1
|
Lee DS, Kim TH, Park H, Kang TC. Deregulation of Astroglial TASK-1 K+ Channel Decreases the Responsiveness to Perampanel-Induced AMPA Receptor Inhibition in Chronic Epilepsy Rats. Int J Mol Sci 2023; 24:ijms24065491. [PMID: 36982567 PMCID: PMC10049714 DOI: 10.3390/ijms24065491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid sensitive K+-1 channel (TASK-1) is activated under extracellular alkaline conditions (pH 7.2–8.2), which are upregulated in astrocytes (particularly in the CA1 region) of the hippocampi of patients with temporal lobe epilepsy and chronic epilepsy rats. Perampanel (PER) is a non-competitive α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) antagonist used for the treatment of focal seizures and primary generalized tonic–clonic seizures. Since AMPAR activation leads to extracellular alkaline shifts, it is likely that the responsiveness to PER in the epileptic hippocampus may be relevant to astroglial TASK-1 regulation, which has been unreported. In the present study, we found that PER ameliorated astroglial TASK-1 upregulation in responders (whose seizure activities were responsive to PER), but not non-responders (whose seizure activities were not responsive to PER), in chronic epilepsy rats. ML365 (a selective TASK-1 inhibitor) diminished astroglial TASK-1 expression and seizure duration in non-responders to PER. ML365 co-treatment with PER decreased spontaneous seizure activities in non-responders to PER. These findings suggest that deregulation of astroglial TASK-1 upregulation may participate in the responsiveness to PER, and that this may be a potential target to improve the efficacies of PER.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
2
|
Kim JE, Kang TC. Blockade of TASK-1 Channel Improves the Efficacy of Levetiracetam in Chronically Epileptic Rats. Biomedicines 2022; 10:biomedicines10040787. [PMID: 35453538 PMCID: PMC9030960 DOI: 10.3390/biomedicines10040787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tandem of P domains in a weak inwardly rectifying K+ channel (TWIK)-related acid sensitive K+-1 channel (TASK-1) is an outwardly rectifying K+ channel that acts in response to extracellular pH. TASK-1 is upregulated in the astrocytes (particularly in the CA1 region) of the hippocampi of patients with temporal lobe epilepsy and chronically epilepsy rats. Since levetiracetam (LEV) is an effective inhibitor for carbonic anhydrase, which has a pivotal role in buffering of extracellular pH, it is likely that the anti-epileptic action of LEV may be relevant to TASK-1 inhibition, which remains to be elusive. In the present study, we found that LEV diminished the upregulated TASK-1 expression in the CA1 astrocytes of responders (whose seizure activities were responsive to LEV), but not non-responders (whose seizure activities were not controlled by LEV) in chronically epileptic rats. ML365 (a selective TASK-1 inhibitor) only reduced seizure duration in LEV non-responders, concomitant with astroglial TASK-1 downregulation. Furthermore, ML365 co-treatment with LEV decreased the duration, frequency and severity of spontaneous seizures in non-responders to LEV. To the best of our knowledge, our findings suggest, for the first time, that the up-regulation of TASK-1 expression in CA1 astrocytes may be involved in refractory seizures in response to LEV. This may be a potential target to improve responsiveness to LEV.
Collapse
Affiliation(s)
| | - Tae-Cheon Kang
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
3
|
CDDO-Me Distinctly Regulates Regional Specific Astroglial Responses to Status Epilepticus via ERK1/2-Nrf2, PTEN-PI3K-AKT and NFκB Signaling Pathways. Antioxidants (Basel) 2020; 9:antiox9101026. [PMID: 33096818 PMCID: PMC7589507 DOI: 10.3390/antiox9101026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid. CDDO-Me shows anti-inflammatory and neuroprotective effects. Furthermore, CDDO-Me has antioxidant properties, since it activates nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a key player of redox homeostasis. In the present study, we evaluated whether CDDO-Me affects astroglial responses to status epilepticus (SE, a prolonged seizure activity) in the rat hippocampus in order to understand the underlying mechanisms of reactive astrogliosis and astroglial apoptosis. Under physiological conditions, CDDO-Me increased Nrf2 expression in the hippocampus without altering activities (phosphorylations) of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphatidylinositol-3-kinase (PI3K), and AKT. CDDO-Me did not affect seizure activity in response to pilocarpine. However, CDDO-Me ameliorated reduced astroglial Nrf2 expression in the CA1 region and the molecular layer of the dentate gyrus (ML), and attenuated reactive astrogliosis and ML astroglial apoptosis following SE. In CA1 astrocytes, CDDO-Me inhibited the PI3K/AKT pathway by activating PTEN. In contrast, CDDO-ME resulted in extracellular signal-related kinases 1/2 (ERK1/2)-mediated Nrf2 upregulation in ML astrocytes. Furthermore, CDDO-Me decreased nuclear factor-κB (NFκB) phosphorylation in both CA1 and ML astrocytes. Therefore, our findings suggest that CDDO-Me may attenuate SE-induced reactive astrogliosis and astroglial apoptosis via regulation of ERK1/2-Nrf2, PTEN-PI3K-AKT, and NFκB signaling pathways.
Collapse
|
4
|
Reyes-Garcia SZ, Scorza CA, Araújo NS, Ortiz-Villatoro NN, Jardim AP, Centeno R, Yacubian EMT, Faber J, Cavalheiro EA. Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy. Sci Rep 2018; 8:7116. [PMID: 29740014 PMCID: PMC5940759 DOI: 10.1038/s41598-018-25378-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Human hippocampal slice preparations from patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) are excellent material for the characterization of epileptiform-like activity. However, it is still unknown if hippocampal regions as cornu Ammonis (CA) 1, CA3 and CA4, generate population epileptiform-like activity. Here, we investigated epileptiform activities of the subiculum, CA1, CA2, CA3, CA4 (induced by elevation of extracellular potassium concentration) and the dentate gyrus (induced with hilar stimulation and elevation of potassium concentration) from sclerotic hippocampi of patients with drug-resistant TLE. Five types of epileptiform-like activity were observed: interictal-like events; periodic ictal spiking; seizure-like events; spreading depression-like events; tonic seizure-like events and no activity. Different susceptibilities to generate epileptiform activity among hippocampal regions were observed; the dentate gyrus was the most susceptible region followed by the subiculum, CA4, CA1, CA2 and CA3. The incidence of epileptiform activity pattern was associated with specific regions of the hippocampal formation. Moreover, it was observed that each region of the hippocampal formation exhibits frequency-specific ranges in each subfield of the sclerotic human tissue. In conclusion, this study demonstrates that epileptiform-like activity may be induced in different regions of the hippocampal formation, including regions that are severely affected by neuronal loss.
