1
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
2
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Janković SM, Đešević M. Advancements in neuroactive peptides in seizures. Expert Rev Neurother 2022; 22:129-143. [DOI: 10.1080/14737175.2022.2031983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Slobodan M. Janković
- - University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
- University Clinical Center, Kragujevac, Serbia
| | - Miralem Đešević
- - Private Policlinic Center Eurofarm Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Valentim-Lima E, de Oliveira JAC, Antunes-Rodrigues J, Reis LC, Garcia-Cairasco N, Mecawi AS. Neuroendocrine changes in the hypothalamic-neurohypophysial system in the Wistar audiogenic rat (WAR) strain submitted to audiogenic kindling. J Neuroendocrinol 2021; 33:e12975. [PMID: 33942400 DOI: 10.1111/jne.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/27/2022]
Abstract
The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Disease Models, Animal
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/metabolism
- Epilepsy, Reflex/pathology
- Epilepsy, Reflex/physiopathology
- Gene Expression Regulation
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Hypothalamus/metabolism
- Hypothalamus/pathology
- Hypothalamus/physiopathology
- Kindling, Neurologic/pathology
- Kindling, Neurologic/physiology
- Male
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/pathology
- Neurosecretory Systems/physiopathology
- Oxytocin/blood
- Oxytocin/genetics
- Oxytocin/metabolism
- Pituitary Gland, Posterior/metabolism
- Pituitary Gland, Posterior/pathology
- Pituitary Gland, Posterior/physiopathology
- Rats
- Rats, Wistar
- Seizures/genetics
- Seizures/metabolism
- Seizures/physiopathology
- Seizures/psychology
- Vasopressins/blood
- Vasopressins/genetics
- Vasopressins/metabolism
Collapse
Affiliation(s)
- Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Luis Carlos Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - Andre S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Harbachova EL, Chernigovskaya EV, Glazova MV, Nikitina LS. Audiogenic kindling activates expression of vasopressin in the hypothalamus of Krushinsky-Molodkina rats genetically prone to reflex epilepsy. J Neuroendocrinol 2020; 32:e12846. [PMID: 32301211 DOI: 10.1111/jne.12846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
The present study analysed the effects of audiogenic kindling on the functional state of the vasopressinergic system of Krushinsky-Molodkina (KM) rats. KM rats represent a genetic model of audiogenic reflex epilepsy. Multiple audiogenic seizures in KM rats lead to the involvement of the limbic structures and neocortex in the epileptic network. The phenomenon of epileptic activity that overspreads from the brain stem to the forebrain is called audiogenic kindling and represents a model of limbic epilepsy. In the present study, audiogenic kindling was induced by 25 repetitive audiogenic seizures (AGS) with 1 AGS per day. A proportion of KM rats did not express AGS to sound stimuli, and these rats were characterised as the AGS-resistant group. The data demonstrated that audiogenic kindling did not change activity of extracellular signal-regulated kinase 1/2 or cAMP response element-binding protein, although it led to an increase in vasopressin (VP) expression in the supraoptic nucleus (SON) and in the magnocellular division of the paraventricular nucleus (PVN). Additionally, we observed a decrease in GABAergic innervation of the hypothalamic neuroendocrine neurones after audiogenic kindling, whereas glutamatergic innervation of the SON and PVN was not altered. By contrast, analysis of AGS-resistant KM rats did not reveal any changes in the activity of the VP-ergic system, confirming that the activation of VP expression was caused by repetitive AGS expression, rather than by repetitive acoustic stress. Thus, we suggest that overspread of epileptiform activity in the brain is the main factor that affects VP expression in the hypothalamic magnocellular neurones.
Collapse
Affiliation(s)
- Eugenia L Harbachova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Liubov S Nikitina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Studies of Vasopressin Secretion in Krushinskii–Molodkina Rats in Normal Conditions and during Convulsive Seizures. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0419-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo JM. Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 2014; 50:626-46. [PMID: 24705860 PMCID: PMC4182642 DOI: 10.1007/s12035-014-8669-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/27/2014] [Indexed: 11/04/2022]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.
