Dierssen-Sotos T, Delgado-Rodríguez M, Berciano J, Combarros O. Meta-analysis of genetic variability in the beta-amyloid production, aggregation and degradation metabolic pathways and the risk of Alzheimer's disease. Acta Neurol Scand 2008; 117:1-14. [PMID: 17854420 DOI: 10.1111/j.1600-0404.2007.00899.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Variants in genes encoding enzymes involved in production, aggregation or degradation of beta-amyloid are potential risk factors for sporadic Alzheimer's disease (AD). METHODS Meta-analyses on AD association with BACE1 exon 5, BACE1 intron 5, FE65 intron 13, CYP46 intron 2, alpha(1)-antichymotrypsine Ala17Thr, bleomycin hydrolase I443V, lectin-like oxidized low-density lipoprotein receptor (OLR1) 3'-UTR (+1071) and (+1073), and very-low-density lipoprotein receptor (VLDLR) 5'-UTR (CGG-repeat) polymorphisms. RESULTS In BACE1 exon 5, genotype CC+CT acts as a protective factor in Apolipoprotein E (ApoE) epsilon 4 carriers [odds ratio (OR) = 0.57; 95% confidence interval (CI): 0.38-0.88], and as a risk factor in ApoE epsilon 4 non-carriers (OR = 1.33; 95% CI: 1.00-1.78). OLR1 3'-UTR (+1073) allele C is associated with increased risk (OR = 1.23; 95% CI: 1.01-1.50). VLDLR 5'-UTR genotype 2 is associated with increased risk (OR = 1.70; 95% CI: 1.09-2.63) in the Asian population and is protective (OR = 0.48; 95% CI: 0.26-0.86) in the non-Asian population. Other studied polymorphisms are not associated with AD. CONCLUSIONS The overall impact on AD risk of the genes for which meta-analyses are now available is rather limited. Additional meta-analyses of other different genes encoding for A beta production, aggregation and degradation mediators might help in determining the risk profile for AD.
Collapse
Affiliation(s)
- J Llorca
- Division of Epidemiology and Computational Biology, University of Cantabria School of Medicine, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Wiley JC, Smith EA, Hudson MP, Ladiges WC, Bothwell M. Fe65 Stimulates Proteolytic Liberation of the β-Amyloid Precursor Protein Intracellular Domain. J Biol Chem 2007; 282:33313-33325. [PMID: 17855370 DOI: 10.1074/jbc.m706024200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-amyloid precursor protein (APP)-binding protein Fe65 is involved in APP nuclear signaling and several steps in APP proteolytic processing. In this study, we show that Fe65 stimulates gamma-secretase-mediated liberation of the APP intracellular domain (AICD). The mechanism of Fe65-mediated stimulation of AICD formation appears to be through enhanced production of the carboxyl-terminal fragment substrates of gamma-secretase and direct stimulation of processing by gamma-secretase. The stimulatory capacity of Fe65 is isoform-dependent, as the non-neuronal and a2 isoforms promote APP processing more effectively than the exon 9 inclusive neuronal form of Fe65. Intriguingly, Fe65 stimulation of AICD production appears to be inversely related to pathogenic beta-amyloid production as the Fe65 isoforms profoundly stimulate AICD production and simultaneously decrease Abeta42 production. Despite the capacity of Fe65 to stimulate gamma-secretase-mediated APP proteolysis, it does not rescue the loss of proteolytic function associated with the presenilin-1 familial Alzheimer disease mutations. These data suggest that Fe65 regulation of APP proteolysis may be integrally associated with its nuclear signaling function, as all antecedent proteolytic steps prior to release of Fe65 from the membrane are fostered by the APP-Fe65 interaction.
