1
|
Tsuno Y, Mieda M. Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system. Front Neural Circuits 2024; 18:1385908. [PMID: 38590628 PMCID: PMC11000122 DOI: 10.3389/fncir.2024.1385908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
2
|
Gerbier R, Ndiaye-Lobry D, Martinez de Morentin PB, Cecon E, Heisler LK, Delagrange P, Gbahou F, Jockers R. Pharmacological evidence for transactivation within melatonin MT 2 and serotonin 5-HT 2C receptor heteromers in mouse brain. FASEB J 2020; 35:e21161. [PMID: 33156577 DOI: 10.1096/fj.202000305r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Association of G protein-coupled receptors into heterodimeric complexes has been reported for over 50 receptor pairs in vitro but functional in vivo validation remains a challenge. Our recent in vitro studies defined the functional fingerprint of heteromers composed of Gi -coupled melatonin MT2 receptors and Gq -coupled serotonin 5-HT2C receptors, in which melatonin transactivates phospholipase C (PLC) through 5-HT2C . Here, we identified this functional fingerprint in the mouse brain. Gq protein activation was probed by [35 S]GTPγS incorporation followed by Gq immunoprecipitation, and PLC activation by determining the inositol phosphate levels in brain lysates of animals previously treated with melatonin. Melatonin concentration-dependently activated Gq proteins and PLC in the hypothalamus and cerebellum but not in cortex. These effects were inhibited by the 5-HT2C receptor-specific inverse agonist SB-243213, and were absent in MT2 and 5-HT2C knockout mice, fully recapitulating previous in vitro data and indicating the involvement of MT2 /5-HT2C heteromers. The antidepressant agomelatine had a similar effect than melatonin when applied alone but blocked the melatonin-promoted Gq activation due to its 5-HT2C antagonistic component. Collectively, we provide strong functional evidence for the existence of MT2 /5-HT2C heteromeric complexes in mouse brain. These heteromers might participate in the in vivo effects of agomelatine.
Collapse
Affiliation(s)
- Romain Gerbier
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | | | - Florence Gbahou
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
3
|
Gobbi G, Comai S. Differential Function of Melatonin MT 1 and MT 2 Receptors in REM and NREM Sleep. Front Endocrinol (Lausanne) 2019; 10:87. [PMID: 30881340 PMCID: PMC6407453 DOI: 10.3389/fendo.2019.00087] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
The pathophysiological function of the G-protein coupled melatonin MT1 and MT2 receptors has not yet been well-clarified. Recent advancements using selective MT1/ MT2 receptor ligands and MT1/MT2 receptor knockout mice have suggested that the activation of the MT1 receptors are mainly implicated in the regulation of rapid eye movement (REM) sleep, whereas the MT2 receptors selectively increase non-REM (NREM) sleep. Studies in mutant mice show that MT1 knockout mice have an increase in NREM sleep and a decrease in REM sleep, while MT2 knockout mice a decrease in NREM sleep. The localization of MT1 receptors is also distinct from MT2 receptors; for example, MT2 receptors are located in the reticular thalamus (NREM area), while the MT1 receptors in the Locus Coeruleus and lateral hypothalamus (REM areas). Altogether, these findings suggest that these two receptors not only have a very specialized function in sleep, but that they may also modulate opposing effects. These data also suggest that mixed MT1-MT2 receptors ligands are not clinically recommended given their opposite roles in physiological functions, confirmed by the modest effects of melatonin or MT1/MT2 non-selective agonists when used in both preclinical and clinical studies as hypnotic drugs. In sum, MT1 and MT2 receptors have specific roles in the modulation of sleep, and consequently, selective ligands with agonist, antagonist, or partial agonist properties could have therapeutic potential for sleep; while the MT2 agonists or partial agonists might be indicated for NREM-related sleep and/or anxiety disorders, the MT1 agonists or partial agonists might be so for REM-related sleep disorders. Furthermore, MT1 but not MT2 receptors seem involved in the regulation of the circadian rhythm. Future research will help further develop MT1 and/or MT2 receptors as targets for neuropsychopharmacology drug development.
Collapse
Affiliation(s)
- Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
- San Raffaele Scientific Institute and Vita Salute University, Milan, Italy
| |
Collapse
|
4
|
Shagiakhmetov FS, Anokhin PK, Popova AO, Shamakina IY. [A profile of antidepressive effects of agomelatine and a current view on the mechanism of its action]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:124-131. [PMID: 29376995 DOI: 10.17116/jnevro2017117121124-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agomelatine is one of the latest antidepressants (melatoninergic agonists) with a new mechanism of action. From the positions of classical monoaminoergic theory, tts mechanism of action is difficult to understand, because the drug increases the levels of monoamines and neurotrophic factors, while not affecting their reuptake and negative feedback, which control neurotransmission level. Besides the effect on suprachiasmatic nucleus, a relevant role in the mechanism of action of agomelatine plays its special functionally selective (with regard to intracellular signaling pathways) interaction with heteromeric complexes of serotonin 5-НТ2С and melatonin MT2 receptors in the hippocampus and cerebral cortex. Agomelatine is competitive to other modern antidepressants in the efficacy assessed by the percentage of complete responders and superior in the total frequency of remissions. Compared to other SSRI antidepressants, agomelatine is more effective for anhedonia. In these cases, agomelatine increases the level of brain-derived neurotrophic factor (BDNF) in the blood of responders.
Collapse
Affiliation(s)
- F Sh Shagiakhmetov
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A O Popova
- Russian University of People's Friendship, Moscow, Russia
| | - I Yu Shamakina
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
5
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
6
|
Kiryanova V, Smith VM, Dyck RH, Antle MC. Circadian behavior of adult mice exposed to stress and fluoxetine during development. Psychopharmacology (Berl) 2017; 234:793-804. [PMID: 28028599 DOI: 10.1007/s00213-016-4515-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Women of child-bearing age are the population at greatest risk for depression. The stress experienced during pregnancy and the associated antidepressant treatments can both affect fetal development. Fluoxetine (FLX) is among the most common antidepressants used by pregnant women. We have previously demonstrated that perinatal exposure to FLX can alter expression of circadian rhythms in adulthood. Here, we examine the combined effects of maternal stress during pregnancy and perinatal exposure to the antidepressant FLX on the circadian behavior of mice as adults. METHODS Mouse dams were exposed to chronic unpredictable stress (embryonic (E) day 7 to E18), FLX (E15 to postnatal day 12), a combination of both stress and FLX, or were left untreated. At 2 months of age, male offspring were placed in recording chambers and circadian organization of wheel running rhythms and phase shifts to photic and non-photic stimuli were assessed. RESULTS Mice exposed to prenatal stress (PS) had smaller light-induced phase delays. Mice exposed to perinatal FLX required more days to re-entrainment to an 8-h phase advance of their light-dark cycle. Mice subjected to either perinatal FLX or to PS had larger light-induced phase advances and smaller phase advances to 8-OH-DPAT. FLX treatment partially reversed the effect of PS on phase shifts to late-night light exposure and to 8-OH-DPAT. CONCLUSIONS Our results suggest that, in mice, perinatal exposure to either FLX, or PS, or their combination, leads to discernible, persistent changes in their circadian systems as adults.