Collapse
Affiliation(s)
- Elke Clynen
- Biomedical Research Institute BIOMED, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium,
| | | | | | | | | |
Collapse
|
8
|
Yamashiro M, Hasegawa H, Matsuda A, Kinoshita M, Matsumura O, Isoda K, Mitarai T. A case of water intoxication with prolonged hyponatremia caused by excessive water drinking and secondary SIADH. CASE REPORTS IN NEPHROLOGY AND UROLOGY 2014; 3:147-52. [PMID: 24570685 PMCID: PMC3924712 DOI: 10.1159/000357667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Water intoxication is a life-threatening disorder accompanied by brain function impairment due to severe dilutional hyponatremia. We treated a 22-year-old man without psychotic illness who had been put in a detention facility. He drank 6 liters of water over a 3-hour period at the facility as a game's penalty, and he showed progressive psychiatric and neurological signs including restlessness, peculiar behavior and convulsions. On his admission, 15 h after the discontinuation of the water drinking, he was in a coma, showing intermittent convulsions and remarkable hyponatremia (120 mmol/l). Because his laboratory tests showed hypertonic urine and normal sodium excretion, the diagnosis of secondary development of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) was strongly suggested and later confirmed by the suppression of the renin-aldosterone system and the inappropriately elevated secretion of ADH. Saline infusion and an initial administration of furosemide in addition to dexamethasone as treatments for the patient's brain edema successfully improved his laboratory data and clinical signs by the 3rd hospital day, and he was returned to the facility without physical or psychiatric abnormalities on the 6th day. The secondary SIADH might have been due to the prolonged emesis, recurrent convulsions and rapid elevation of intracranial pressure.
Collapse
Affiliation(s)
- Mari Yamashiro
- Sekishinkai Sayama Renal Clinic, Sayama, Saitama Medical University, Kawagoe, Ranzan, Japan
| | - Hajime Hasegawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Ranzan, Japan
| | - Akihiko Matsuda
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Ranzan, Japan
| | - Masanobu Kinoshita
- Faculty of Health Science, Tokyo Metropolitan University, Tokyo, Ranzan, Japan
| | | | - Kazuo Isoda
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Ranzan, Japan
| | - Tetsuya Mitarai
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Ranzan, Japan
| |
Collapse
|
9
|
Corticotropin-releasing factor facilitates epileptiform activity in the entorhinal cortex: roles of CRF2 receptors and PKA pathway. PLoS One 2014; 9:e88109. [PMID: 24505399 PMCID: PMC3913751 DOI: 10.1371/journal.pone.0088109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.
Collapse
|
10
|
Erbas O, Yılmaz M, Korkmaz HA, Bora S, Evren V, Peker G. Oxytocin inhibits pentylentetrazol-induced seizures in the rat. Peptides 2013; 40:141-4. [PMID: 23246528 DOI: 10.1016/j.peptides.2012.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
Abstract
We aimed to reveal the anti-convulsant effects of oxytocin (OT) in pentylenetetrazol (PTZ)-induced seizures in rats. Thirty rats were randomly divided into 5 equal groups. Using stereotaxy, we implanted electroencephologram (EEG) electrodes in the left nucleus of the posterior thalamus. After 2 days, the first and second groups were used as the control and PTZ (35 mg/kg) groups, respectively. We administered 40, 80 and 160 nmol/kg OT+35 mg/kg PTZ to the rats, constituting the third, fourth, and fifth groups, respectively, for 5 days. At the end of 5 days, we recorded EEGs via bipolar EEG electrodes. After 12h, all groups except the first received 70 mg/kg PTZ and we determined the dose-response ratio. Racine's Convulsion Scale was used to evaluate seizures. The spike-wave complex percentage in the EEG was determined as 0% for the first group, 38.6%±7.2 for the second group, 36.4%±5.6 for the third group, 4.3%±1.8 for the fifth group and 4.1%±1.1 for the fifth group. The fourth and fifth groups had significantly decreased spike-wave complex percentages compared to the second group (p<0.0001). OT may prevent PTZ-induced epilepsy on an EEG. OT may also be considered for use in the treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Oytun Erbas