Collapse
Affiliation(s)
- Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Elise A Smith
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Mark P Hudson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, 98195
| | - Warren C Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195
| | - Mark Bothwell
- Department of Comparative Medicine, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
10
|
Li Y, Hollingworth P, Moore P, Foy C, Archer N, Powell J, Nowotny P, Holmans P, O'Donovan M, Tacey K, Doil L, van Luchene R, Garcia V, Rowland C, Lau K, Cantanese J, Sninsky J, Hardy J, Thal L, Morris JC, Goate A, Lovestone S, Owen M, Williams J, Grupe A. Genetic association of the APP binding protein 2 gene (APBB2) with late onset Alzheimer disease. Hum Mutat 2006; 25:270-7. [PMID: 15714520 DOI: 10.1002/humu.20138] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder predisposed by multiple genetic factors. Mutations in amyloid beta precursor protein (APP) are known to be associated with autosomal dominant, early onset familial AD and possibly also late onset AD (LOAD). A number of genes encoding proteins capable of binding to APP have been identified, but their contribution to AD pathobiology remains unclear. Conceivably, mutations in these genes may play a role in affecting AD susceptibility, which appears to be substantiated by some genetic studies. Here we report results of the first genetic association study with APBB2, an APP binding protein (also known as FE65L), and LOAD, in three independently collected case-control series totaling approximately 2,000 samples. Two SNPs were significantly associated with LOAD in two sample series and in meta-analyses of all three sample sets (for rs13133980: odds ratio [OR](hom)=1.36 [95% CI: 1.05-1.75], OR(het)=1.32 [95% CI: 1.04-1.67], minor allele frequency=43%, P=0.041; and for hCV1558625: OR(hom)=1.37 [95% CI: 1.06-1.77], OR(het)=1.02 [95% CI: 0.82-1.26], minor allele frequency=48%, P=0.026). One of these SNPs, located in a region conserved between the human and mouse genome, showed a significant interaction with age of disease onset. For this marker, the association with LOAD was most pronounced in subjects with disease onset before 75 years of age (OR(hom)=2.43 [95% CI: 1.61-3.67]; OR(het)=2.15 [95% CI: 1.46-3.17]; P=0.00006) in the combined sample set. Our data raise the possibility that genetic variations in APBB2 may affect LOAD susceptibility.
Collapse
Affiliation(s)
- Yonghong Li
- Celera Diagnostics, Alameda, California 94502, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N, Delacourte A, Duyckaerts C, Pradier L, Mercken L. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in beta-amyloid load. J Neurochem 2005; 93:330-8. [PMID: 15816856 DOI: 10.1111/j.1471-4159.2005.03026.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.
Collapse
|
12
|
Hu Q, Wang L, Yang Z, Cool BH, Zitnik G, Martin GM. Endoproteolytic Cleavage of FE65 Converts the Adaptor Protein to a Potent Suppressor of the sAPPα Pathway in Primates. J Biol Chem 2005; 280:12548-58. [PMID: 15647266 DOI: 10.1074/jbc.m411855200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates.
Collapse
Affiliation(s)
- Qubai Hu
- Department of Pathology, University of Washington, Seattle, Washington, 98195, USA.
| | | | | | | | | | | |
Collapse
|
13
|
King GD, Scott Turner R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp Neurol 2004; 185:208-19. [PMID: 14736502 DOI: 10.1016/j.expneurol.2003.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus to regulate its trafficking and processing. Compounds that modulate APP-adaptor protein interactions may inhibit Abeta generation by specifically targeting the substrate (APP) instead of the enzyme (beta- or gamma-secretase). Genetic polymorphisms in (or near) adaptor proteins may influence risk of sporadic AD by interacting with APP in vivo to modulate its trafficking and processing to Abeta.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
14
|
Standen CL, Perkinton MS, Byers HL, Kesavapany S, Lau KF, Ward M, McLoughlin D, Miller CCJ. The neuronal adaptor protein Fe65 is phosphorylated by mitogen-activated protein kinase (ERK1/2). Mol Cell Neurosci 2003; 24:851-7. [PMID: 14697653 DOI: 10.1016/j.mcn.2003.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fe65 is a neuronal adaptor protein that binds a number of ligands and which functions in both gene transcription/nuclear signalling and in the regulation of cell migration and motility. These different functions within the nucleus and at the cell surface are mediated via Fe65's different binding partners. An Fe65/APP/TIP60 complex is transcriptionally active within the nucleus and an Fe65/APP/Mena complex probably regulates actin dynamics in lamellipodia. The mechanisms that regulate these different Fe65 functions are unclear. Here, we demonstrate that Fe65 is a phosphoprotein and, using mass spectrometry sequencing, identify for the first time in vivo phosphorylation sites in Fe65. We also show that Fe65 is a substrate for phosphorylation by the mitogen-activated protein kinases ERK1/2. Our results provide a mechanism by which Fe65 function may be modulated to fulfil its various roles.