Collapse
Affiliation(s)
- Selvin Z Reyes-Garcia
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. .,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.
| | - Carla A Scorza
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Noemi S Araújo
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nancy N Ortiz-Villatoro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anaclara Prada Jardim
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Centeno
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elza Márcia Targas Yacubian
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jean Faber
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Dossi E, Vasile F, Rouach N. Human astrocytes in the diseased brain. Brain Res Bull 2017; 136:139-156. [PMID: 28212850 PMCID: PMC5766741 DOI: 10.1016/j.brainresbull.2017.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Angamo EA, Rösner J, Liotta A, Kovács R, Heinemann U. A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism. J Neurophysiol 2016; 116:2420-2430. [PMID: 27559140 DOI: 10.1152/jn.00327.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/13/2016] [Indexed: 01/20/2023] Open
Abstract
Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K+, Na+, Ca2+, and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of KATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K+ concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose.
Collapse
Affiliation(s)
| | - Joerg Rösner
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité Universitätsmedizin, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité Universitätsmedizin, Berlin, Germany; and
| | - Uwe Heinemann
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany;
| |
Collapse
|
7
|
Klaft ZJ, Hollnagel JO, Salar S, Calişkan G, Schulz SB, Schneider UC, Horn P, Koch A, Holtkamp M, Gabriel S, Gerevich Z, Heinemann U. Adenosine A1 receptor-mediated suppression of carbamazepine-resistant seizure-like events in human neocortical slices. Epilepsia 2016; 57:746-56. [PMID: 27087530 DOI: 10.1111/epi.13360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The need for alternative pharmacologic strategies in treatment of epilepsies is pressing for about 30% of patients with epilepsy who do not experience satisfactory seizure control with present treatments. In temporal lobe epilepsy (TLE) even up to 80% of patients are pharmacoresistant, and surgical resection of the ictogenic tissue is only possible for a minority of TLE patients. In this study we investigate purinergic modulation of drug-resistant seizure-like events (SLEs) in human temporal cortex slices. METHODS Layer V/VI field potentials from a total of 77 neocortical slices from 17 pharmacoresistant patients were recorded to monitor SLEs induced by application of 8 mM [K(+) ] and 50 μm bicuculline. RESULTS Activating A1 receptors with a specific agonist completely suppressed SLEs in 73% of human temporal cortex slices. In the remaining slices, incidence of SLEs was markedly reduced. Because a subportion of slices can be pharmacosensitive, we tested effects of an A1 agonist, in slices insensitive to a high dose of carbamazepine (50 μm). Also in these cases the A1 agonist was equally efficient. Moreover, ATP and adenosine blocked or modulated SLEs, an effect mediated not by P2 receptors but rather by adenosine A1 receptors. SIGNIFICANCE Selective activation of A1 receptors mediates a strong anticonvulsant action in human neocortical slices from pharmacoresistant patients. We propose that our human slice model of seizure-like activity is a feasible option for future studies investigating new antiepileptic drug (AED) candidates.
Collapse
Affiliation(s)
- Zin-Juan Klaft
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Oliver Hollnagel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Seda Salar
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gürsel Calişkan
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen B Schulz
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Horn
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Siegrun Gabriel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Salar S, Lapilover E, Müller J, Hollnagel JO, Lippmann K, Friedman A, Heinemann U. Synaptic plasticity in area CA1 of rat hippocampal slices following intraventricular application of albumin. Neurobiol Dis 2016; 91:155-65. [PMID: 26972679 DOI: 10.1016/j.nbd.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Epileptogenesis following insults to the brain may be triggered by a dysfunctional blood-brain barrier (BBB) associated with albumin extravasation and activation of astrocytes. Using ex vivo recordings from the BBB-disrupted hippocampus after neocortical photothrombotic stroke, we previously demonstrated abnormal activity-dependent accumulation of extracellular potassium with facilitated generation of seizure like events and spreading depolarizations. Similar changes could be observed after intracerebroventricular (icv) application of albumin. We hypothesized that alterations in extracellular potassium and glutamate homeostasis might lead to alterations in synaptic interactions. We therefore assessed the effects of icv albumin on homo- and heterosynaptic plasticity in hippocampal CA1, 24h after a single injection or 7days after continuous infusion of icv albumin. We demonstrate alterations in both homo- and heterosynaptic plasticity compared to control conditions in ex vivo slice studies. Albumin-treated tissue reveals (1) reduced long-term depression following low-frequency stimulation; (2) increased long-term potentiation of population spikes in response to 20Hz stimulation; (3) potentiated responses to Schaffer collateral stimulation following high-frequency stimulation of the direct cortical input and low-frequency stimulation of alveus and finally, (4) TGFβ receptor II (TGFβR-II) involvement in albumin-induced homosynaptic plasticity changes. We conclude that albumin-induced network hyperexcitability is associated with abnormal homo- and heterosynaptic plasticity that could partly be reversed by interference with TGFβR-II-mediated signaling and therefore it might be an important factor in the process of epileptogenesis.
Collapse
Affiliation(s)
- Seda Salar
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Ezequiel Lapilover
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Julia Müller
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Jan-Oliver Hollnagel
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Kristina Lippmann
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Alon Friedman
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany; Departments of Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Uwe Heinemann
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
9
|
HEINEMANN UWE, KAUFER DANIELA, FRIEDMAN ALON. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 2012; 60:1251-7. [PMID: 22378298 PMCID: PMC3615248 DOI: 10.1002/glia.22311] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/27/2012] [Indexed: 11/11/2022]
Abstract
Brain insults, including traumatic and ischemic injuries, are frequently followed by acute seizures and delayed development of epilepsy. Dysfunction of the blood-brain barrier (BBB) is a hallmark of brain insults and is usually surrounding the core lesion. Recent studies from several laboratories confirmed that vascular pathology is involved in the development of epilepsy and demonstrate a key role for astroglia in this process. In this review, we focus on glia-related mechanisms linking vascular pathology, and specifically BBB dysfunction, to seizures and epilepsy. We summarize molecular and physiological experimental data demonstrating that the function of astrocytes is altered due to direct exposure to serum albumin, mediated by transforming growth factor beta signaling. We discuss the reported changes and their potential role in the observed hyperexcitability as well as potential implications of these findings for the future development of new diagnostic modalities and treatments to allow a full implementation of the gained knowledge for the benefit of patients with epilepsy.
Collapse
Affiliation(s)
- UWE HEINEMANN
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin
| | - DANIELA KAUFER
- Department of Integrative Biology, Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California
| | - ALON FRIEDMAN
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Correspondence to: Alon Friedman, Department of Physiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
10
|
Takahashi DK, Vargas JR, Wilcox KS. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis 2010; 40:573-85. [PMID: 20691786 DOI: 10.1016/j.nbd.2010.07.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 01/13/2023] Open
Abstract
Profound astrogliosis coincident with neuronal cell loss is universally described in human and animal models of temporal lobe epilepsy (TLE). In the kainic acid-induced status epilepticus (SE) model of TLE, astrocytes in the hippocampus become reactive soon after SE and before the onset of spontaneous seizures. To determine if astrocytes in the hippocampus exhibit changes in function soon after SE, we recorded from SR101-labeled astrocytes using the whole-cell patch technique in hippocampal brain slices prepared from control and kainic-acid-treated rats. Glutamate transporter-dependent currents were found to have significantly faster decay time kinetics and in addition, dye coupling between astrocytes was substantially increased. Consistent with an increase in dye coupling in reactive astrocytes, immunoblot experiments demonstrated a significant increase in both glial fibrillary acidic protein (GFAP) and connexin 43, a major gap junction protein expressed by astrocytes. In contrast to what has been observed in resected tissue from patients with refractory epilepsy, changes in potassium currents were not observed shortly after KA-induced SE. While many changes in neuronal function have been identified during the initial period of low seizure probability in this model of TLE, the present study contributes to the growing body of literature suggesting a role for astrocytes in the process of epileptogenesis.