- Ege University Faculty of Medicine, Department of Physiology, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
11
|
Yi PL, Chen YJ, Lin CT, Chang FC. Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. Sleep 2012. [PMID: 23204608 DOI: 10.5665/sleep.2238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Controversial sleep disruptions (e.g., poor nighttime sleep and daytime somnolence) are common in epilepsy patients. Sleep is known to be regulated by homeostatic factors, which mediate sleep propensity, and the circadian oscillator, a clocklike mechanism. However, it is unknown how epileptic episodes that occur at different zeitgeber times (ZTs) alter sleep regulation. This study was designed to elucidate the sleep disruptions associated with epilepsy and their underlying mechanisms by delivering kindled epilepsy at different ZTs: ZT0, ZT6, and ZT13. DESIGN Kindled epilepsy was induced at 3 different ZTs, and sleep-wake activities were analyzed before and after full-blown seizure. Ribonuclease protection assay, radioimmunoassay, and immunohistochemistry were respectively employed to determine the levels of interleukin-1 mRNA, corticosterone, and PER1 protein. SETTING The experiments were performed at Neurophysiology Laboratory at National Taiwan University. PARTICIPANT AND INTERVENTIONS: Male Sprague-Dawley rats were implanted with electroencephalograph (EEG) electrodes, a bipolar stimulating electrode, and a guide cannula. Kindling stimuli were delivered via a bipolar electrode placed in the right central nucleus of the amygdala. MEASUREMENT AND RESULTS Kindled epilepsy occurring at ZT0 and ZT13 predominantly affected homeostatic factors, whereas ZT6-kindling stimuli altered the circadian oscillator. ZT0-kindling decreased rapid eye movement (REM) and non-REM (NREM) sleep, which was mediated by corticotrophin-releasing hormone, but did not alter the rhythm of sleep-wake fluctuation. On the other hand, ZT13-kindling enhanced interleukin-1 and consequently increased NREM sleep without altering the sleep-wake fluctuation. Nevertheless, the expression of PER1 protein in suprachiasmatic nucleus of the hypothalamus and the circadian rhythm of sleep fluctuation were respectively advanced 6 h and 2 h when kindling stimulation was delivered at ZT6. Shifts of sleep circadian rhythm and PER1 oscillation induced by ZT6-kindling were blocked by administration of hypocretin receptor antagonist SB334867 into the SCN, indicating the involvement of hypocretin. CONCLUSION These observations suggest that the occurrence of epilepsy at different ZTs alters sleep processes differently. CITATION Yi PL; Chen YJ; Lin CT; Chang FC. Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. SLEEP 2012;35(12):1651-1665.
Collapse
Affiliation(s)
- Pei-Lu Yi
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
Wu J, Ma DL, Ling EA, Tang FR. Corticotropin releasing factor (CRF) in the hippocampus of the mouse pilocarpine model of status epilepticus. Neurosci Lett 2012; 512:83-8. [PMID: 22326386 DOI: 10.1016/j.neulet.2012.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
We investigated the cellular localization and progressive changes of corticotropin releasing factor (CRF) in the mouse hippocampus, during and after pilocarpine induced status epilepticus (PISE) and subsequent epileptogenesis. We found that CRF gene expression was up-regulated significantly at 2h during and 1d after PISE in comparison to control mice. Immunohistochemical analysis showed that the number of CRF and Fos immunoreactive cells was increased significantly in the strata oriens and pyramidale of CA1 area and in the stratum pyramidale of CA3 area at 2h during and 1d after PISE. CRF was induced in calbindin (CB) or calretinin (CR) immunoreactive interneurons in stratum oriens at 2h during PISE. It suggests that induced CRF may be related to the over excitation of hippocampal neurons and occurrence of status epilepticus. It may also cause excitoneurotoxicity and delayed loss of CA3 and CA1 pyramidal neurons, leading to the onset of epilepsy.