Collapse
Affiliation(s)
- Veronika Kiryanova
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Victoria M Smith
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Richard H Dyck
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Yang J, Jin HJ, Mocaër E, Seguin L, Zhao H, Rusak B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci 2016; 155:147-54. [DOI: 10.1016/j.lfs.2016.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
8
|
Rozenblit-Susan S, Chapnik N, Froy O. Metabolic effect of fluvoxamine in mouse peripheral tissues. Mol Cell Endocrinol 2016; 424:12-22. [PMID: 26797245 DOI: 10.1016/j.mce.2016.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Serotonin leads to reduced food intake and satiety. Disrupted circadian rhythms lead to hyperphagia and obesity. The serotonergic and circadian systems are intertwined, as the central brain clock receives direct serotonergic innervation and, in turn, makes polysynaptic output back to serotonergic nuclei. Our objective was to test the hypothesis that peripherally serotonin alters circadian rhythms leading to a shift towards fat synthesis and weight gain. We studied the effect of serotonin and fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), on the circadian clock and metabolic gene and protein expression in mouse liver, muscle and white adipose tissue (WAT) and cell culture. We found that serotonin and/or the SSRI fluvoxamine led to fat accumulation in mouse liver and hepatocytes by shifting metabolism towards fatty acid synthesis mainly through low average levels of phosphorylated acetyl CoA carboxylase (pACC) and phosphorylated protein phosphatase 2A (pPP2A). This shift towards fat synthesis was also observed in adipose tissue. Muscle cells were only slightly affected metabolically by serotonin or fluvoxamine. In conclusion, although centrally it leads to increased satiety, in peripheral tissues, such as the liver and WAT, serotonin induces fat accumulation.
Collapse
Affiliation(s)
- Sigal Rozenblit-Susan
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
9
|
Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiol Behav 2014; 139:136-44. [PMID: 25446224 DOI: 10.1016/j.physbeh.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Collapse
|
10
|
Smith VM, Iannattone S, Achal S, Jeffers RT, Antle MC. The serotonergic anxiolytic buspirone attenuates circadian responses to light. Eur J Neurosci 2014; 40:3512-25. [PMID: 25195769 DOI: 10.1111/ejn.12712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Serotonergic drugs modify circadian responses to light, with agonists attenuating and some partial agonists or antagonists potentiating photic phase shifts. The anxiolytic buspirone is a 5-HT1A receptor partial agonist. Given that buspirone is used therapeutically to manage generalised anxiety disorder, it would be useful to understand if and how this drug may modify circadian responses to light, not only to help manage side effects, but also to examine its potential use as a chronobiotic. Here we examined behavioral and molecular responses to phase-shifting light in mice and hamsters treated with buspirone. Phase advances to late subjective night light pulses in hamsters and wildtype mice were significantly attenuated by buspirone. 5-HT1A receptor knockout mice exhibited potentiated photic phase shifts when pretreated with buspirone. In wildtype mice, the attenuated phase shifts were accompanied by increased cFos expression in the suprachiasmatic nucleus, whereas potentiated phase shifts in knockouts were accompanied by increased phosphorylation of extracellular signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), and decreased cFos expression. Attenuated photic phase shifts in buspirone-treated hamsters were accompanied by decreased phosphorylation of ERK and CREB. Chronic buspirone treatment decreased the amplitude of wheel-running rhythms, lengthened the duration of the active phase and advanced the phase angle of entrainment. Buspirone administration at midday produced non-photic phase advances in wildtype but not 5-HT1A receptor knockout mice. These findings suggest that buspirone affected the circadian system in a manner similar to the 5-HT1A/7 agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide, primarily through the 5-HT1A receptor, and suggest that therapeutic use of buspirone to manage anxiety may impact circadian function.
Collapse
Affiliation(s)
- Victoria M Smith
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
11
|
Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaër E. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharmacol 2014; 171:3604-19. [PMID: 24724693 PMCID: PMC4128060 DOI: 10.1111/bph.12720] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022] Open
Abstract
Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression.
Collapse
|
12
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
13
|
Castanho A, Bothorel B, Seguin L, Mocaër E, Pévet P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiol Int 2013; 31:371-81. [DOI: 10.3109/07420528.2013.860457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Lall GS, Atkinson LA, Corlett SA, Broadbridge PJ, Bonsall DR. Circadian entrainment and its role in depression: a mechanistic review. J Neural Transm (Vienna) 2012; 119:1085-96. [PMID: 22798027 DOI: 10.1007/s00702-012-0858-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/27/2012] [Indexed: 12/24/2022]
Abstract
The natural rotation of the earth generates an environmental day-night cycle that repeats every 24 h. This daily transition from dawn to dusk provides one of the most important time cues to which the majority of organisms synchronise their activity. Under these conditions, natural light, a photic stimulus, provides the principal entraining cue. In mammals, an endogenous circadian pacemaker located within the suprachiasmatic nucleus (SCN) of the hypothalamus acts as a coordinating centre to align physiological activity with the environmental light-dark cycle. However, the SCN also receives regulatory input from a number of behavioural, non-photic, cues such as physical activity, social interactions and feeding routines. The unique ability of the SCN to integrate both photic and non-photic cues allows it to generate a rhythm that is tailored to the individual and entrained to the environment. Here, we review the key neurotransmitter systems involved in both photic and non-photic transmission to the SCN and their interactions that assist in generating an entrained output rhythm. We also consider the impact on health of a desynchronised circadian system with a focus on depressive affective disorders and current therapies aimed at manipulating the relationship between photic and non-photic SCN regulators.