Collapse
Affiliation(s)
- D K Takahashi
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
11
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1115] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Xu L, Zeng LH, Wong M. Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2009; 34:291-9. [PMID: 19385061 DOI: 10.1016/j.nbd.2009.01.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abnormalities in astrocytes occur in the brains of patients with Tuberous Sclerosis Complex (TSC) and may contribute to the pathogenesis of neurological dysfunction in this disease. Here, we report that knock-out mice with Tsc1 gene inactivation in glia (Tsc1(GFAP)CKO mice) exhibit decreased expression of the astrocytic connexin protein, Cx43, and an associated impairment in gap junction coupling between astrocytes. Correspondingly, hippocampal slices from Tsc1(GFAP)CKO mice have increased extracellular potassium concentration in response to stimulation. This impaired potassium buffering can be attributed to abnormal gap junction coupling, as a gap junction inhibitor elicits an additional increase in potassium concentration in control, but not Tsc1(GFAP)CKO slices. Furthermore, treatment with a mammalian target of rapamycin inhibitor reverses the deficient Cx43 expression and impaired potassium buffering. These findings suggest that Tsc1 inactivation in astrocytes causes defects in astrocytic gap junction coupling and potassium clearance, which may contribute to epilepsy in Tsc1(GFAP)CKO mice.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Differential expressions of aquaporin subtypes in astroglia in the hippocampus of chronic epileptic rats. Neuroscience 2009; 163:781-9. [PMID: 19619613 DOI: 10.1016/j.neuroscience.2009.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
Abstract
In order to elucidate the roles of aquaporins (AQPs) in astroglial responses, we investigated AQP expressions in the experimental epileptic hippocampus. In control animals, AQP1 protein expression was restricted to the ventricular-facing surface of the choroid plexus. AQP4 was expressed in astrocyte foot processes near blood vessels and in ependymal and pial surfaces in contact with cerebrospinal fluid. AQP9 protein has been detected in cells lining the cerebral ventricles, and in astrocytes. Six to eight weeks after status epilepticus (SE), AQP1 expression was mainly, but not all, detected in vacuolized astrocytes, which were localized in the stratum radiatum of the CA1 region. AQP4 was negligible in vacuolized CA1 astrocytes, although AQP4 immunoreactivity in non-vacuolized astrocytes was increased as compared to control level. AQP9 expression was shown to be mainly induced in non-vacuolized CA1 astrocytes. Therefore, our findings suggest that AQP subunits may play differential roles in various astroglial responses (including astroglial swelling and astroglial loss) in the chronic epileptic hippocampus.
Collapse
|
14
|
Kim DS, Kim JE, Kwak SE, Choi KC, Kim DW, Kwon OS, Choi SY, Kang TC. Spatiotemporal characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. J Comp Neurol 2009; 511:581-98. [PMID: 18853423 DOI: 10.1002/cne.21851] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently we reported that astroglial loss and subsequent gliogenesis in the dentate gyrus play a role in epileptogenesis following pilocarpine-induced status epilepticus (SE). In the present study we investigated whether astroglial damages in the hippocampo-entorhinal complex following SE are relevant to pathological or electrophysiological properties of temporal lobe epilepsy. Astroglial loss/damage was observed in the entorhinal cortex and the CA1 region at 4 weeks and 8 weeks after SE, respectively. These astroglial responses in the hippocampo-entorhinal cortex were accompanied by hyperexcitability of the CA1 region (impairment of paired-pulse inhibition and increase in excitability ratio). Unlike the dentate gyrus and the entorhinal cortex, CA1 astroglial damage was protected by conventional anti-epileptic drugs. alpha-Aminoadipic acid (a specific astroglial toxin) infusion into the entorhinal cortex induced astroglial damage and changed the electrophysiological properties in the CA1 region. Astroglial regeneration in the dentate gyrus and the stratum oriens of the CA1 region was found to originate from gliogenesis, while that in the entorhinal cortex and stratum radiatum of the CA1 region originated from in situ proliferation. These findings suggest that regional specific astroglial death/regeneration patterns may play an important role in the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008; 107:589-601. [PMID: 18691387 PMCID: PMC2581639 DOI: 10.1111/j.1471-4159.2008.05615.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astrocytes and oligodendrocytes are characterized by a very negative resting potential and a high resting permeability for K(+) ions. Early pharmacological and biophysical studies suggested that the resting potential is established by the activity of inwardly rectifying, Ba(2+) sensitive, weakly rectifying Kir channels. Molecular cloning has identified 16 Kir channels genes of which several mRNA transcripts and protein products have been identified in glial cells. However, genetic deletion and siRNA knock-down studies suggest that the resting conductance of astrocytes and oligodendrocytes is largely due to Kir4.1. Loss of Kir4.1 causes membrane depolarization, and a break-down of K(+) and glutamate homeostasis which results in seizures and wide-spread white matter pathology. Kir channels have also been shown to act as critical regulators of cell division whereby Kir function is correlated with an exit from the cell cycle. Conversely, loss of functional Kir channels is associated with re-entry of cells into the cell cycle and gliosis. A loss of functional Kir channels has been shown in a number of neurological diseases including temporal lobe epilepsy, amyotrophic lateral sclerosis, retinal degeneration and malignant gliomas. In the latter, expression of Kir4.1 is sufficient to arrest the aberrant growth of these glial derived tumor cells. Kir4.1 therefore represents a potential therapeutic target in a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Michelle L Olsen
- Department of Neurobiology & Center for Glial Biology in Medicine, The University of Alabama Birmingham, Birmingham, Alabama 35294-0021, USA
| | | |
Collapse
|
16
|
Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils: a target of anti-epileptic drugs. Brain Res 2007; 1185:346-58. [PMID: 17959156 DOI: 10.1016/j.brainres.2007.09.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/13/2007] [Accepted: 09/15/2007] [Indexed: 01/27/2023]
Abstract
In order to identify the modulation of TASK (TWIK-related Acid-Sensitive K(+)) channel expressions in epilepsy, we conducted a comparative analysis of TASK channel immunoreactivities in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference of the TASK-1 and TASK-2 channel expressions in the hippocampi of young SR and SS gerbils (1-2 months old). In adult SS gerbil hippocampus, TASK-1 immunoreactivity in astrocytes was higher than that in adult SR gerbil hippocampus. After seizures, TASK-1 immunoreactivity was significantly down-regulated in astrocytes of the SS gerbil hippocampus. In addition, various anti-epileptic drugs selectively affect TASK-1 immunoreactivity in astrocytes of the SS gerbil hippocampus. Gabapentin, lamotrigine, topiramate and valproic acid reduced the number of TASK-1(+) astrocytes in the hippocampus to 10-25% of that in saline-treated SS adult gerbils, whereas carbamazepine and vigabatrin decreased to approximately 50%. Therefore, the present study demonstrates that up-regulated TASK-1 immunoreactivity in astrocytes may be involved in the seizure activity of SS adult gerbils and suggests that the astroglial TASK-1 channel may be a target for epilepsy therapeutics.