Collapse
Affiliation(s)
- Jing Wu
- Department of Biochemistry, Kunming Medical College, Kunming, PR China
| | | | | | | |
Collapse
|
13
|
Lukasiuk K, Pitkänen A. Molecular basis of acquired epileptogenesis. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:3-12. [DOI: 10.1016/b978-0-444-52898-8.00001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Seidel K, Poeggel G, Holetschka R, Helmeke C, Braun K. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus. J Neuroendocrinol 2011; 23:1166-76. [PMID: 21848809 DOI: 10.1111/j.1365-2826.2011.02208.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the critical role of maternal care on the development of brain and behaviour of the offspring has been extensively studied, knowledge about the importance of paternal care is comparatively scarce. In biparental species, paternal care significantly contributes to a stimulating socio-emotional family environment, which most likely also includes protection from stressful events. In the biparental caviomorph rodent Octodon degus, we analysed the impact of paternal care on the development of neurones in prefrontal-limbic brain regions, which express corticotrophin-releasing factor (CRF). CRF is a polypeptidergic hormone that is expressed and released by a neuronal subpopulation in the brain, and which not only is essential for regulating stress and emotionality, but also is critically involved in cognitive functions. At weaning age [postnatal day (P)21], paternal deprivation resulted in an elevated density of CRF-containing neurones in the orbitofrontal cortex and in the basolateral amygdala of male degus, whereas a reduced density of CRF-expressing neurones was measured in the dentate gyrus and stratum pyramidale of the hippocampal CA1 region at this age. With the exception of the CA1 region, the deprivation-induced changes were no longer evident in adulthood (P90), which suggests a transient change that, in later life, might be normalised by other socio-emotional experience. The central amygdala, characterised by dense clusters of CRF-immunopositive neuropil, and the precentral medial, anterior cingulate, infralimbic and prelimbic cortices, were not affected by paternal deprivation. Taken together, this is the first evidence that paternal care interferes with the developmental expression pattern of CRF-expressing interneurones in an age- and region-specific manner.
Collapse
Affiliation(s)
- K Seidel
- Institute of Biology, Department of Zoology/Developmental Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Iwanaga M, Ohno M, Katoh A, Ohbuchi T, Ishikura T, Fujihara H, Nomura M, Hachisuka K, Ueta Y. Upregulation of arginine vasopressin synthesis in the rat hypothalamus after kainic acid-induced seizures. Brain Res 2011; 1424:1-8. [PMID: 22005685 DOI: 10.1016/j.brainres.2011.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022]
Abstract
We examined the effects of kainic acid (KA)-induced seizures on arginine vasopressin (AVP) gene expression in the paraventricular (PVN) and the supraoptic nuclei (SON) of normal rats using in situ hybridization histochemistry. We also investigated the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene after KA-induced seizures in transgenic rats. AVP heteronuclear (hn) RNA levels in the PVN and the SON were significantly increased at 3h and 24h after subcutaneous (s.c.) administration of KA in normal rats. AVP mRNA levels in the PVN and the SON did not change significantly at 3h, 24h and 1 week after s.c. administration of KA in normal rats. In KA-administered transgenic rats, AVP-eGFP fluorescence in the magnocellular and parvocellular divisions of the PVN and the SON were significantly stronger compared to vehicle-administered transgenic rats. By pretreatment with MK-801 (nonselective N-methyl-D-aspartate, NMDA, receptor antagonist), AVP-eGFP transgenic rats after administration of KA did not show preconvulsive symptoms or convulsions and AVP-eGFP fluorescence in the magnocellular and parvocellular divisions of the PVN and the SON of these rats was significantly reduced. These results suggested that KA-induced increases in AVP transcripts and AVP were prevented by MK801 because seizure activity was prevented or reduced.