Collapse
Affiliation(s)
- G S Lall
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK.
| | | | | | | | | |
Collapse
|
15
|
Racagni G, Riva MA, Molteni R, Musazzi L, Calabrese F, Popoli M, Tardito D. Mode of action of agomelatine: synergy between melatonergic and 5-HT2C receptors. World J Biol Psychiatry 2011; 12:574-87. [PMID: 21999473 DOI: 10.3109/15622975.2011.595823] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The association between depression and circadian rhythm disturbances is well established and successful treatment of depressed patients is accompanied by restoration of circadian rhythms. The new antidepressant agomelatine is an agonist of melatonergic MT₁/MT₂ receptors as well as an antagonist of serotonergic 5-HT2C receptors. Animal studies showed that agomelatine resynchronizes disturbed circadian rhythms and reduces depression-like behaviour. METHODS This review analyzes results from different experimental studies. RESULTS Recent data on the effects of agomelatine on cellular processes involved in antidepressant mechanisms have shown that the drug is able to increase the expression of brain-derived neurotrophic factor in prefrontal cortex and hippocampus, as well as the expression of activity-regulated cytoskeleton associated protein (Arc) in the prefrontal cortex. In line with this, prolonged treatment with agomelatine increases neurogenesis within the hippocampus, particularly via enhancement of neuronal cell survival. Agomelatine attenuates stress-induced glutamate release in the prefrontal/frontal cortex. Treatment with 5-HT2C antagonists or melatonin alone failed to reproduce these effects. CONCLUSIONS The unique mode of action of agomelatine may improve the management of major depression by counteracting the pathogenesis of depression at cellular level, thereby relieving the symptoms of depression. These effects are suggested to be due to a synergistic action on MT₁/MT₂ and 5-HT2C receptors.
Collapse
Affiliation(s)
- Giorgio Racagni
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bartoszewicz R, Chmielewska D, Domoń M, Barbacka-Surowiak G. Influence of short-term constant light on phase shift of mouse circadian locomotor activity rhythm induced by agonist and antagonist of serotonin. BIOL RHYTHM RES 2010. [DOI: 10.1080/09291010903018016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Molteni R, Calabrese F, Pisoni S, Gabriel C, Mocaer E, Racagni G, Riva MA. Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. World J Biol Psychiatry 2010; 11:148-53. [PMID: 20109111 DOI: 10.3109/15622970903447659] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the acute modulation of the neurotrophin Brain-derived neurotrophic factor (BDNF) by the novel antidepressant agomelatine and the relative contribution of its melatonergic and serotonergic receptor components. METHODS BDNF mRNA levels were measured in rat hippocampus and prefrontal cortex after acute administration of agomelatine, melatonin or the 5-HT(2C) antagonist S32006. RESULTS BDNF expression was significantly increased 16 h after acute agomelatine administration, an effect that follows a specific temporal profile, is limited to the prefrontal cortex and it is due to changes of specific neurotrophin transcripts. Moreover, the acute up-regulation of BDNF mRNA levels appears to be the result of a synergistic effect between the melatonergic properties of agomelatine as MT1/MT2 agonist and its serotonergic 5-HT(2C) antagonism, since either melatonin or the 5-HT(2C) antagonist S32006 does not mimic the effects of agomelatine. CONCLUSIONS These data provide evidence that acute agomelatine treatment modulates the expression of BDNF through a functional interaction between melatonergic MT1/MT2 and serotonergic 5-HT(2C) receptors, supporting the notion that intracellular events can be regulated via a synergistic activity of different neuromodulatory systems.
Collapse
Affiliation(s)
- Raffaella Molteni
- Center of Neuropharmacology, Department of Pharmacological Sciences, Universita' degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Mengod G, Cortés R, Vilaró MT, Hoyer D. Distribution of 5-HT Receptors in the Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70074-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Cuesta M, Clesse D, Pévet P, Challet E. New light on the serotonergic paradox in the rat circadian system. J Neurochem 2009; 110:231-43. [PMID: 19457131 DOI: 10.1111/j.1471-4159.2009.06128.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main mammalian circadian clock, localized in the suprachiasmatic nuclei can be synchronized not only with light, but also with serotonergic activation. Serotonergic agonists and serotonin reuptake inhibitors (e.g., fluoxetine) have a non-photic influence (shifting effects during daytime and attenuation of photic resetting during nighttime) on hamsters' and mice' main clock. Surprisingly, in rats serotonergic modulation of the clock shows essentially photic-like features in vivo (shifting effects during nighttime). To delineate this apparent paradox, we analyzed the effects of fluoxetine and serotonin agonists on rats' clock. First, fluoxetine induced behavioral phase-advances associated with down-regulated expression of the clock genes Per1 and Rorbeta and up-regulated expression of Rev-erbalpha during daytime. Moreover, fluoxetine produced an attenuation of light-induced phase-advances in association with altered expression of Per1, Per2 and Rorbeta during nighttime. Second, we showed that 5-HT(1A) receptors -maybe with co-activation of 5-HT(7) receptors- were implicated in non-photic effects on the main clock. By contrast, 5-HT(3) and 5-HT(2C) receptors were involved in photic-like effects and, for 5-HT(2C) subtype only, in potentiation of photic resetting. Thus this study demonstrates that as for other nocturnal rodents, a global activation of the serotonergic system induces non-photic effects in the rats' clock during daytime and nighttime.
Collapse
Affiliation(s)
- Marc Cuesta
- Département de Neurobiologie des Rythmes, Institut de Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Jagota A, Reddy MY. The effect of curcumin on ethanol induced changes in suprachiasmatic nucleus (SCN) and pineal. Cell Mol Neurobiol 2007; 27:997-1006. [PMID: 17846884 DOI: 10.1007/s10571-007-9203-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/11/2007] [Indexed: 12/01/2022]
Abstract
(1) Circadian clocks have been localized to discrete sites within the nervous system of several organisms and in mammals to the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN controls and regulates the production and discharge of melatonin (hormonal message of darkness) from the pineal gland via a multisynaptic efferent pathway. The nocturnal rise in melatonin production from serotonin results due to an increased activity of serotonin N-acetyl transferase (NAT). (2) The complex interaction between alcohol and biological clock need to be understood as alcoholism results in various clock linked neuronal disorders especially loss of memory and amnesia like state of consciousness, sleep disorders, insomnia, dementia etc. (3) Serotonin, 5-Hydroxy-tryptamine (5-HT) plays an important role in mediating alcohol's effects on the brain. Understanding the impact of alcohol consumption on circadian system is a pre-requisite to help in treatment of alcohol induced neurological disorders. We, therefore, studied the effect of ethanol drinking and ethanol withdrawal on daily rhythms of serotonin and its metabolite, 5-hydroxy-indole acetic acid (5-HIAA) in SCN and Pineal of adult male Wistar rats maintained under light-dark (LD, 12:12) conditions. (4) Curcumin is well known for its protective properties such as antioxidant, anti-carcinogenic, anti-viral and anti-infectious etc. Hence, we studied the effect of curcumin on ethanol induced changes on 5-HT and 5-HIAA levels and rhythms in SCN and Pineal. (5) Ethanol withdrawal could not restore either rhythmicity or phases or levels of 5-HT and 5-HIAA. Curcumin administration resulted in partial restoration of daily 5-HT/5-HIAA ratio, with phase shifts in SCN and in Pineal. Understanding the impact of alcohol consumption on circadian system and the role of herbal medication on alcohol withdrawal will help in treatment of alcohol induced neurological disorders.