Collapse
|
17
|
Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD. Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 2007; 27:2309-17. [PMID: 17329428 PMCID: PMC6673489 DOI: 10.1523/jneurosci.4565-06.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a transgenic mouse line that expresses the G(i)-coupled RASSL (receptor activated solely by synthetic ligand) Ro1 in astrocytes to study astrocyte-neuronal communication. Surprisingly, we found that all transgenics expressing Ro1 developed hydrocephalus. We analyzed these mice in an effort to develop a new model of hydrocephalus that will further our understanding of the pathophysiology of the disease. Expression of Ro1 was restricted to astrocytes by crossing the transgenic hGFAP-tTA (tet transactivator behind the human glial fibrillary acidic protein promoter) mouse line with the transgenic tetO-Ro1/tetO-LacZ mouse line. This cross produced double-transgenic mice that expressed Ro1 in astrocytes. All double transgenics developed hydrocephalus by postnatal day 15, whereas single-transgenic littermate controls appeared normal. Hydrocephalic Ro1 mice displayed enlarged ventricles, partial denudation of the ependymal cell layer, altered subcommissural organ morphology, and obliteration of the cerebral aqueduct. Severely hydrocephalic mice also had increased levels of phospho-Erk and GFAP expression. Administration of doxycycline to breeding pairs suppressed Ro1 expression and the onset of hydrocephalus in double-transgenic offspring. Ro1 animals maintained on dox did not develop hydrocephalus; however, if taken off doxycycline at weaning, double-transgenic mice developed enlarged ventricles within 7 weeks, indicating that Ro1 expression also induces hydrocephalus in adults. This study discovered a new model of hydrocephalus in which the rate of pathogenesis can be controlled enabling the study of the pathogenesis of both juvenile and adult onset hydrocephalus.
Collapse
Affiliation(s)
- Elizabeth J. Sweger
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Kristen B. Casper
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Kimberly Scearce-Levie
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Bruce R. Conklin
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Ken D. McCarthy
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| |
Collapse
|
18
|
Kim DS, Kim JE, Kwak SE, Won MH, Kang TC. Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain Res 2007; 1151:172-87. [PMID: 17397809 DOI: 10.1016/j.brainres.2007.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 11/20/2022]
Abstract
In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv1 channel immunoreactivities in the hippocampus of seizure resistant (SR) and seizure sensitive (SS) gerbils. There was distinct difference of the Kv1 channel subtypes immunoreactivity in the hippocampi in both SR and SS gerbils. Kv1.1, Kv1.2, Kv1.3, Kv1.4, and Kv1.6 immunoreactivities in the SS gerbil hippocampus were lower than that in the SR gerbil hippocampus. However, Kv1 immunoreactivities were obviously presented in astrocyte within the stratum radiatum of the CA1 region of pre-seizure SS gerbil hippocampus. Following seizure-onset, Kv1 immunoreactivities (except Kv1.5) were markedly elevated, whereas their immunoreactivites in astrocytes were down-regulated. Therefore, the present study demonstrates that seizure activity may distinctly affect neuroglial Kv1 immunoreactivities in the gerbil hippocampus.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, Kangwon-Do, South Korea
| | | | | | | | | |
Collapse
|
19
|
Kang TC, Kim DS, Kwak SE, Kim JE, Won MH, Kim DW, Choi SY, Kwon OS. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia 2006; 54:258-71. [PMID: 16845674 DOI: 10.1002/glia.20380] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that blockade of neuronal death in the hippocampus cannot prevent epileptogenesis in various epileptic models. These reports indicate that neurodegeneration alone is insufficient to cause epilepsy, and that the role of astrocytes in epileptogenesis should be reconsidered. Therefore, the present study was designed to elucidate whether altered morphological organization or the functionalities of astrocytes induced by status epilepticus (SE) is responsible for epileptogenesis. Glial responses (reactive microgliosis followed by astroglial death) in the dentate gyrus induced by pilocarpine-induced SE were found to precede neuronal damage and these alterations were closely related to abnormal neurotransmission related to altered vesicular glutamate and GABA transporter expressions, and mossy fiber sprouting in the dentate gyrus. In addition, newly generated astrocytes showed down-regulated expressions of glutamine synthase, glutamate dehydrogenase, and glial GABA transporter. Taken together, our findings suggest that glial responses after SE may contribute to epileptogenesis and the acquisition of the properties of the epileptic hippocampus. Thus, we believe that it is worth considering new therapeutic approaches to epileptogenesis involving targeting the inactivation of microglia and protecting against astroglial loss.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gorji A, Stemmer N, Rambeck B, Jürgens U, May T, Pannek HW, Behne F, Ebner A, Straub H, Speckmann EJ. Neocortical Microenvironment in Patients with Intractable Epilepsy: Potassium and Chloride Concentrations. Epilepsia 2006; 47:297-310. [PMID: 16499753 DOI: 10.1111/j.1528-1167.2006.00421.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The regulation of extracellular ion concentrations plays an important role in neuronal function and epileptogenesis. Despite the many studies into the mechanisms of epileptogenesis in human experimental models, no data are available regarding the fluctuations of extracellular potassium ([K(+)](o)) and chloride ([Cl(-)](o)) concentrations, which could underlie seizure susceptibility in human chronically epileptic tissues in vivo. METHODS By using cerebral microdialysis during surgical resection of epileptic foci, the basic [K(+)](o) and [Cl(-)](o) as well as their changes after epicortical electric stimulation were studied in samples of dialysates obtained from 11 patients by ion-selective microelectrodes. RESULTS The mean basal values of [K(+)](o) and [Cl(-)](o) in all patients were 3.83 +/- 0.08 mM and 122.9 +/- 2.6 mM, respectively. However, significant differences were observed in the basal levels of both [K(+)](o) and [Cl(-)](o) between different patients. Statistically, no correlation was found between basal [K(+)](o) or [Cl(-)](o) and electrocorticogram (ECoG) spike activity, but in one patient, dramatically lowered baseline [Cl(-)](o) was accompanied by enhanced ECoG spike activity. Application of epicortical electrical stimulation increased [K(+)](o) but not [Cl(-)](o) in all cases. According to the velocity as well as spatial distribution of [K(+)](o) reduction to the prestimulation levels, three different types of responses were observed: slow decline, fast decline, and slow and fast declines at adjacent sites. CONCLUSIONS These data may represent abnormalities in ion homeostasis of the epileptic brain.