Collapse
Affiliation(s)
- Masaru Iwanaga
- Department of Rehabilitation Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Becker K, Abraham A, Kindler J, Helmeke C, Braun K. Exposure to neonatal separation stress alters exploratory behavior and corticotropin releasing factor expression in neurons in the amygdala and hippocampus. Dev Neurobiol 2007; 67:617-29. [PMID: 17443812 DOI: 10.1002/dneu.20372] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evidence is accumulating that early emotional experience interferes with the development of the limbic system, which is involved in perception and regulation of emotional behaviors as well as in learning and memory formation. Limbic brain regions, as well as hypothalamic regions and other, nonlimbic areas contain specific neuron subpopulations, which express and release corticotropin releasing factor (CRF). Since these neurons serve to connect limbic function to endocrine, stress-related responses, we proposed that stressful experience during early postnatal brain development should interfere with the development of CRF-containing neurons, particularly in brain regions essential for emotional regulation. Applying neonatal separation stress (daily 1 h separation from the parents and litter mates) as stressor, the number of immunocytochemically identified CRF-expressing neurons/fibers was quantified in the amygdala, hippocampus, paraventricular nucleus of the hypothalamus, piriform cortex, and the somatosensory cortex of 3-week-old stressed and nonstressed Octodon degus, a semi-precocial rodent. Compared to controls neonatally stressed animals showed significantly lower levels of CRF-positive fibers (-60%) in the central amygdala, significantly less CRF-positive neurons in the dentate gyrus (-28%) and the CA1 region (-29%) and significantly lower CRF cell densities in the somatosensory cortex (-26%). On the other hand, we found significantly higher numbers of CRF-immunoreactive neurons in the basolateral amygdaloid complex (+192%) of stressed animals compared to nonstressed controls. No differences in CRF-immunoreactive cell densities were detected in the other regions. Additional behavioral analysis revealed significantly elevated exploratory behavior (+34%) in stressed animals compared to controls, which might indicate reduced anxiety in the stressed animals.
Collapse
Affiliation(s)
- Katja Becker
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke University, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Gulec G, Isbil-Buyukcoskun N. Arginine vasopressin does not contribute to seizures induced by intracerebroventricularly-injected pilocarpine. Neuropeptides 2005; 39:575-9. [PMID: 16246417 DOI: 10.1016/j.npep.2005.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Arginine vasopressin (AVP) has been shown to contribute to the production of seizures. Here, we aimed to investigate the effects of AVP on seizures induced by intracerebroventricular (i.c.v.) injection of pilocarpine. Rats were treated with 0.2-2.4 mg/5 microl pilocarpine intracerebroventricularly, to obtain the dose-response relationship for behavioural seizures. 2.4 mg/5 microl pilocarpine induced status epilepticus in all rats and 0. 2 mg/5 microl pilocarpine did not produce any sign of seizure in any of the rats. In the second step, AVP (0.01-1000 ng/2 microl; i.c.v.) was injected 5 min before i.c.v. injection of a low dose pilocarpine (0.4 mg/5 microl) and rats were observed for percentage of status epilepticus, status epilepticus latency and behavioural seizure scores. None of the applied doses of AVP had any significant effect on seizures induced by 0.4 mg/5 microl i.c.v. pilocarpine. Subcutaneous injection of 1000 ng AVP 1h before 0.4 mg i.c.v. pilocarpine also did not produce significant difference with respect to the 0.4 mg pilocarpine group. Finally, pretreatment with neither an AVP V(1) receptor antagonist (25, 125, 250 ng/5 microl; i.c.v.) nor an AVP V(2) receptor antagonist (25, 125, 250 ng/5 microl; i.c.v.) prevented status epilepticus, induced by 2.4 mg/5 microl i.c.v. pilocarpine. We conclude that AVP does not act as a convulsant agent in centrally-induced pilocarpine seizures.