Collapse
Affiliation(s)
- Anita Jagota
- Department of Animal Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | | |
Collapse
|
21
|
Abstract
Sleep disturbances are often associated with depression and mood disorders, and certain manipulations of the sleep-wake cycle are effective as therapeutic interventions in the treatment of depression. Dysregulated circadian rhythms are thereby considered as causal. Circadian rhythms in mammals are mainly regulated by a core biological clock, located in the hypothalamic suprachiasmatic nucleus; its pacemaker activity is regulated by light and nonphotic modulatory pathways, and the driving mechanisms are serotonergic input from the raphe and the hormone melatonin originating from the pineal gland. In line, the concentration of brain serotonin and the levels of 5-HT2C receptors are high and highly expressed there. Agomelatine, a novel antidepressant drug with proven clinical efficacy in major depressive disorder, has a unique mechanism of action; it acts as an agonist at melatonergic MT1 and MT2 receptors and as an antagonist at 5-HT2C receptors. In animals, agomelatine was shown to increase noradrenaline and dopamine (but not serotonin) in the frontal cortex, to resynchronize the sleep-wake cycle in models with disrupted circadian rhythms, and to exhibit a clear antidepressant effect in various animal models of depression. On the basis of the functional relationship between melatonergic and serotonergic signaling in the suprachiasmatic nucleus, and given agomelatine's affinity at melatonergic and 5-HT2C receptors, the therapeutic efficacy of the drug may be due to the potential synergy of its action at these different receptors.
Collapse
|
22
|
Rauly-Lestienne I, Boutet-Robinet E, Ailhaud MC, Newman-Tancredi A, Cussac D. Differential profile of typical, atypical and third generation antipsychotics at human 5-HT7a receptors coupled to adenylyl cyclase: detection of agonist and inverse agonist properties. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:93-105. [PMID: 17786406 DOI: 10.1007/s00210-007-0182-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/29/2007] [Indexed: 11/24/2022]
Abstract
5-HT(7) receptors are present in thalamus and limbic structures, and a possible role of these receptors in the pathology of schizophrenia has been evoked. In this study, we examined binding affinity and agonist/antagonist/inverse agonist properties at these receptors of a large series of antipsychotics, i.e., typical, atypical, and third generation compounds preferentially targeting D(2) and 5-HT(1A) sites. Adenylyl cyclase (AC) activity was measured in HEK293 cells stably expressing the human (h) 5-HT(7a) receptor isoform. 5-HT and 5-CT increased cyclic adenosine monophosphate level by about 20-fold whereas (+)-8-OH-DPAT, the antidyskinetic agent sarizotan, and the novel antipsychotic compound bifeprunox exhibited partial agonist properties at h5-HT(7a) receptors stimulating AC. Other compounds antagonized 5-HT-induced AC activity with pK (B) values which correlated with their pK (i) as determined by competition binding vs [(3)H]5-CT. The selective 5-HT(7) receptor ligand, SB269970, was the most potent antagonist. For antipsychotic compounds, the following rank order of antagonism potency (pK (B)) was ziprasidone > tiospirone > SSR181507 > or = clozapine > or = olanzapine > SLV-314 > SLV-313 > or = aripiprazole > or = chlorpromazine > nemonapride > haloperidol. Interestingly, pretreatment of HEK293-h5-HT(7a) cells with forskolin enhanced basal AC activity and revealed inverse agonist properties for both typical and atypical antipsychotics as well as for aripiprazole. In contrast, other novel antipsychotics exhibited diverse 5-HT(7a) properties; SLV-313 and SLV-314 behaved as quasi-neutral antagonists, SSR181507 acted as an inverse agonist, and bifeprunox as a partial agonist, as mentioned above. In conclusion, the differential properties of third generation antipsychotics at 5-HT(7) receptors may influence their antipsychotic profile.
Collapse
Affiliation(s)
- Isabelle Rauly-Lestienne
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106 Castres Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Jenkins TC, Andrews JB, Meyer-Bernstein EL. Daily oscillation of phospholipase C beta4 in the mouse suprachiasmatic nucleus. Brain Res 2007; 1178:83-91. [PMID: 17920566 DOI: 10.1016/j.brainres.2007.07.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 11/26/2022]
Abstract
An endogenous biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) regulates the timing of an organism's physiology and behavior. A variety of receptors are found on SCN pacemaker cells which permit the clock mechanism to respond to extra- and intra-SCN chemical messengers. A subset of these receptors is coupled to G-proteins, which when bound, lead to the activation of a variety of intracellular signaling cascades. One common signaling pathway employs the phosphotidylinositol-specific phospholipase C enzyme to increase intracellular calcium levels. A specific isoform of this enzyme, phospholipase C beta4, is of particular interest to circadian biologists because in its absence, mice display a circadian phenotype. Moreover, it has been shown to be associated with receptor types that are involved in clock resetting. Despite compelling data that this enzyme could be a critical component of an intracellular signaling pathway in the SCN, no study to date has investigated the possible oscillation of phospholipase C in any mammalian tissue. In the present study, we analyzed the temporal variation in the number of phospholipase C beta4 immunoreactive cells in the SCN. Herein, we show that PLCbeta4 levels oscillate in the SCN of mice housed in a light:dark photoperiod. Protein levels reached a significant peak during the early night and a trough during the day. The oscillation was considerably damped in the SCN of mice housed in constant dark conditions indicating the cycle is photoperiod-dependent. These data are critical to understanding the temporal regulation of a variety of inputs to the mammalian central circadian clock.