Collapse
Affiliation(s)
- Ali Gorji
- Institut für Physiologie I, Universität Münster, Robert-Koch-Strasse 27a, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 2006; 46:1871-80. [PMID: 16393152 DOI: 10.1111/j.1528-1167.2005.00289.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Individuals with tuberous sclerosis complex (TSC) frequently have intractable epilepsy. To gain insights into mechanisms of epileptogenesis in TSC, we previously developed a mouse model of TSC with conditional inactivation of the Tsc1 gene in glia (Tsc1(GFAP)CKO mice). These mice develop progressive seizures, suggesting that glial dysfunction may be involved in epileptogenesis in TSC. Here, we investigated the hypothesis that impairment of potassium uptake through astrocyte inward rectifier potassium (Kir) channels may contribute to epileptogenesis in Tsc1(GFAP)CKO mice. METHODS Kir channel function and expression were examined in cultured Tsc1-deficient astrocytes. Kir mRNA expression was analyzed in astrocytes microdissected from neocortical sections of Tsc1(GFAP)CKO mice. Physiological assays of astrocyte Kir currents and susceptibility to epileptiform activity induced by increased extracellular potassium were further studied in situ in hippocampal slices. RESULTS Cultured Tsc1-deficient astrocytes exhibited reduced Kir currents and decreased expression of specific Kir channel protein subunits, Kir2.1 and Kir6.1. mRNA expression of the same Kir subunits also was reduced in astrocytes from neocortex of Tsc1(GFAP)CKO mice. By using pharmacologic modulators of signalling pathways implicated in TSC, we showed that the impairment in Kir channel function was not affected by rapamycin inhibition of the mTOR/S6K pathway, but was reversed by decreasing CDK2 activity with roscovitine or retinoic acid. Last, hippocampal slices from Tsc1(GFAP)CKO mice exhibited decreased astrocytic Kir currents, as well as increased susceptibility to potassium-induced epileptiform activity. CONCLUSIONS Impaired extracellular potassium uptake by astrocytes through Kir channels may contribute to neuronal hyperexcitability and epileptogenesis in a mouse model of TSC.
Collapse
Affiliation(s)
- Laura A Jansen
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Petzold GC, Windmüller O, Haack S, Major S, Buchheim K, Megow D, Gabriel S, Lehmann TN, Drenckhahn C, Peters O, Meierkord H, Heinemann U, Dirnagl U, Dreier JP. Increased extracellular K+ concentration reduces the efficacy of N-methyl-D-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 2005; 36:1270-7. [PMID: 15879337 DOI: 10.1161/01.str.0000166023.51307.e0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Spreading depression (SD)-like depolarizations may augment neuronal damage in neurovascular disorders such as stroke and traumatic brain injury. Spreading ischemia (SI), a particularly malignant variant of SD-like depolarization, is characterized by inverse coupling between the spreading depolarization wave and cerebral blood flow. SI has been implicated in particular in the pathophysiology of subarachnoid hemorrhage. Under physiological conditions, SD is blocked by N-methyl-D-aspartate receptor (NMDAR) antagonists. However, because both SD-like depolarizations and SI occur in presence of an increased extracellular K+ concentration ([K+]o), we tested whether this increase in baseline [K+]o would reduce the efficacy of NMDAR antagonists. METHODS Cranial window preparations, laser Doppler flowmetry, and K+-sensitive/reference microelectrodes were used to record SD, SD-like depolarizations, and SI in rats in vivo; microelectrodes and intrinsic optical signal measurements were used to record SD and SD-like depolarizations in human and rat brain slices. RESULTS In vivo, the noncompetitive NMDAR antagonist dizocilpine (MK-801) blocked SD propagation under physiological conditions, but did not block SD-like depolarizations or SI under high baseline [K+]o. Similar results were found in human and rat neocortical slices with both MK-801 and the competitive NMDAR antagonist D-2-amino-5-phosphonovaleric acid. CONCLUSIONS Our data suggest that elevated baseline [K+]o reduces the efficacy of NMDAR antagonists on SD-like depolarizations and SI. In conditions of moderate energy depletion, as in the ischemic penumbra, or after subarachnoid hemorrhage, NMDAR inhibition may not be sufficient to block these depolarizations.
Collapse
Affiliation(s)
- Gabor C Petzold
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Williamson A, Patrylo PR, Pan J, Spencer DD, Hetherington H. Correlations between granule cell physiology and bioenergetics in human temporal lobe epilepsy. ACTA ACUST UNITED AC 2005; 128:1199-208. [PMID: 15728655 DOI: 10.1093/brain/awh444] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human temporal lobe epilepsy (TLE) is associated with bioenergetic abnormalities including decreased phosphocreatine (PCr) normalized to ATP. The physiological consequences of these metabolic alterations have not been established. We hypothesized that impaired bioenergetics would correlate with alterations in physiological functions under conditions that strongly activate neural metabolism. We correlated several physiological variables obtained from epileptic human dentate granule cells studied in slices with hippocampal PCr/ATP measured using in vivo magnetic resonance spectroscopy. The physiological variables included: the ability to fire multiple action potentials in response to single stimuli, the inhibitory postsynaptic potential (IPSP) conductance and the responses to a 10 Hz, 10 s stimulus train. We noted a significant negative correlation between the ability to fire multiple spikes in response to single synaptic stimulation and PCr/ATP (P < 0.03) and a positive correlation between the IPSP conductance and PCr/ATP (P < 0.05). Finally, there was a strong correlation between PCr/ATP and the recovery of the membrane potential following a stimulus train (P < 0.01), with low PCr/ATP being associated with prolonged recovery times. These data suggest that the bioenergetic impairment seen in this tissue is associated with specific changes in excitatory and inhibitory neuronal responses to synchronized synaptic inputs.
Collapse
Affiliation(s)
- Anne Williamson
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520-8082, USA.
| | | | | | | | | |
Collapse
|
24
|
Gabriel S, Njunting M, Pomper JK, Merschhemke M, Sanabria ERG, Eilers A, Kivi A, Zeller M, Meencke HJ, Cavalheiro EA, Heinemann U, Lehmann TN. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. J Neurosci 2004; 24:10416-30. [PMID: 15548657 PMCID: PMC6730304 DOI: 10.1523/jneurosci.2074-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 08/28/2004] [Accepted: 10/02/2004] [Indexed: 11/21/2022] Open
Abstract
Hippocampal specimens resected to cure medically intractable temporal lobe epilepsy (TLE) provide a unique possibility to study functional consequences of morphological alterations. One intriguing alteration predominantly observed in cases of hippocampal sclerosis is an uncommon network of granule cells monosynaptically interconnected via aberrant supragranular mossy fibers. We investigated whether granule cell populations in slices from sclerotic and nonsclerotic hippocampi would develop ictaform activity when challenged by low-frequency hilar stimulation in the presence of elevated extracellular potassium concentration (10 and 12 mm) and whether the experimental activity differs according to the presence of aberrant mossy fibers. We found that ictaform activity could be evoked in slices from sclerotic and nonsclerotic hippocampi (27 of 40 slices, 14 of 20 patients; and 11 of 22 slices, 6 of 12 patients, respectively). However, the two patient groups differed with respect to the pattern of ictaform discharges and the potassium concentration mandatory for its induction. Seizure-like events were already induced with 10 mm K+. They exclusively occurred in slices from sclerotic hippocampi, of which 80% displayed stimulus-induced oscillatory population responses (250-300 Hz). In slices from nonsclerotic hippocampi, atypical negative field potential shifts were predominantly evoked with 12 mm K+. In both groups, the ictaform activity was sensitive to ionotropic glutamate receptor antagonists and lowering of [Ca2+]o. Our results show that, in granule cell populations of hippocampal slices from TLE patients, high K+-induced seizure-like activity and ictal spiking coincide with basic electrophysiological abnormalities, hippocampal sclerosis, and mossy fiber sprouting, suggesting that network reorganization could play a crucial role in determining type and threshold of such activity.