Collapse
Affiliation(s)
- Guldal Gulec
- Uludag University Medical Faculty, Department of Physiology, Görükle, Bursa, Turkey.
| | | |
Collapse
|
18
|
Klein P, Herzog A. Emerging applications of hormonal therapy of paroxysmal central nervous system disorders. Expert Opin Investig Drugs 2005; 6:1337-49. [PMID: 15989505 DOI: 10.1517/13543784.6.10.1337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gonadal and adrenal steroidal hormones and their related neuropeptides affect seizures. Seizures, in their turn, may affect the functioning of these endocrine systems. Both these sets of effects may be clinically important and open to therapeutic manipulation. Recent advances in understanding the effects of these hormones and their metabolites on neuronal excitability have opened the way for a number of new, hormonally-based therapeutic approaches to seizure management. Some of these have reached various stages of clinical trials, while others are still in the preclinical stages of testing. Similarly, treatment of some of the hormonal consequences of seizures has recently been explored and will be discussed.
Collapse
Affiliation(s)
- P Klein
- Neuroendocrine Unit, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Wang W, Solc M, Ji P, Dow KE. Corticotropin-releasing hormone potentiates neural injury induced by oxygen-glucose deprivation: a possible involvement of microglia. Neurosci Lett 2005; 371:133-7. [PMID: 15519743 DOI: 10.1016/j.neulet.2004.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/04/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
While corticotropin-releasing hormone (CRH) has been implicated in a variety of brain disorders such as ischemic injury, the molecular mechanism by which CRH elicits its activities is largely unclear. In the present study, we have determined the effect of CRH on oxygen-glucose deprivation (OGD) induced apoptosis in fetal hippocampal neurons. CRH alone at concentrations of 10-200 nM had no effect on neuronal apoptosis. However, when neurons were co-cultured with microglia, CRH alone at concentrations greater than 100 nM induced neuronal apoptosis and CRH potentiated significant neuronal apoptosis following exposure to OGD. The effect of CRH on neuronal apoptosis was inhibited in the presence of the CRH antagonist astressin. Real-time RT-PCR revealed an increase in mRNA levels of Fas ligand (Fas-L), a membrane protein related to the TNF family, in cultured microglia following OGD exposure. In the presence of CRH, OGD-induced Fas-L expression was significantly increased. The effect of CRH on Fas-L expression was inhibited by specific inhibitors of the extracellular signal-regulated protein kinase (PD98059) and p38 mitogen-activated protein kinase (SB203580). These results suggest that CRH potentiates neuronal apoptosis induced by OGD in the presence of microglia and that this effect may be mediated through the induction of proinflammatory mediators in microglia.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Apps Medical Research Centre, Kingston General Hospital, Queen's University, Doran 3, Room 6-303, Kingston, Ont., Canada K7L 2V7
| | | | | | | |
Collapse
|
20
|
Kalynchuk LE, Meaney MJ. Amygdala kindling increases fear responses and decreases glucocorticoid receptor mRNA expression in hippocampal regions. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:1225-34. [PMID: 14659477 DOI: 10.1016/j.pnpbp.2003.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amygdala kindling dramatically increases fearful behavior in rats. Because kindling-induced fear increases in magnitude as rats receive more stimulations, kindling provides an excellent model for studying the nature and neural mechanisms of fear sensitization. In the present experiment, we studied whether the development of kindling-induced fear is related to changes in glucocorticoid receptor (GR) mRNA expression in various brain regions. Rats received 20, 60 or 100 amygdala kindling stimulations or 100 sham stimulations. One day after the final stimulation, their fearful behavior was assessed in an unfamiliar open field. Then, the rats were sacrificed and their brains were processed for in situ hybridization of GR mRNA expression. We found that compared with the sham-stimulated rats, the rats that received 60 or 100 kindling stimulations were significantly more fearful in the open field and also had significantly less GR mRNA expression in the dentate gyrus and CA1 subfield of the hippocampus. Importantly, the changes in fearful behavior were significantly correlated with the changes in GR mRNA expression. These results suggest that alterations in GR mRNA expression in hippocampal regions may play a role in the development of kindling-induced fear.
