1
|
Zhang G, Cui M, Ji R, Zou S, Song L, Fan B, Yang L, Wang D, Hu S, Zhang X, Fang T, Yu X, Yang JX, Chaudhury D, Liu H, Hu A, Ding HL, Cao JL, Zhang H. Neural and Molecular Investigation into the Paraventricular Thalamic-Nucleus Accumbens Circuit for Pain Sensation and Non-opioid Analgesia. Pharmacol Res 2023; 191:106776. [PMID: 37084858 DOI: 10.1016/j.phrs.2023.106776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.
Collapse
Affiliation(s)
- Guangchao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shiya Zou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bingqian Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Suwan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi NO.2 People's Hospital, Wuxi 214000, Jiangsu, China
| | - Tantan Fang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, Jiangsu, PR China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Alyabyeva PV, Chastina OV, Petrova MM, Lareva NV, Garganeeva NP, Chumakova GA, Cherniaeva MS, Shnayder NA. New Genetic Biomarkers of the Overlap Syndrome Tension-Type Headache and Arterial Hypertension. Genes (Basel) 2022; 13:1823. [PMID: 36292708 PMCID: PMC9602376 DOI: 10.3390/genes13101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is an important autocrine and paracrine signaling molecule that plays a crucial role in cardiovascular physiology and pathology regulation. NO is an important molecule involved in regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. Reduced bioavailability of NO in the endothelium is an important precursor for impaired vasodilation and arterial hypertension (AH). Furthermore, NO is involved in nociceptive processing. A NO-induced biphasic response with immediate and a delayed headache is typical for chronic tension-type headaches (TTH) in humans. The aim was to study the association of allelic variants and genotypes of the single nucleotide variant (SNV) rs3782218 of the NOS1 gene with the TTH and AH overlap syndrome development in middle age adults. MATERIALS AND METHODS We observed 91 Caucasian participants who resided in Krasnoyarsk city: group 1 (TTH and AH overlap syndrome)-30 patients; group 2 (AH without headache)-30 patients; group 3 (control)-31 healthy volunteers. The diagnosis of AH was based on criteria of the European Society of Cardiology and the European Society of Hypertension (2018) и criteria of the Russian Society of Cardiology (2020). Diagnosis of TTH was based on criteria of the International Classification of Headache Disorders (2018). Real-time polymerase chain reaction was used for the determination of allelic variants and genotypes of the SNV rs3782218 of the NOS1 gene in all groups of participants. RESULTS The frequency of the minor allele T of rs3782218 was statistically significantly higher by 16.7 times in group 1 (TTH and AH) compared to group 3 (control): 26.7% versus 1.6%, respectively (p-value = 0.000065) and 3.2 times higher in group 1 (TTH and AH) compared to group 2 (AH without headache): 26.7% versus 8.3%, respectively (p-value = 0.008). The frequency of the heterozygous (CT) genotype was statistically significantly higher in group 1 (TTH and AH) compared to group 3 (control): 40.0% versus 3.2% (p-value = 0.000454) and in group 1 (TTH and AH) compared to group 2 (AH without headache): 40.0% versus 16.7% (p-value = 0.045). The minor allele T was statistically significantly associated with a high risk of developing the TTH and AH overlap syndrome compared with the controls (odds ratio (OR) = 22.2 (95% confidential interval (CI): 2.8-173.5)) and compared with AH without headache (OR = 4.0 (95% CI: 1.4-11.8)). Although the frequency of the minor allele T was 5.2 times higher in group 2 (AH without headache) compared with group 3 (control), there were not statistically significantly differences (p-value = 0.086). CONCLUSION Thus, the minor allele T of rs3782218 of the NOS1 gene is an important genetic biomarker for a high risk of developing the TTH and AH overlap syndrome in hypertensive patients.