Collapse
Affiliation(s)
- Travis C Jenkins
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | | | |
Collapse
|
24
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
25
|
Gannon RL, Millan MJ. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors. Neuroscience 2005; 137:287-99. [PMID: 16289351 DOI: 10.1016/j.neuroscience.2005.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Mammalian circadian activity rhythms are generated by pacemaker cells in the suprachiasmatic nucleus (SCN). As revealed by the actions of diverse agonists, serotonergic input from raphe nuclei generally inhibits photic signaling in the suprachiasmatic nucleus. In contrast, the serotonin (5HT)1A partial agonist, 4-(benzodioxan-5-yl)1-(indan2-yl)piperazine (S 15535), was found to enhance the phase-shifting influence of light on hamster circadian rhythms [Gannon, Neuroscience 119 (2003) 567]. Herein, we extend this observation in showing that S 15535 (5.0 mg/kg, i.p.) markedly (275%) enhanced the light-induced phase shift in circadian activity rhythms: further, this action was dose-dependently abolished by the highly-selective 5HT1A receptor antagonist, WAY 100,635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-2-pyridinyl-cyclohexane-carboxamide maleate) (0.1-0.5 mg/kg, i.p.). WAY 100,635, which was inactive alone, shares the antagonist actions of S 15535 at postsynaptic 5HT1A sites, yet blocks its effects at their presynaptic counterparts. Thus, 5HT1A autoreceptor activation must be involved in this effect of S 15535 which contrasts with the opposite, inhibitory influence upon phase shifts of the "full" agonist, 8-OH-DPAT, which acts by stimulation of postsynaptic 5HT1A receptors [Rea et al., J Neurosci 14 (1994) 3635]. Despite the occurrence of 5HT2A and 5HT2C receptors in the (rat) suprachiasmatic nucleus, their influence on circadian rhythms is unknown since actions of selective ligands have never been evaluated. This issue was investigated with the most selective agents currently available. However, the 5HT2A agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.25 and 0.5 mg/kg), and the 5HT2C agonist, alphaS-6-chloro-5-fluoro-a-methyl-1H-indole-1-ethanamine fumarate (Ro-60-0175) (1.0 and 5.0 mg/kg), failed to affect light-induced phase shifts in hamsters. Moreover, even over broad dose-ranges, the 5HT2A antagonist, (+)-(2,3-dimethoxy-phenyl)-[1-[2-(4-fluoro-phenyl)-ethyl]-piperidin-4-yl]methanol (MDL 100,907) (0.1-1.0 mg/kg), and the 5HT2C antagonist, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl carbamoyl]indoline (SB 242,084) (1.0-10.0 mg/kg), were likewise inactive. In view of evidence that 5HT2A and 5HT2C sites functionally interact with 5HT1A receptors, we also examined the influence of these agents upon the actions of S 15535, but no significant alteration was seen in its enhancement of rhythms. In conclusion, S 15535 elicits a striking enhancement of light-induced phase shifts in circadian rhythms by specifically recruiting 5HT1A autoreceptors, which leads to suppression of serotonergic input to the suprachiasmatic nucleus. Surprisingly, no evidence for a role of 5HT2A or 5HT2C sites was found, though comparable functional studies remain to be undertaken in rats. Indeed, the present work underlines the importance of comparative studies of circadian rhythms in various species, as well as the need for further study of potential interactions among 5HT receptor subtypes in their control.
Collapse
MESH Headings
- Animals
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Dose-Response Relationship, Drug
- Male
- Mesocricetus
- Piperazines/pharmacology
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/metabolism
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Idle Hour Boulevard, Dowling College, Oakdale, NY 11769, USA.
| | | |
Collapse
|
26
|
Russo A, Pellitteri R, Monaco S, Romeo R, Stanzani S. "In vitro" postnatal expression of 5-HT7 receptors in the rat hypothalamus: an immunohistochemical analysis. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:211-6. [PMID: 15707674 DOI: 10.1016/j.devbrainres.2004.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 12/01/2022]
Abstract
The neurotransmitter serotonin (5-HT) is involved in various physiological functions via multiple receptor subtypes. These have been classified in seven receptor families (5-HT1-7) on the basis of their structures and functional characteristics. In this study, we examined the expression of 5-HT7 receptors in the rat hypothalamic neurons cultured "in vitro" during postnatal development. Neuronal cultures were prepared from postnatal pups P2, P3 and P5, were treated with bFGF and processed by means of immunofluorescence technique using a polyclonal 5-HT7 receptor antibody. In P2, we found a low density of 5-HT7 labeled hypothalamic bFGF-treated neurons and no 5-HT7 immunolabeling in control cultures; in P3, a moderate number of bFGF-treated neurons were observed but they were not bright. No 5-HT7 immunolabeling was found in controls. In P5, a heavy labeling of small sized bipolar neurons was seen in bFGF-treated neurons, while in control cultures, few labeled neurons with a low stained density were observed. These results suggest that 5-HT7 receptors in hypothalamic neurons begin to appear at P5 and then could be involved in many physiological implications that are not exerted at P2 and P3. This indicates that 5-HT7 receptors have a potential significance in the rat hypothalamus during early postnatal development.
Collapse
Affiliation(s)
- Antonella Russo
- Department of Physiological Sciences, University of Catania, Viale Andrea Doria 6, Catania 95025, Italy.
| | | | | | | | | |
Collapse
|
27
|
Graff C, Kohler M, Pévet P, Wollnik F. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat. Neuroscience 2005; 135:273-83. [PMID: 16084651 DOI: 10.1016/j.neuroscience.2005.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/19/2005] [Accepted: 05/29/2005] [Indexed: 10/25/2022]
Abstract
Light is the major synchronizer of the mammalian circadian pacemaker located in the suprachiasmatic nucleus. Photic information is perceived by the retina and conveyed to the suprachiasmatic nucleus either directly by the retinohypothalamic tract or indirectly by the intergeniculate leaflet and the geniculohypothalamic tract. In addition, serotonin has been shown to affect the suprachiasmatic nucleus by both direct and indirect serotonin projections from the raphe nuclei. Indeed, systemic as well as local administrations of the serotonin agonist quipazine in the region of the suprachiasmatic nucleus mimic the effects of light on the circadian system of rats, i.e. they induce phase-advances of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus during late subjective night. The aim of this study was to localize the site(s) of action mediating those effects. Phase shifts of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus after s.c. injection of quipazine (10 mg/kg) were assessed in Lewis rats, which had received either radio-frequency lesions of the intergeniculate leaflet or infusions of the serotonin neurotoxin 5,7-dihydroxytryptamine into the suprachiasmatic nucleus (25 microg) or bilateral enucleation. Lesions of intergeniculate leaflet and serotonin afferents to the suprachiasmatic nucleus did not reduce the photic-like effects of quipazine, whereas bilateral enucleation and the subsequent degeneration of the retinohypothalamic tract abolished both the phase-shifting and the FOS-inducing effects of quipazine. The results indicate that photic-like effects of quipazine are mediated via the retinohypothalamic tract.
Collapse
Affiliation(s)
- C Graff
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
28
|
Varcoe TJ, Kennaway DJ, Voultsios A. Activation of 5-HT2C receptors acutely induces Per gene expression in the rat suprachiasmatic nucleus at night. ACTA ACUST UNITED AC 2003; 119:192-200. [PMID: 14625086 DOI: 10.1016/j.molbrainres.2003.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus receives dense serotonergic projections from the raphe nuclei and this input has been implicated in the modulation of circadian rhythms. In the present study, we investigated the effect of 5-HT2C receptor activation on various clock genes within the suprachiasmatic nucleus, including Per1 and Per2, which have previously been demonstrated as necessary for phase shifts. Rats were exposed to light (400 lx, 15 min), administered 5-HT2C receptor agonists (+/-)-1-(4-iodo-2,5-dimethoxy-phenyl)-2-aminopropane (DOI) (2 mg/kg) or RO 60-0175 (10 mg/kg) or vehicle 4 or 10 h after dark onset (ZT16 and ZT22). The expression of Per1, Per2, Cry1, Clock, Bmal1, Dec1, Dec2 and c-fos was determined 30 and 120 min after treatment in suprachiasmatic nucleus punches by real time reverse transcription-polymerase chain reaction (RT-PCR). Light exposure induced a 7-fold increase in c-fos expression within 30 min of treatment at both ZT16 and ZT22. Per1 expression was increased 2-fold following light exposure at ZT22, whereas treatment at ZT16 had no significant effect. Per2 expression was significantly induced following light at ZT16, but was not affected at ZT22. RO 60-0175 or DOI administration induced a 5-fold change in c-fos expression at ZT16 and a 3-fold change at ZT22 within 30 min of treatment. The drug increased both Per1 and Per2 expression at ZT16, but had no effect at ZT22. These results provide evidence for 5-HT2C receptors being involved in the modulation of circadian rhythms during early night.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Department of Obstetrics and Gynaecology, University of Adelaide Medical School, Frome Road, Adelaide 5005, South Australia, Australia.