Collapse
Affiliation(s)
- Lisa E Kalynchuk
- Department of Psychology and Neuroscience Institute, Dalhousie University, 1355 Oxford Street, B3H 4J1, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
21
|
Wang W, Ji P, Dow KE. Corticotropin-releasing hormone induces proliferation and TNF-alpha release in cultured rat microglia via MAP kinase signalling pathways. J Neurochem 2003; 84:189-95. [PMID: 12485415 DOI: 10.1046/j.1471-4159.2003.01544.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that corticotropin-releasing hormone (CRH) receptor 1 (CRH-R1) is functionally expressed in rat microglia. In the present study, we show that CRH, acting on CRH-R1, promoted cell proliferation and tumour necrosis factor-alpha (TNF-alpha) release in cultured rat microglia. Exogenous CRH resulted in an increase in BrdU incorporation compared with control cells, which was observed in a range of concentrations of CRH between 10 and 500 nm, with a maximal response at 50 nm. The effect of CRH on BrdU incorporation was inhibited by a CRH antagonist astressin but not by a cAMP-dependent protein kinase inhibitor H89. Exposure of microglial cells to CRH resulted in a transient and rapid increase in TNF-alpha release in a dose-dependent manner. In the presence of astressin, the effects of CRH on TNF-alpha release were attenuated. CRH effects on TNF-alpha release were also inhibited by specific inhibitors of MEK, the upstream kinase of the extracellular signal-regulated protein kinase (ERK) (PD98059) or p38 mitogen-activated protein kinase (SB203580), but not by H89. Furthermore, CRH induced rapid phosphorylation of ERK and p38 kinases. Astressin, PD98059, and SB230580 were able to inhibit CRH-induced kinase phosphorylation. These results suggest that CRH induces cell proliferation and TNF-alpha release in cultured microglia via MAP kinase signalling pathways, thereby providing insight into the interactions between CRH and inflammatory mediators.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
22
|
Liu Y, Curtis JT, Fowler CD, Spencer C, Houpt T, Wang ZX. Differential expression of vasopressin, oxytocin and corticotrophin-releasing hormone messenger RNA in the paraventricular nucleus of the prairie vole brain following stress. J Neuroendocrinol 2001; 13:1059-65. [PMID: 11722702 DOI: 10.1046/j.1365-2826.2001.00729.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Forced swimming, as an effective stressor, has been found to facilitate the development of pair bonds in male but to interfere with this behaviour in female prairie voles (Microtus ochrogaster). In the present study, we found that forced swimming differentially influenced the expression of messenger RNA for vasopressin, oxytocin and corticotrophin-releasing hormone (CRH) in the paraventricular nucleus of the hypothalamus (PVN) in the prairie vole brain. Forced swimming did not alter vasopressin mRNA labelling, but did induce a sustained decrease in oxytocin mRNA labelling and a progressive increase in CRH mRNA labelling in the PVN. The elevated CRH mRNA labelling appeared to be due to an increased number of cells synthesizing CRH mRNA and an enhanced ability of individual cells to produce CRH mRNA. Male and female prairie voles did not differ in the vasopressin, oxytocin or CRH mRNA expression either at the basal levels or in response to swimming stress. Together, these data indicate that the hypothalamic response of vasopressin, oxytocin and CRH messenger RNAs to swimming stress is regulated by distinct transcriptional factors. In addition, it seems unlikely that these changes are involved directly in the sex differences in pair bond formation.