Collapse
Affiliation(s)
- Siegrun Gabriel
- Johannes Mueller Institute of Physiology, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bordey A, Spencer DD. Distinct electrophysiological alterations in dentate gyrus versus CA1 glial cells from epileptic humans with temporal lobe sclerosis. Epilepsy Res 2004; 59:107-22. [PMID: 15246115 DOI: 10.1016/j.eplepsyres.2004.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 11/11/2003] [Accepted: 04/05/2004] [Indexed: 11/28/2022]
Abstract
Previous studies have characterized the electrophysiological properties of astrocytes in the CA1 region of hippocampi resected from patients with intractable temporal lobe epilepsy (TLE). However, the properties of hilar astrocytes from such patients have not been studied although astrocytes display regional heterogeneity and a non-uniform response to injury. Thus, we performed patch-clamp recordings of putative astrocytes in hilar and CA1 regions of surgically removed epileptic hippocampi with and without sclerosis (mesial TLE, MTLE patients, and paradoxical TLE, PTLE patients, respectively), and non-epileptic, non-sclerotic hippocampi (tumor patients). Our data show that the current profile of hilar astrocytes undergoes significant changes in MTLE but not in PTLE or tumor hippocampi. In particular, inwardly rectifying K(+) (K(IR)) and outwardly rectifying K(+) currents were reduced, inward Na(+) currents and membrane resistances were increased in putative astrocytes from MLTE cases compared to PTLE and tumor cases. Because the conductance of K(IR) channels in cell-attached patches (approximately 34pS) from MTLE tissue was not altered, a reduction in the number of K(IR) channels likely accounts for the decrease in whole-cell K(IR) conductance. Presumed astrocytes in the CA1 region from each patient group displayed intercellular coupling and a passive current profile; these characteristics were never observed in hilar glial cells. No apparent changes in the current profile of coupled CA1 glial cells could be detected between MTLE, PTLE and tumor tissues. Additionally, CA1 glial cells expressed a high density of 34pS K(IR) channels. These data suggest that K(+) buffering via K(IR) channels may be functionally compromised in hilar astrocytes of epileptic and sclerotic (MTLE) human hippocampi. By contrast, CA1 astrocytes retained their intercellular coupling and K(IR) channel expression necessary for K(+) buffering.
Collapse
Affiliation(s)
- A Bordey
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale University, 333 Cedar Street, LSOG 228, New Haven, CT 06520-8082, USA.
| | | |
Collapse
|
26
|
Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003; 53:469-79. [PMID: 12666114 DOI: 10.1002/ana.10473] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of resistance to pharmacological treatment is common to many human diseases. In chronic epilepsy, many patients develop resistance to anticonvulsant drug treatment during the course of their disease, with the underlying mechanisms remaining unclear. We have studied cellular mechanisms underlying drug resistance in resected hippocampal tissue from patients with temporal lobe epilepsy by comparing two groups of patients, the first displaying a clinical response to the anticonvulsant carbamazepine and a second group with therapy-resistant seizures. Using patch-clamp recordings, we show that the mechanism of action of carbamazepine, use-dependent block of voltage-dependent Na(+) channels, is completely lost in carbamazepine-resistant patients. Likewise, seizure activity elicited in human hippocampal slices is insensitive to carbamazepine. In marked contrast, carbamazepine-induced use-dependent block of Na(+) channels and blocked seizure activity in vitro in patients clinically responsive to this drug. Consistent with these results in human patients, we also show that use-dependent block of Na(+) channels by carbamazepine is absent in chronic experimental epilepsy. Taken together, these data suggest that a loss of Na(+) channel drug sensitivity may constitute a novel mechanism underlying the development of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Stefan Remy
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bikson M, Id Bihi R, Vreugdenhil M, Köhling R, Fox JE, Jefferys JGR. Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro. Neuroscience 2003; 115:251-61. [PMID: 12401338 DOI: 10.1016/s0306-4522(02)00320-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of quinine on pyramidal cell intrinsic properties, extracellular potassium transients, and epileptiform activity was studied in vitro using the rat hippocampal slice preparation. Quinine enhanced excitatory post-synaptic potentials and decreased fast- and slow-inhibitory post-synaptic potentials. Quinine reduced the peak potassium rise following tetanic stimulation but did not affect the potassium clearance rate. Epileptiform activity induced by either low-Ca(2+) or high-K(+) artificial cerebrospinal fluid (ACSF) was suppressed by quinine. The frequency of spontaneous inter-ictal bursting induced by picrotoxin, high-K(+), or 4-aminopyridine was significantly increased. In normal ACSF, quinine did not affect CA1 pyramidal cell resting membrane potential, input resistance, threshold for action potentials triggered by intracellular or extracellular stimulation, or the orthodromic and antidromic evoked population spike amplitude. The main effects of quinine on intrinsic cell properties were to increase action potential duration and to reduce firing frequency during sustained membrane depolarizations, but not at normal resting membrane potentials. This attenuation was enhanced at increasingly depolarized membrane potentials. These results suggest that quinine suppresses extracellular potassium transients and ictal activity and modulates inter-ictal activity by limiting the firing rate of cells in a voltage-dependent manner. Because quinine does not affect 'normal' neuronal function, it may merit consideration as an anticonvulsant.
Collapse
Affiliation(s)
- M Bikson
- Division of Neuroscience (Neurophysiology), University of Birmingham School of Medicine, Egbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Steinhäuser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002; 447:227-37. [PMID: 12151014 DOI: 10.1016/s0014-2999(02)01846-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epilepsy is a condition in the brain characterized by repetitively occurring seizures. While various changes in neuronal properties have been reported to accompany or induce seizure activity in human or experimental epilepsy, other studies suggested that glial cells might be involved in epileptogenesis. Recent findings demonstrate that in the course of the disease, glial cells not only undergo structural alterations but also display distinct functional properties. Several studies identified reduced inwardly rectifying K(+) currents in astrocytes of epileptic tissue, which probably results in disturbances of the K(+) homeostasis. Other data hinted at an abnormal increase in [Ca(2+)](i) in astrocytes through enhanced activity of glial glutamate receptors. This review summarizes current knowledge of alterations of plasma membrane channels and receptors of macroglial cells in epilepsy and discusses the putative importance of these changes for the generation and spread of seizure activity.