Collapse
Affiliation(s)
- Polina V. Alyabyeva
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Olga V. Chastina
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Additional Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Marina S. Cherniaeva
- Department of Internal and Preventive Medicine, Central State Medical Academy of the Presidential Administration, 121359 Moscow, Russia
| | - Natalia A. Shnayder
- Shared Core Facilities Molecular and Cell Technologies, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| |
Collapse
|
3
|
Peripheral Purinergic Modulation in Pediatric Orofacial Inflammatory Pain Affects Brainstem Nitroxidergic System: A Translational Research. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1326885. [PMID: 35309172 PMCID: PMC8933089 DOI: 10.1155/2022/1326885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/18/2022]
Abstract
Physiology of orofacial pain pathways embraces primary afferent neurons, pathologic changes in the trigeminal ganglion, brainstem nociceptive neurons, and higher brain function regulating orofacial nociception. The goal of this study was to investigate the nitroxidergic system alteration at brainstem level (spinal trigeminal nucleus), and the role of peripheral P2 purinergic receptors in an experimental mouse model of pediatric inflammatory orofacial pain, to increase knowledge and supply information concerning orofacial pain in children and adolescents, like pediatric dentists and pathologists, as well as oro-maxillo-facial surgeons, may be asked to participate in the treatment of these patients. The experimental animals were treated subcutaneously in the perioral region with pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), a P2 receptor antagonist, 30 minutes before formalin injection. The pain-related behavior and the nitroxidergic system alterations in the spinal trigeminal nucleus using immunohistochemistry and western blotting analysis have been evaluated. The local administration of PPADS decreased the face-rubbing activity and the expression of both neuronal and inducible nitric oxide (NO) synthase isoforms in the spinal trigeminal nucleus. These results underline a relationship between orofacial inflammatory pain and nitroxidergic system in the spinal trigeminal nucleus and suggest a role of peripheral P2 receptors in trigeminal pain transmission influencing NO production at central level. In this way, orofacial pain physiology should be elucidated and applied to clinical practice in the future.
Collapse
|
4
|
Villar-Martínez MD, Moreno-Ajona D, Chan C, Goadsby PJ. Indomethacin-responsive headaches-A narrative review. Headache 2021; 61:700-714. [PMID: 34105154 DOI: 10.1111/head.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Indomethacin is a nonsteroidal anti-inflammatory drug whose mechanism of action in certain types of headache disorders remains unknown. The so-called indomethacin-responsive headache disorders consist of a group of conditions with a very different presentation that have a particularly good response to indomethacin. The response is so distinct as to be used in the definition of two: hemicrania continua and paroxysmal hemicrania. METHODS This is a narrative literature review. PubMed and the Cochrane databases were used for the literature search. RESULTS We review the main pharmacokinetic and pharmacodynamics properties of indomethacin useful for daily practice. The proposed mechanisms of action of indomethacin in the responsive headache disorders, including its effect on cerebral blood flow and intracranial pressure, with special attention to nitrergic mechanisms, are covered. The current evidence for its use in primary headache disorders, such as some trigeminal autonomic cephalalgias, cough, hypnic, exertional or sexual headache, and migraine will be covered, as well as its indication for secondary headaches, such as those of posttraumatic origin. CONCLUSION Increasing understanding of the mechanism(s) of action of indomethacin will enhance our understanding of the complex pathophysiology that might be shared by indomethacin-sensitive headache disorders.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martínez
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Moreno-Ajona
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Chan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
The Role of Single-Nucleotide Variants of NOS1, NOS2, and NOS3 Genes in the Comorbidity of Arterial Hypertension and Tension-Type Headache. Molecules 2021; 26:molecules26061556. [PMID: 33809023 PMCID: PMC8002043 DOI: 10.3390/molecules26061556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with tension-type headache (TTH) have an increased risk of developing arterial hypertension (AH), while hypertensive subjects do seem to have an increased risk of TTH. We searched for full-text English publications in databases using keywords and combined word searches over the past 15 years. In addition, earlier publications of historical interest were included in the review. In our review, we summed up the single nucleotide variants (SNVs) of Nitric Oxide Synthases (NOSs) genes involved in the development of essential AH and TTH. The results of studies we discussed in this review are contradictory. This might be due to different designs of the studies, small sample sizes in some of them, as well as different social and geographical characteristics. However, the contribution of genetic and environmental factors remains understudied. This makes the issue interesting for researchers, as understanding these mechanisms can contribute to a search for new approaches to pathogenetic and disease-modifying treatment of the AH and TTH phenotype. New drugs against AH and TTH can be based on inhibition of nitric oxide (NO) production, blockade of steps in the NO-cGMP pathway, or NO scavenging. Indeed, selective neuronal NOS (n-NOS) and inducible NOS (i-NOS) inhibitors are already in early clinical development.