| | | | | |
Collapse
|
29
|
Muneoka KT, Takigawa M. 5-Hydroxytryptamine7 (5-HT7) receptor immunoreactivity-positive 'stigmoid body'-like structure in developing rat brains. Int J Dev Neurosci 2003; 21:133-43. [PMID: 12711351 DOI: 10.1016/s0736-5748(03)00029-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We examined the expression of 5-hydroxytryptamine(7) (5-HT(7)) receptor protein in developing and adult rats with immunohistochemical technique. In adult male rats, 5-HT(7) receptor immunoreactivity was detected in the septum, striatum, indusium griseum, tenia tecta, thalamus, hippocampus and hypothalamus in the forebrain as well as the pons and cerebellum. In brains of 1, 7, 15 and 21 days old male rats but not of adult ones, 5-HT(7) receptor immunoreactivity-positive dot-like structures were detected. The dot-like structures were visualized in hypothalamus, hippocampus, frontal cortex, brainstem and cerebellum at 1 day old male rats. In 7 days old male rats, the dot-like structures were found in the hypothalamus, medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), amygdaloid nucleus and brainstem reticular formation. In 15 and 21 days old male and female rats, 5-HT(7) receptor immunoreactive dots were most clearly detected in MPA, hypothalamus, raphe pallidus, raphe magnus and brainstem reticular formation. The 5-HT(7) receptor immunoreactivity-positive dot-like structures were shown in the cytoplasm and they were less than 1 microm in diameter in 1 and 7 days old rats and became larger to 1-3 microm in 15 and 21 days old rats. From the distribution and morphologic features, the 5-HT(7) receptor immunoreactivity-positive dot-like structure found in developing rat brains is considered to be identical to a cytoplasmic inclusion named 'stigmoid body'.
Collapse
Affiliation(s)
- Katsumasa T Muneoka
- Department of Neuropsychiatry, Kagoshima University Faculty of Medicine, 8-35-1 Sakuragaoka, Japan.
| | | |
Collapse
|
30
|
Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE. Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 2003; 18:145-58. [PMID: 12693869 DOI: 10.1177/0748730403251805] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) is thought to play a role in regulating nonphotic phase shifts and modulating photic phase shifts of the mammalian circadian system, but results with different species (rats vs. hamsters) and techniques (in vivo vs. in vitro; systemic vs. intracerebral drug delivery) have been discordant. Here we examined the effects of the 5-HT1A/7 agonist 8-OH-DPAT and the 5-HT1/2 agonist quipazine on the circadian system in mice, with some parallel experiments conducted with hamsters for comparative purposes. In mice, neither drug, delivered systemically at a range of circadian phases and doses, induced phase shifts significantly different from vehicle injections. In hamsters, quipazine intraperitoneally (i.p.) did not induce phase shifts, whereas 8-OH-DPAT induced phase shifts after i.p. but not intra-SCN injections. In mice, quipazine modestly increased c-Fos expression in the SCN (site of the circadian pacemaker) during the subjective day, whereas 8-OH-DPAT did not affect SCN c-Fos. In hamsters, both drugs suppressed SCN c-Fos in the subjective day. In both species, both drugs strongly induced c-Fos in the paraventricular nucleus (within-subject positive control). 8-OH-DPAT did not significantly attenuate light-induced phase shifts in mice but did in hamsters (between-species positive control). These results indicate that in the intact mouse in vivo, acute activation of 5-HT1A/2/7 receptors in the circadian system is not sufficient to reset the SCN pacemaker or to oppose phase-shifting effects of light. There appear to be significant species differences in the susceptibility of the circadian system to modulation by systemically delivered serotonergics.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
31
|
Vacher CM, Frétier P, Créminon C, Seif I, De Maeyer E, Calas A, Hardin-Pouzet H. Monoaminergic control of vasopressin and VIP expression in the mouse suprachiasmatic nucleus. J Neurosci Res 2003; 71:791-801. [PMID: 12605405 DOI: 10.1002/jnr.10529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We studied the effects of serotonin and noradrenaline on the expression of arginine-vasopressin (AVP) and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN). We used transgenic Tg8 mice knockout for the MAO-A (monoamine oxidase A) gene, which are characterized by increased amounts of serotonin and noradrenaline in brain compared to wild-type mice (C3H). The MAO-A deficiency caused an increase in AVP and VIP expression (determined by immunohistochemistry, enzyme immunoassay, and in situ hybridization) compared to C3H mice. The number of peptidergic neurons was also increased. Inhibiting serotonin or noradrenaline synthesis in Tg8 mice by the administration of parachlorophenylalanine or alpha-methylparatyrosine, respectively, the amounts of AVP, VIP and their mRNAs were decreased, but not the number of peptidergic neurons. This study indicates that serotonin and noradrenaline stimulate AVP and VIP expression, and could participate in the differentiation of the neurochemical phenotype in the mouse SCN.
Collapse
Affiliation(s)
- C M Vacher
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cornea-Hébert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, Descarries L. Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 2002; 113:23-35. [PMID: 12123681 DOI: 10.1016/s0306-4522(02)00146-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As visualized by light and electron microscopic immunocytochemistry, the distribution of the neuronal serotonin-2A (5-HT(2A)) receptor is mainly intracellular throughout adult rat brain. This localization is particularly striking in the pyramidal cells of cerebral cortex, the dendrites of which are intensely immunoreactive, but without any labeling of their spines. In view of recent yeast two-hybrid and biochemical results suggesting an association of 5-HT(2A) receptors with the cytoskeletal microtubule-associated protein MAP1A, the respective subcellular distributions of the receptors and of MAP1A were compared by quantitative electron microscopic immunocytochemistry in dendrites of adult rat frontoparietal cortex. Counts of silver-intensified immunogold particles revealed a higher density of 5-HT(2A) receptors in smaller rather than larger dendrites, and an apportionment between pre-defined compartments representing the plasma membrane and the cytoplasm that was proportional to the relative surface area of these compartments. MAP1A immunoreactivity also predominated in smaller versus larger dendrites, but with a slightly lower proportion of labeling in the plasma membrane versus cytoplasmic compartment. The co-localization of 5-HT(2A) receptors and MAP1A protein in the same dendrites could be demonstrated in double immunolabeling experiments. These results confirmed the predominantly somato-dendritic, intracellular localization of 5-HT(2A) receptors in cerebral cortex, showed their higher concentration in distal as opposed to proximal dendrites, and suggested their potential association to the cytoskeleton in cortical neurons in vivo. Such a distribution of 5-HT(2A) receptors reinforces our earlier hypothesis that 5-HT(2A) receptors participate in intraneuronal signaling processes involving the cytoskeleton, and raises the possibility that their activation could be dependent upon that of another co-localized, plasma membrane-bound, 5-HT receptor.