Collapse
Affiliation(s)
- Claire L Standen
- Department of Neuroscience, The Institute of Psychiatry, Kings College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Iino M, Nakatome M, Ogura Y, Fujimura H, Kuroki H, Inoue H, Ino Y, Fujii T, Terao T, Matoba R. Real-time PCR quantitation of FE65 a beta-amyloid precursor protein-binding protein after traumatic brain injury in rats. Int J Legal Med 2003; 117:153-9. [PMID: 12707777 DOI: 10.1007/s00414-003-0370-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2002] [Accepted: 03/04/2003] [Indexed: 11/28/2022]
Abstract
In cases of traumatic brain injury (TBI) in which the patient survived for only a short period of time and was without macroscopic changes at autopsy, it is difficult to diagnose TBI. To detect early diagnostic markers of diffuse axonal injury (DAI), real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in an experimental head trauma model of rat was chosen. The beta-amyloid precursor protein (beta-APP) is a well-known diagnostic marker of DAI which can be detected by immunolabeling as early as 1.5 h after injury. beta-APP has a binding protein, FE65, which is expressed in the brain of Alzheimer's disease patients along with beta-APP, but no involvement with brain injury has been reported. Neuron-specific enolase (NSE) is also a useful marker of DAI. We found that FE65 expression increased dramatically as early as 30 min after injury and decreased after peaking 1 h post-injury, although NSE showed no significant changes. These results suggest that real-time PCR of FE65 mRNA is useful for the diagnosis of DAI in forensic cases.
Collapse
Affiliation(s)
- Morio Iino
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2-F3 Yamada-oka, Suita, 565-0871 Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cousin E, Hannequin D, Ricard S, Macé S, Génin E, Chansac C, Brice A, Dubois B, Frebourg T, Mercken L, Benavides J, Pradier L, Campion D, Deleuze JF. A risk for early-onset Alzheimer's disease associated with the APBB1 gene (FE65) intron 13 polymorphism. Neurosci Lett 2003; 342:5-8. [PMID: 12727304 DOI: 10.1016/s0304-3940(03)00225-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex neurodegenerative disorder and the leading cause of dementia of the elderly. Recently, Hu et al. suggested that a trinucleotide deletion in intron 13 of the APBB1 gene was a factor protecting against late-onset AD. We report here the results of a case/control study aimed at replicating this association. Our study included 461 AD patients and 397 matched controls. We compared the allele and genotype frequencies of the polymorphism between the two groups but did not find any statistically significant difference (P=0.08 and P=0.09, respectively). By contrast, adjusting for age and sex, we found a slight risk associated with the deletion (odds ratio=1.47, 95% confidence interval=1.05-2.04). Stratification by age showed that the risk effect associated with the deletion concerned subjects aged less than 65 years.
Collapse
Affiliation(s)
- Emmanuelle Cousin
- Aventis Pharma, Evry Genetics Center & Neurodegenerative Disease Group, Paris Research Center, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Helbecque N, Abderrahamani A, Meylan L, Riederer B, Mooser V, Miklossy J, Delplanque J, Boutin P, Nicod P, Haefliger JA, Cottel D, Amouyel P, Froguel P, Waeber G, Abderrhamani A. Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer's disease. Mol Psychiatry 2003; 8:413-22, 363. [PMID: 12740599 DOI: 10.1038/sj.mp.4001344] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Islet-brain1 (IB1) or c-Jun NH2 terminal kinase interacting protein-1 (JIP-1), the product of the MAPK8IP1 gene, functions as a neuronal scaffold protein to allow signalling specificity. IB1/JIP-1 interacts with many cellular components including the reelin receptor ApoER2, the low-density lipoprotein receptor-related protein (LRP), kinesin and the Alzheimer's amyloid precursor protein. Coexpression of IB1/JIP-1 with other components of the c-Jun NH2 terminal-kinase (JNK) pathway activates the JNK activity; conversely, selective disruption of IB1/JIP-1 in mice reduces the stress-induced apoptosis of neuronal cells. We therefore hypothesized that IB1/JIP-1 is a risk factor for Alzheimer's disease (AD). By immunocytochemistry, we first colocalized the presence of IB1/JIP-1 with JNK and phosphorylated tau in neurofibrillary tangles. We next identified a -499A>G polymorphism in the 5' regulatory region of the MAPK8IP1 gene. In two separate French populations the -499A>G polymorphism of MAPK8IP1 was not associated with an increased risk to AD. However, when stratified on the +766C>T polymorphism of exon 3 of the LRP gene, the IB1/JIP-1 polymorphism was strongly associated with AD in subjects bearing the CC genotype in the LRP gene. The functional consequences of the -499A>G polymorphism of MAPK8IP1 was investigated in vitro. In neuronal cells, the G allele increased transcriptional activity and was associated with an enhanced binding activity. Taken together, these data indicate that the increased transcriptional activity in the presence of the G allele of MAPK8IP1 is a risk factor to the onset of in patients bearing the CC genotype of the LRP gene.