Collapse
Affiliation(s)
- Christian Steinhäuser
- Experimental Neurobiology, Department of Neurosurgery, University of Bonn, Sigmund-Freud-Str. 25, 53125 Bonn, Germany.
| | | |
Collapse
|
29
|
Jauch R, Windmüller O, Lehmann TN, Heinemann U, Gabriel S. Effects of barium, furosemide, ouabaine and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) on ionophoretically-induced changes in extracellular potassium concentration in hippocampal slices from rats and from patients with epilepsy. Brain Res 2002; 925:18-27. [PMID: 11755897 DOI: 10.1016/s0006-8993(01)03254-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glial cells limit local K(+)-accumulation by K(+)-uptake through different mechanisms, sensitive to Ba(2+), ouabaine, furosemide, or DIDS. Since the relative contribution of these mechanisms has not yet been determined, we studied the effects of bath-applied barium (2 mM), ouabaine (9 microM), furosemide (2 mM), and DIDS (1 mM) on ionophoretically-induced rises in [K(+)](o) in the pyramidal layer of area CA1 from normal rat slices, in the presence of glutamate receptor (Glu-R) antagonists. We also investigated the effect of barium on ionophoretically-induced tetrapropylammonium (TPA(+))-signals in order to test for barium-induced changes of the extracellular space. Finally, we repeated the barium experiment on slices from human non-sclerotic and sclerotic hippocampal specimens to assess a reduced glial capability for barium-sensitive K(+)-uptake in sclerotic tissue from epilepsy patients. In normal rat slices barium augmented ionophoretically-induced rises in [K(+)](o) by approximately 120%, also in the presence of tetrodotoxin (TTX) (by approximately 150%), but did not significantly affect the TPA(+)-signal. Ouabaine also augmented the K(+)-signal, but only by 27%. Furosemide and DIDS had negligible effects. In slices from sclerotic human hippocampus an augmentation of the K(+)-signal by barium was absent. Thus barium augments ionophoretically-induced K(+)-signals to a similar extent as previously shown for stimulus-induced signals. We suggest that glial barium-sensitive K(+)-buffer mechanisms reduce fast local rises of [K(+)](o) by at least 50%. This capability of glial cells is extremely reduced in area CA1 of slices from human sclerotic hippocampal specimens.
Collapse
Affiliation(s)
- Regina Jauch
- Johannes-Müller-Institut für Physiologie, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Lehmann TN, Gabriel S, Eilers A, Njunting M, Kovacs R, Schulze K, Lanksch WR, Heinemann U. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal connectivity. Eur J Neurosci 2001; 14:83-95. [PMID: 11488952 DOI: 10.1046/j.0953-816x.2001.01632.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal fibres of the hippocampal formation of normal and chronic epileptic rats were investigated by fluorescent tracing methods using the pilocarpine model of limbic epilepsy. Two months after onset of spontaneous limbic seizures, hippocampal slices were prepared and maintained in vitro for 10 h. Small crystals of fluorescent dye [fluorescein (fluoro-emerald) and tetramethylrhodamine (fluoro-ruby)] were applied to different hippocampal regions. The main findings were: (i) in control rats there was no supragranular labelling when the mossy fibre tract was stained in stratum radiatum of area CA3. However, in epileptic rats a fibre network in the inner molecular layer of the dentate gyrus was retrogradely labelled; (ii) a retrograde innervation of area CA3 by CA1 pyramidal cells was disclosed by labelling remote CA1 neurons after dye injection into the stratum radiatum of area CA3 in chronic epileptic rats; (iii) labelling of CA1 neurons apart from the injection site within area CA1 was observed in epileptic rats but not in control animals; and (iv), a subicular-hippocampal projection was present in pilocarpine-treated rats when the tracer was injected just below the stratum pyramidale of area CA1. The findings show that fibre rearrangement in distinct regions of the epileptic hippocampal formation can occur as an aftermath of pilocarpine-induced status epilepticus.
Collapse
Affiliation(s)
- T N Lehmann
- Department of Neurosurgery, Charité Campus Virchow-Klinikum, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann TN. Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 2000; 41 Suppl 6:S185-9. [PMID: 10999542 DOI: 10.1111/j.1528-1157.2000.tb01579.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Comparison of extracellular K+ regulation in sclerotic and nonsclerotic epileptic hippocampus. METHODS Measurements of K+ signals with double-barreled K+-selective reference microelectrodes in area CAI of slices from human and rat hippocampus, induction of increases in extracellular potassium concentration by repetitive alvear stimulation or iontophoresis. and block of inward-rectifying and background K+ channels in astrocytes by barium. RESULTS In the CA1 pyramidal layer from normal rat hippocampus, barium augmented extracellular K+ accumulation induced by iontophoresis or antidromic stimulation in a dose-dependent manner. Similarly, barium augmented stimulus-induced K+ signals from nonsclerotic hippocampi (human mesial temporal lobe epilepsy). In contrast, barium failed to do so in sclerotic hippocampi (human mesial temporal lobe epilepsy, rat pilocarpine model). CONCLUSIONS Our findings suggest that in areas of reduced neuronal density (hippocampal sclerosis), glial cells adapt to permit rather large increases in extracellular potassium accumulation. Such increases might be involved in the transmission of activity through the sclerotic area.
Collapse
Affiliation(s)
- U Heinemann
- Johannes Müller Institute of Physiology, Charité, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lehmann TN, Gabriel S, Kovacs R, Eilers A, Kivi A, Schulze K, Lanksch WR, Meencke HJ, Heinemann U. Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia 2000; 41 Suppl 6:S190-4. [PMID: 10999543 DOI: 10.1111/j.1528-1157.2000.tb01580.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Neuronal network reorganization might be involved in epileptogenesis in human and rat limbic epilepsy. Apart from aberrant mossy fiber sprouting, a more widespread fiber rearrangement in the hippocampal formation might occur. Therefore, we studied sprouting in area CA1 because this region is most affected in human temporal lobe epilepsy. METHODS In slices from hippocampi of patients operated on for temporal lobe epilepsy (n = 134), from pilocarpine-treated rats (n = 74), and from control rats (n = 15), viable neurons were labeled with fluorescent dextran amines. RESULTS In human hippocampi as well as in pilocarpine-treated rats, the degree of nerve cell loss varied. In 67 of 134 slices from human specimens with distinct Ammon's horn sclerosis and in 23 of 74 slices from pilocarpine-treated rats, a severe shrunken area CA1 presented with a similar picture: few damaged neurons were labeled, and aberrant fiber connections were not visible. This was in contrast to human resected hippocampi and hippocampi from pilocarpine-treated rats with no or moderate loss of neurons. In these cases, pyramidal cells remote from the injection site were labeled (human tissue, n = 59 of 134; pilocarpine-treated rats, n = 39 of 74). In human resected hippocampi without obvious pathology and in control animals, no pyramidal neurons were labeled apart from the injection site. CONCLUSIONS Axon collaterals of CA1 pyramidal cells are increased in human temporal lobe epilepsy and in pilocarpine-treated rats. Adjacent CA1 pyramidal cells project via aberrant collaterals to the stratum pyramidale and the stratum radiatum of area CA1. This network reorganization can contribute to hyperexcitability via increased backward excitation.