Collapse
Affiliation(s)
- V Cornea-Hébert
- Départements de pathologie et biologie cellulaire et de physiologie, Faculté de médecine, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
34
|
Hayashi S, Ueda M, Amaya F, Matusda T, Tamada Y, Ibata Y, Tanaka M. Serotonin modulates expression of VIP and GRP mRNA via the 5-HT(1B) receptor in the suprachiasmatic nucleus of the rat. Exp Neurol 2001; 171:285-92. [PMID: 11573980 DOI: 10.1006/exnr.2001.7759] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of vasoactive intestinal peptide (VIP) and gastrin-releasing peptide (GRP) in the suprachiasmatic nucleus (SCN) changes depending on light. VIP mRNA increases and GRP mRNA decreases in the light phase, while they do not show change without light. In the present study we investigated the involvement of serotonin (5-HT) in the expression of VIP and GRP messenger RNA in the SCN of the rat. The decrease in VIP mRNA and the increase in GRP mRNA in the light phase were amplified by 5-HT depletion using 5,6-dihydroxytryptamine injected into the lateral ventricle. These enhancements due to 5-HT depletion were reversed to control levels by applying 5-HT(1B) agonists TFMPP and CGS12066A, but not a 5-HT(1A)/5-HT(7) agonist, 8-OH-DPAT. The 5-HT(1B) receptor is known to exist on the terminals of the retinohypothalamic tract (RHT). Therefore, next we investigated the morphological relationship of RHT and 5-HT terminals by double-labeling immunocytochemistry and demonstrated that 5-HT-immunoreactive fibers and cholera toxin B subunit-labeled RHT terminals were intermingled in the ventrolateral SCN, and 5-HT axon processes had close contact with RHT terminals. Collectively, these pharmacological and morphological results suggest that 5-HT afferents from raphe nuclei modulate VIP and GRP expression in neurons of the ventrolateral SCN by activating the 5-HT(1B) receptor in the RHT.
Collapse
Affiliation(s)
- S Hayashi
- Department of Anatomy & Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji Kamikyo-ku, Kyoto, 602-0841, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Belenky MA, Pickard GE. Subcellular distribution of 5-HT(1B) and 5-HT(7) receptors in the mouse suprachiasmatic nucleus. J Comp Neurol 2001; 432:371-88. [PMID: 11246214 DOI: 10.1002/cne.1109] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The suprachiasmatic nucleus (SCN), a circadian oscillator, receives glutamatergic afferents from the retina and serotonergic (5-HT) afferents from the median raphe. 5-HT(1B) and 5-HT(7) receptor agonists inhibit the effects of light on SCN circadian activity. Electron microscopic (EM) immunocytochemical procedures were used to determine the subcellular localization of 5-HT(1B) and 5-HT(7) receptors in the SCN. 5-HT(1B) receptor immunostaining was associated with the plasma membrane of thin unmyelinated axons, preterminal axons, and terminals of optic and nonoptic origin. 5-HT(1B) receptor immunostaining in terminals was almost never observed at the synaptic active zone. To a much lesser extent, 5-HT(1B) immunoreaction product was noted in dendrites and somata of SCN neurons. 5-HT(7) receptor immunoreactivity in gamma-aminobutyric acid (GABA), vasoactive intestinal polypeptide (VIP), and vasopressin (VP) neuronal elements in the SCN was examined by using double-label procedures. 5-HT(7) receptor immunoreaction product was often observed in GABA-, VIP-, and VP-immunoreactive dendrites as postsynaptic receptors and in axonal terminals as presynaptic receptors. 5-HT(7) receptor immunoreactivity in terminals and dendrites was often associated with the plasma membrane but very seldom at the active zone. In GABA-, VIP-, and VP-immunoreactive perikarya, 5-HT(7) receptor immunoreaction product was distributed throughout the cytoplasm often in association with the endoplasmic reticulum and the Golgi complex. The distribution of 5-HT(1B) receptors in presynaptic afferent terminals and postsynaptic SCN processes, as well as the distribution of 5-HT(7) receptors in both pre- and postsynaptic GABA, VIP, and VP SCN processes, suggests that serotonin plays a significant role in the regulation of circadian rhythms by modulating SCN synaptic activity.
Collapse
Affiliation(s)
- M A Belenky
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
36
|
Kennaway DJ, Moyer RW, Voultsios A, Varcoe TJ. Serotonin, excitatory amino acids and the photic control of melatonin rhythms and SCN c-FOS in the rat. Brain Res 2001; 897:36-43. [PMID: 11282356 DOI: 10.1016/s0006-8993(01)02091-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a growing acceptance that serotonergic pathways to the suprachiasmatic nucleus play an important role in the mediation and modulation of light entrainment of rhythms. In this study administration of the 5-HT(2A/2C) agonist (+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI, 0.5 mg/kg) at mid dark caused a phase shift in the onset of the urinary excretion of 6-sulphatoxymelatonin in rats that was sustained for at least 8 days and was blocked by the specific 5-HT(2C) antagonist SB-242084. Administration of DOI (2 mg/kg) across the night resulted in the appearance of c-FOS in the nucleus of cells in the suprachiasmatic nucleus during subjective darkness, but did not cause induction at the time of expected lights on (CT0). By contrast light exposure induced c-fos throughout the night including CT0. Administration of the NMDA receptor antagonist MK-801 (3 mg/kg) prior to light pulses had no effect on c-fos in the first part of the night, but towards the expected time of lights on, became progressively more potent, such that by CT0, light induction of c-fos was almost completely inhibited. These results provide further evidence that serotonin plays a role in the mediation of light effects on rhythms in the rat.