Collapse
Affiliation(s)
- N Helbecque
- Institut National de la Santé et de la Recherche Médicale U508, Pasteur Institute, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci 2003. [PMID: 12533609 DOI: 10.1523/jneurosci.23-02-00493.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal dystrophy is a pathological hallmark of Alzheimer's disease (AD) that is not observed in other neurodegenerative disorders that lack amyloid deposition. Treatment of cortical neurons with fibrillar amyloid beta (Abeta) peptides induces progressive neuritic dystrophy accompanied by a marked loss of synaptophysin immunoreactivity (Grace et al., 2002). Here, we report that fibrillar Abeta-induced neuronal dystrophy is mediated by the activation of focal adhesion (FA) proteins and the formation of aberrant FA structures adjacent to Abeta deposits. In the AD brain, activated FA proteins are observed associated with the majority of senile plaques. Clustered integrin receptors and activated paxillin (phosphorylated at Tyr-31) and focal adhesion kinase (phosphorylated at Tyr-297) are mainly detected in dystrophic neurites surrounding Abeta plaque cores, where they colocalize with hyperphosphorylated tau. Deletion experiments demonstrated that the presence of the LIM domains in the paxillin C terminus and the recruitment of the protein-Tyr phosphatase (PTP)-PEST to the FA complex are required for Abeta-induced neuronal dystrophy. Therefore, both paxillin and PTP-PEST appear to be critical elements in the generation of the dystrophic response. Paxillin is a scaffolding protein to which other FA proteins bind, leading to the formation of the FA contact and initiation of signaling cascades. PTP-PEST plays a key role in the dynamic regulation of focal adhesion contacts in response to extracellular cues. Thus, in the AD brain, fibrillar Abeta may induce neuronal dystrophy by triggering a maladaptive plastic response mediated by FA protein activation and tau hyperphosphorylation.
Collapse
|
19
|
Wang B, Hu Q, Hearn MG, Shimizu K, Ware CB, Liggitt DH, Jin LW, Cool BH, Storm DR, Martin GM. Isoform-specific knockout ofFE65 leads to impaired learning and memory. J Neurosci Res 2003; 75:12-24. [PMID: 14689444 DOI: 10.1002/jnr.10834] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FE65 is a multimodular adapter protein that is expressed predominantly in brain. Its C-terminal phosphotyrosine interaction domain (PID) binds to the intracellular tail of the beta-amyloid precursor protein (betaPP), a protein of central importance to the pathogenesis of dementias of the Alzheimer type. To study the physiological functions of FE65, we generated a line of FE65 knockout mice via gene targeting. By Western analysis with a panel of FE65-specific antibodies, we demonstrate that the 97-kDa full-length FE65 (p97) was ablated in the mutant mice, and that a previously undescribed FE65 isoform with apparent molecular mass of 60 kDa (p60) was expressed in both wild-type and mutant mice. p60 had a truncated N-terminus and was likely to be generated through alternative translation. Expressions of the two isoforms appeared to be brain region distinct and age dependent. The p97FE65(-/-) mice were viable and showed no obvious physical impairments or histopathological abnormalities. However, p97FE65(-/-) and p97FE65(+/-) mice exhibited poorer performances than wild-type mice on a passive avoidance task when tested at 14 months (P <.05). p97FE65(-/-) mice at 14 months also exhibited impaired hidden-platform acquisition (P <.05) and a severe reversal-learning deficit (P <.002) but normal visual-platform acquisition in the Morris water maze tests. Probe trials confirmed impairments in p97FE65(-/-) mice in relearning of new spatial information, suggesting a hippocampus-dependent memory-extinction deficit. Reduced secretion of Abeta peptides was observed in primary neuronal cultures of hybrids of p97FE65(-/-)/betaPP transgenic (Tg2576) mice. These studies suggest an important and novel function of FE65 in learning and memory.