Collapse
Affiliation(s)
- T N Lehmann
- Department of Neurosurgery, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schröder W, Hinterkeuser S, Seifert G, Schramm J, Jabs R, Wilkin GP, Steinhäuser C. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia 2000; 41 Suppl 6:S181-4. [PMID: 10999541 DOI: 10.1111/j.1528-1157.2000.tb01578.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The specific role of glial cells in epilepsy is still elusive. In this study, functional properties of astrocytes were investigated in acute hippocampal brain slices obtained from surgical specimens of patients with drug-resistant temporal lobe epilepsy (TLE). METHODS The patch-clamp technique together with a single-cell reverse transcription-polymerase chain reaction approach were used to combine functional and molecular analysis in the same individual cell in situ. RESULTS In patients with Ammon's horn sclerosis, the glial current patterns resembled properties of immature astrocytes in rodent hippocampus. Depolarizing voltage steps activated delayed rectifier and transient K+ currents as well as tetrodotoxin-sensitive Na+ currents. Hyperpolarizing voltages elicited inward rectifier K+ currents. Comparative recordings were made in astrocytes from patients with lesion-associated TLE that lacked significant histopathological hippocampal alterations. The inward rectifier K+ current density was significantly smaller in astrocytes from the sclerotic group compared with lesion-associated TLE patients. CONCLUSIONS During normal development of rodent brain, astroglial inward rectification gradually increases. It thus appears that astrocytes in human sclerotic tissue reexpress an immature current pattern. Reduced astroglial inward rectification in conjunction with seizure-induced shrinkage of the extracellular space may lead to impaired spatial K+ buffering. This will result in stronger and prolonged depolarization of glial cells and neurons in response to activity-dependent K+ release and may thus contribute to seizure generation and spread in this particular condition of human TLE.
Collapse
Affiliation(s)
- W Schröder
- Experimental Neurobiology, Department of Neurosurgery, University of Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE, Schramm J, Steinhäuser C. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 2000; 12:2087-96. [PMID: 10886348 DOI: 10.1046/j.1460-9568.2000.00104.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional properties of astrocytes were investigated with the patch-clamp technique in acute hippocampal brain slices obtained from surgical specimens of patients suffering from pharmaco-resistant temporal lobe epilepsy (TLE). In patients with significant neuronal cell loss, i.e. Ammon's horn sclerosis, the glial current patterns resembled properties characteristic of immature astrocytes in the murine or rat hippocampus. Depolarizing voltage steps activated delayed rectifier and transient K+ currents as well as tetrodotoxin-sensitive Na+ currents in all astrocytes analysed in the sclerotic human tissue. Hyperpolarizing voltages elicited inward rectifier currents that inactivated at membrane potentials negative to -130 mV. Comparative recordings were performed in astrocytes from patients with lesion-associated TLE that lacked significant histopathological hippocampal alterations. These cells displayed stronger inward rectification. To obtain a quantitative measure, current densities were calculated and the ratio of inward to outward K+ conductances was determined. Both values were significantly smaller in astrocytes from the sclerotic group compared with lesion-associated TLE. During normal development of rodent brain, astroglial inward rectification gradually increases. It thus appears reasonable to suggest that astrocytes in human sclerotic tissue return to an immature current pattern. Reduced astroglial inward rectification in conjunction with seizure-induced shrinkage of the extracellular space may lead to impaired spatial K+ buffering. This will result in stronger and prolonged depolarization of glial cells and neurons in response to activity-dependent K+ release, and may thus contribute to seizure generation in this particular condition of human TLE.
Collapse
Affiliation(s)
- S Hinterkeuser
- Experimental Neurobiology, Department of Neurosurgery, University of Bonn, Sigmund-Freud-Str. 25, 53125 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kivi A, Lehmann TN, Kovács R, Eilers A, Jauch R, Meencke HJ, von Deimling A, Heinemann U, Gabriel S. Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci 2000; 12:2039-48. [PMID: 10886343 DOI: 10.1046/j.1460-9568.2000.00103.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the hippocampus of patients with therapy-refractory temporal lobe epilepsy, glial cells of area CA1 might be less able to take up potassium ions via barium-sensitive inwardly rectifying and voltage-independent potassium channels. Using ion-selective microelectrodes we investigated the effects of barium on rises in [K+]o induced by repetitive alvear stimulation in slices from surgically removed hippocampi with and without Ammon's horn sclerosis (AHS and non-AHS). In non-AHS tissue, barium augmented rises in [K+]o by 147% and prolonged the half time of recovery by 90%. The barium effect was reversible, concentration dependent, and persisted in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), N-methyl-D-aspartate (NMDA) and gamma-aminobutyric acid [GABA(A)] receptor antagonists. In AHS tissue, barium caused a decrease in the baseline level of [K+]o. In contrast to non-AHS slices, in AHS slices with intact synaptic transmission, barium had no effect on the stimulus-induced rises of [K+]o, and the half time of recovery from the rise was less prolonged (by 57%). Under conditions of blocked synaptic transmission, barium augmented stimulus-induced rises in [K+]o, but only by 40%. In both tissues, barium significantly reduced negative slow-field potentials following repetitive stimulation but did not alter the mean population spike amplitude. The findings suggest a significant contribution of glial barium-sensitive K+-channels to K+-buffering in non-AHS tissue and an impairment of glial barium-sensitive K+-uptake in AHS tissue.
Collapse
Affiliation(s)
- A Kivi
- Johannes Müller Institut für Physiologie, Universitätsklinikum Charité, Humboldt-Universität, zu Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bikson M, Ghai RS, Baraban SC, Durand DM. Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. J Neurophysiol 1999; 82:2262-70. [PMID: 10561404 DOI: 10.1152/jn.1999.82.5.2262] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Incubation of hippocampal slices in zero-Ca(2+) medium blocks synaptic transmission and results in spontaneous burst discharges. This seizure-like activity is characterized by negative shifts (bursts) in the extracellular field potential and a K(+) wave that propagates across the hippocampus. To isolate factors related to seizure initiation, propagation, and termination, a number of pharmacological agents were tested. K(+) influx and efflux mechanisms where blocked with cesium, barium, tetraethylammonium (TEA), and 4-aminopyridine (4-AP). The effect of the gap junction blockers, heptanol and octanol, on zero-Ca(2+) bursting was evaluated. Neuronal excitability was modulated with tetrodotoxin (TTX), charge screening, and applied electric fields. Glial cell function was examined with a metabolism antagonist (fluroacetate). Neuronal hyperpolarization by cation screening or applied fields decreased burst frequency but did not affect burst amplitude or duration. Heptanol attenuated burst amplitude and duration at low concentration (0.2 mM), and blocked bursting at higher concentration (0.5 mM). CsCl(2) (1 mM) had no effect, whereas high concentrations (1 mM) of BaCl(2) blocked bursting. TEA (25 mM) and low concentration of BaCl(2) (300 microM) resulted in a two- to sixfold increase in burst duration. Fluroacetate also blocked burst activity but only during prolonged application (>3 h). Our results demonstrate that burst frequency, amplitude, and duration can be independently modulated and suggest that neuronal excitability plays a central role in burst initiation, whereas potassium dynamics establish burst amplitude and duration.
Collapse
Affiliation(s)
- M Bikson
- Department of Biomedical Engineering, Neural Engineering Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|