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychology, Neuroscience Program, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sawada K, Sakata-Haga H, Hisano S, Fukui Y. Topological relationship between corticotropin-releasing factor-immunoreactive cerebellar afferents and tyrosine hydroxylase-immunoreactive Purkinje cells in a hereditary ataxic mutant, rolling mouse Nagoya. Neuroscience 2001; 102:925-35. [PMID: 11182254 DOI: 10.1016/s0306-4522(00)00533-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using immunohistochemistry we examined the distribution of corticotropin-releasing factor-positive cerebellar afferents and the topological relationship between their projections and the distribution of tyrosine hydroxylase-positive Purkinje cells in an ataxic mutant, rolling mouse Nagoya. In the mutants, some climbing fibers were more intensely stained for corticotropin-releasing factor, but their zonal distribution remained the same as in non-ataxic littermates (control mice). These climbing fibers arose from the dorsal accessory nucleus, the ventral lamella of principal nucleus, the dorsomedial cell group, the subnucleus A, the beta subnucleus and the ventrolateral protrusion of the inferior olive, since perikarya in these olivary subdivisions were more intensely stained for corticotropin-releasing factor than in controls. Some mossy fiber rosettes in the vermal lobules, the simple lobule, the crus I of ansiform lobule, the copula pyramidis and the flocculus also exhibited corticotropin-releasing factor immunoreactivity and were more densely stained in the mutants than in controls. Double immunostaining for corticotropin-releasing factor and tyrosine hydroxylase in the mutant cerebellum revealed that the distribution of tyrosine hydroxylase-positive Purkinje cells corresponded to terminal fields of corticotropin-releasing factor-positive climbing fibers but not corticotropin-releasing factor-positive mossy fibers. This study indicated an increased corticotropin-releasing factor immunoreactivity in some climbing or mossy fibers in the cerebellum of rolling mouse Nagoya. We also found that the distribution of tyrosine hydroxylase-positive Purkinje cells corresponded to terminal fields of corticotropin-releasing factor-positive climbing fibers in the mutant cerebellum. As the transcription of the tyrosine hydroxylase gene is facilitated by Ca2+, abnormal tyrosine hydroxylase expression in the mutant Purkinje cells may indicate functional abnormality by alterations in intracellular Ca2+ concentrations. Therefore, we suggest that an increased level of corticotropin-releasing factor in a specific population of climbing fibers may alter the function of their target Purkinje cells.
Collapse
Affiliation(s)
- K Sawada
- Department of Anatomy, University of Tokushima School of Medicine, Tokushima, Japan.
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Al-Ghoul WM, Meeker RB, Greenwood RS. Kindled seizures increase metabotropic glutamate receptor expression and function in the rat supraoptic nucleus. J Neurosci Res 1998; 54:412-23. [PMID: 9819146 DOI: 10.1002/(sici)1097-4547(19981101)54:3<412::aid-jnr12>3.0.co;2-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The spread of experimentally kindled seizures in rats results in sustained increases in plasma vasopressin (VP) and VP mRNA in the supraoptic nucleus (SON). These increases provide an excellent example of the pathological plasticity that can develop in normal cells exposed to recurrent seizure activity. To test whether this plasticity might be due in part to changes in metabotropic glutamate receptors (mGluRs), we examined mGluR mRNA expression in the SON 1 month after stage 5 amygdala kindling. Three mGluR subtypes were detected by in situ hybridization in the SON in the following relative levels: mGluR3 > mGluR1 > mGluR7. Both mGluR1 and mGluR3 mRNAs were significantly increased in the SON (+28-61%) and cortex (+27-42%) after kindling. Immunoreactivity for mGluR1 but not mGluR2/3 was significantly increased in vivo in the SON. Receptor protein expression and intracellular calcium accumulation in response to the mGluR agonist, 1S,3R ACPD, were evaluated after in vitro "kindling" of neuroendocrine cells by Mg2+ deprivation. Increased immunoreactivity for mGluR1 and mGluR2/3 was seen in all cultures 3 days after a brief exposure to Mg2+-free medium. 1S,3R 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) induced rapid peak responses and gradual accumulations of intracellular Ca2+ in neurons. Both responses were increased in the "kindled" cells. Increases in the expression of functional mGluR1 and perhaps mGluR3 receptors may contribute to the development of long-lasting plastic changes associated with seizure activity.
Collapse
Affiliation(s)
- W M Al-Ghoul
- Department of Neurology, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|