Collapse
Affiliation(s)
- Baiping Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tanahashi H, Asada T, Tabira T. c954C-->T polymorphism in the Fe65L2 gene is associated with early-onset Alzheimer's disease. Ann Neurol 2002; 52:691-3. [PMID: 12402277 DOI: 10.1002/ana.10368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tanahashi H, Tabira T. Characterization of an amyloid precursor protein-binding protein Fe65L2 and its novel isoforms lacking phosphotyrosine-interaction domains. Biochem J 2002; 367:687-95. [PMID: 12153398 PMCID: PMC1222940 DOI: 10.1042/bj20020562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2002] [Revised: 07/29/2002] [Accepted: 08/02/2002] [Indexed: 12/21/2022]
Abstract
Human Fe65L2 is a member of the Fe65 protein family, which interacts with amyloid precursor protein (APP). Fe65L2 contains an N-terminal WW (Trp-Trp) domain followed by two phosphotyrosine-interaction domains, and consists of 486 amino acids. In the present study, we cloned and characterized two novel isoforms of Fe65L2, designated I-214 and I-245, which are produced by alternative splicing of the RNA. The splicing events disrupt the ability to bind with APP and low-density-lipoprotein-receptor-related protein. Fe65L2 was highly expressed in the brain, whereas I-214 and I-245 were expressed in various tissues. In HEK-293 cells, Fe65L2 was expressed in the nucleus and cytosol, whereas I-245 and I-214 were localized exclusively to the nucleus. The ratio of I-214 to Fe65L2 mRNA was increased by apoptotic stimuli. Although the overexpression of either Fe65L2 or I-214 did not significantly affect the half-life and maturation of APP, or the secretion of secreted APP, the secretion of beta-amyloid peptide (Abeta)40 and Abeta42 was increased by overexpression of Fe65L2, but not by that of I-214. These results suggest that Fe65L2 affects Abeta production and a possible regulation of Fe65L2 function by alternative splicing.
Collapse
Affiliation(s)
- Hiroshi Tanahashi
- Division of Demyelinating Disease and Aging, National Institute of Neuroscience, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
22
|
Combarros O, Alvarez-Arcaya A, Sánchez-Guerra M, Infante J, Berciano J. Candidate gene association studies in sporadic Alzheimer's disease. Dement Geriatr Cogn Disord 2002; 14:41-54. [PMID: 12053131 DOI: 10.1159/000058332] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genetics of Alzheimer's disease (AD) is complex. Three genes (amyloid precursor protein, presenilin 1 and presenilin 2) have been described in the relatively rare, early-onset, autosomal dominant familial form of AD. In the common, non-familial (sporadic) late-onset AD, the major known genetic risk factor is the epsilon4 allele of the apolipoprotein E (APOE) gene. However, at least half of the people who develop AD do not carry this allele, and not all people who do carry this allele develop AD even if they live to an old age. Therefore, approximately 30 other candidate genes involving a protein in a critical pathway in the pathogenesis of disease (principally interaction with amyloid-beta, oxidative stress and inflammation/apoptosis) have been considered as risk factors for sporadic AD. Then these genes have been sequenced in search of genetic variability or polymorphisms, and each putative polymorphism has been reported to alter the risk of AD either directly or by an interaction with the APOE epsilon4 allele. However, positive-association studies with these candidate genes have not been consistently confirmed.
Collapse
Affiliation(s)
- Onofre Combarros
- Neurology Service, Marqués de Valdecilla University Hospital, University of Cantabria, Santander, Spain.
| | | | | | | | | |
Collapse
|
23
|
Delatour B, Mercken L, El Hachimi KH, Colle MA, Pradier L, Duyckaerts C. FE65 in Alzheimer's disease: neuronal distribution and association with neurofibrillary tangles. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1585-91. [PMID: 11337355 PMCID: PMC1891962 DOI: 10.1016/s0002-9440(10)64113-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2001] [Indexed: 10/18/2022]
Abstract
FE65, a protein expressed in the nervous system, has the ability to bind the C-terminal domain of the amyloid precursor protein. This suggests a role for FE65 in the pathogenesis of Alzheimer's disease (AD). The present study was conducted to find out if the distribution of FE65 immunoreactivity was affected during the course of AD, and to determine the degree of co-localization of FE65 with other proteins known to be involved in AD. Single immunoperoxidase-labeling experiments, conducted on six sporadic AD patients and six nondemented age-matched controls, showed that the proportion of volume occupied by FE65 immunoreactivity was not modified in the isocortex of AD patients. However, in hippocampal area CA4, increased FE65 immunoreactivity seemed to be associated with the severity of the disease. Double-immunofluorescent labeling did not show any clear co-localization of FE65 with the amyloid precursor protein. FE65 immunoreactivity was also absent from focal and diffuse deposits of the beta-amyloid peptide. Unexpectedly double labeling experiments showed a co-localization of FE65 and tau proteins in intracellular tangles. Ultrastructural observations confirmed that FE65 was associated with paired helical filaments.
Collapse
Affiliation(s)
- B Delatour
- Laboratoire de Neuropathologie Escourolle, Inserm U106, Université Paris VI, Paris. Aventis Pharma, Paris, France
| | | | | | | | | | | |
Collapse
|