Collapse
Affiliation(s)
- D J Kennaway
- Department of Obstetrics and Gynaecology, Adelaide University, Medical School, Frome Road, South Australia, 5005, Adelaide, Australia.
| | | | | | | |
Collapse
|
37
|
Smith BN, Sollars PJ, Dudek FE, Pickard GE. Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 2001; 16:25-38. [PMID: 11220775 DOI: 10.1177/074873040101600104] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523-1760, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Serotonergic modulation of circadian rhythms in rodent model preparations has received considerable attention over the past decade. Investigators have also been trying to determine which of the many serotonin receptor subtypes may be mediating the effects of serotonin in the suprachiasmatic nucleus, the location of the biological clock that generates the circadian rhythms. A single study in 1993 using the in vitro rat hypothalamic slice preparation suggested that serotonergic modulation of circadian rhythms at the level of the suprachiasmatic nucleus was acting via the newly discovered 5HT7 receptor subtype. Since that initial claim, serotonin modulation of circadian rhythms at the level of the suprachiasmatic nucleus has generally been attributed to 5HT7 receptor activation. However, when trying to cite relevant literature in support of 5HT7 involvement, it becomes evident that attributing rhythm-related serotonin activity in the suprachiasmatic nucleus to 5HT7 receptors may be somewhat premature. There are issues related to pharmacological specificity, species-specific results, and significant knowledge gaps that necessitate a careful review of the literature to make a judgment as to whether 5HT7 receptors are responsible for serotonergic activity in the rodent suprachiasmatic nucleus. In addition, there is sufficient data available at present to make an initial determination as to the degree of 5HT7 receptor involvement at any level in the generation or modulation of circadian rhythms in rodent species.
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Dowling College, Oakdale, NY 11769, USA
| |
Collapse
|
39
|
Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M. Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 2001; 21:63-73. [PMID: 11173221 DOI: 10.1016/s0891-0618(00)00092-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-HT(7) receptors are recently identified members of the serotonin receptor family that have moderate to high affinity for several important psychotropic drugs. However, the lack of selective ligands has impeded the study of the brain distribution of these receptors. In this report, we describe the localization of 5-HT(7) receptor in rat forebrain by immunocytochemistry, in situ hybridization of 5-HT(7) mRNA, and functional stimulation of cFOS expression by 5-HT(7) receptor activation. The anatomical localization of 5-HT(7) mRNA in situ hybridization signal. Prominent immunostaining was apparent in numerous sites within the cerebral cortex, hippocampal formation, tenia tecta, thalamus and hypothalamus. 5-HT(7) receptors were detected in suprachiasmatic nucleus by both immunocytochemistry and in situ hybridization. At a microscopic level, both cell bodies and proximal fibers were strongly stained in these regions, suggesting a somatodendritic subcellular distribution. 5-HT(7) receptor-like immunoreactivity was further compared with 5-HT(7) mediated biological function by administering 8-OH-DPAT intracerebroventricular injection (icv)with WAY 100135 (to block 5-HT(1A) receptors) followed by double immunostaining localization of cFos activation and 5-HT(7) receptors. In all regions examined, cFos stimulation and 5-HT(7)-like immunoreactivity colocalized to the same neurons. Furthermore, cFos activation by 8-OH-DPAT was blocked by pimozide--a 5-HT(7) antagonist. Therefore, by using multiple strategies, we were able to localize 5-HT(7) receptors in rat brain unequivocally. The distribution of these receptors is consistent with their involvement in the control of circadian activity and the action of anti-depressants and atypical neuroleptics.
Collapse
Affiliation(s)
- J F Neumaier
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Seattle WA 98195, USA
| | | | | | | | | |
Collapse
|
40
|
Ferguson SA, Kennaway DJ. The ontogeny of induction of c-fos in the rat SCN by a 5-HT(2A/2C) agonist. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 121:229-31. [PMID: 10876037 DOI: 10.1016/s0165-3806(00)00042-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The induction of c-fos in the suprachiasmatic nucleus (SCN) by the 5-HT(2A/2C) agonist, DOI was studied at mid-dark in neonatal rats. The number of cells expressing c-FOS immunoreactivity following DOI was low 3 days after birth, but increased rapidly over the next 3 days. By contrast, light exposure stimulated cells throughout this period. These results are consistent with the arrival of serotonergic afferents at the SCN and their role in the entrainment of rhythms.
Collapse
Affiliation(s)
- S A Ferguson
- Department of Obstetrics and Gynaecology, Medical School, University of Adelaide, Frome Road, Adelaide, South Australia, 5005, Australia
| | | |
Collapse
|
41
|
Moyer RW, Kennaway DJ. Serotonin depletion decreases light induced c-fos in the rat suprachiasmatic nucleus. Neuroreport 2000; 11:1021-4. [PMID: 10790876 DOI: 10.1097/00001756-200004070-00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the locus of the biological clock in mammals. Daily light cycles entrain the endogenous circadian rhythms in mammals through direct and indirect neural pathways from the retinae to the suprachiasmatic nucleus. We have studied the effect of serotonin depletion on the photic induction of the early response gene c-fas in the SCN of rats. Serotonin depletion, verified by immunohistochemistry, produced a significant decrease (42%) in the number of c-FOS positive cells in the ventrolateral portion of the SCN. These results support the involvement of serotonin as a mediator of photic information to the SCN through the retinal projection to the dorsal raphe nucleus.
Collapse
Affiliation(s)
- R W Moyer
- Department of Obstetrics and Gynaecology, University of Adelaide Medical School, Australia
| | | |
Collapse
|
42
|
Kennaway DJ, Moyer RW. MK-801 administration blocks the effects of a 5-HT(2A/2C) agonist on melatonin rhythmicity and c-fos induction in the suprachiasmatic nucleus. Brain Res 1999; 845:102-6. [PMID: 10529449 DOI: 10.1016/s0006-8993(99)01951-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both excitatory amino acids and serotonin have been implicated in the photic control of rhythms, but they have rarely been considered to interact. This study investigated the effects of the NMDA receptor antagonist, MK-801 on the phase shift of the melatonin rhythm and the induction of c-fos in the rat suprachiasmatic nucleus (SCN) provoked by the administration of the serotonin agonist DOI ((+/-)-1-(4-Iodo-2,5-dimethoxyphenyl)-2-aminopropane hydrochloride). The urinary excretion rate rhythm of the melatonin metabolite, 6-sulphatoxymelatonin was delayed by administration of DOI (0.5 mg/kg) at CT18 (6 h after subjective darkness onset) as previously reported by our group. Administration of MK-801 (3 mg/kg) 30 min before DOI blocked the shift in the onset of excretion of the melatonin metabolite on the following nights. Pre-treatment with MK-801 also inhibited by approximately 90% the induction of c-fos in the SCN by DOI at ZT18 (6 h after actual darkness onset) as determined by immunohistochemistry. These results provide evidence for a role of excitatory amino acids in the photomimetic effects of serotonin 5-HT(2C) agonists in the rat.
Collapse
Affiliation(s)
- D J Kennaway
- Department of Obstetrics and Gynaecology, University of Adelaide, Medical School, Frome Road, Adelaide, Australia
| | | |
Collapse
|