Collapse
|
6
|
Gong Y, Li N, Lv Z, Zhang K, Zhang Y, Yang T, Wang H, Zhao X, Chen Z, Dou B, Chen B, Guo Y, Guo Y, Xu Z. The neuro-immune microenvironment of acupoints-initiation of acupuncture effectiveness. J Leukoc Biol 2020; 108:189-198. [PMID: 32645257 DOI: 10.1002/jlb.3ab0420-361rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Acupuncture is a centuried and unfading treatment of traditional Chinese medicine, which has been proved to exert curative effects on various disorders. Numerous works have been put in to uncover the effective mechanisms of acupuncture. And the interdependent interaction between acupuncture and acupoint microenvironment is a crucial topic. As a benign minimally invasive stimulation, the insertion and manipulation of needle at acupoint could cause deformation of local connective tissue and secretion of various molecules, such as high mobility group box 1 and ATP. The molecules are secreted into extracellular space and bind to the corresponding receptors thus active NF-κB, MAPK, ERK pathways on mast cells, fibroblasts, keratinocytes, and monocytes/macrophages, among others. This is supposed to trigger following transcription and translation of immune factors and neural active substance, as well as promote the free ion movement (such as Ca2+ influx) and the expansion of blood vessels to recruit more immune cells to acupoint. Finally, acupuncture could enhance network connectivity of local microenvironment at acupoints. The earlier mentioned substances further act on a variety of receptors in local nerve endings, transmitting electrical and biochemical signals to the CNS, and giving full play to the acupuncture action. In conclusion, we portrayed a neuro-immune microenvironment network of acupoints that medicates the acupuncture action, and would lay a foundation for the systematic study of the complex network relationship of acupoints in the future.
Collapse
Affiliation(s)
- Yinan Gong
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Ningcen Li
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zhongxi Lv
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Nankai, Tianjin, China
| | - Yanfang Zhang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Tao Yang
- Affiliated Hospital of Municipal Institute of Traditional Chinese Medicine of Changzhi City, Changzhi, Shanxi, China
| | - Hui Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Xue Zhao
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zelin Chen
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Baomin Dou
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Bo Chen
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Yongming Guo
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Yi Guo
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| | - Zhifang Xu
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tuanbo, Jinghai, Tianjin, China
| |
Collapse
|
7
|
Choi SR, Beitz AJ, Lee JH. Spinal Nitric Oxide Synthase Type II Increases Neurosteroid-metabolizing Cytochrome P450c17 Expression in a Rodent Model of Neuropathic Pain. Exp Neurobiol 2019; 28:516-528. [PMID: 31495080 PMCID: PMC6751860 DOI: 10.5607/en.2019.28.4.516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously demonstrated that the neurosteroid dehydroepiandrosterone sulfate (DHEAS) induces functional potentiation of N-methyl-D-aspartate (NMDA) receptors via increases in phosphorylation of NMDA receptor GluN1 subunit (pGluN1). However, the modulatory mechanisms responsible for the expression of the DHEA-synthesizing enzyme, cytochrome P450c17 following peripheral nerve injury have yet to be examined. Here we determined whether oxidative stress induced by the spinal activation of nitric oxide synthase type II (NOS-II) modulates the expression of P450c17 and whether this process contributes to the development of neuropathic pain in rats. Chronic constriction injury (CCI) of the sciatic nerve induced a significant increase in the expression of NOS-II in microglial cells and NO levels in the lumbar spinal cord dorsal horn at postoperative day 5. Intrathecal administration of the NOS-II inhibitor, L-NIL during the induction phase of neuropathic pain (postoperative days 0~5) significantly reduced the CCI-induced development of mechanical allodynia and thermal hyperalgesia. Sciatic nerve injury increased the expression of PKC- and PKA-dependent pGluN1 as well as the mRNA and protein levels of P450c17 in the spinal cord at postoperative day 5, and these increases were suppressed by repeated administration of L-NIL. Co-administration of DHEAS together with L-NIL restored the development of neuropathic pain and pGluN1 that were originally inhibited by L-NIL administration alone. Collectively these results provide strong support for the hypothesis that activation of NOS-II increases the mRNA and protein levels of P450c17 in the spinal cord, ultimately leading to the development of central sensitization and neuropathic pain induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Onishi T, Watanabe T, Sasaki M, Kamiya Y, Horie M, Tsukano H, Hishida R, Kohno T, Takebayashi H, Baba H, Shibuki K. Acute spatial spread of NO-mediated potentiation during hindpaw ischaemia in mice. J Physiol 2019; 597:3441-3455. [PMID: 31087329 PMCID: PMC6851834 DOI: 10.1113/jp277615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Key points Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Abstract Cortical/spinal responses to hindpaw stimulation are bilaterally potentiated by unilateral hindpaw ischaemia in mice. We tested the hypothesis that hindpaw ischaemia produces nitric oxide (NO), which diffuses in the spinal cord to induce spatially spreading potentiation. Using flavoprotein fluorescence imaging, we confirmed that the spreading potentiation in hindpaw responses was induced during ischaemia in the non‐stimulated hindpaw. This spreading potentiation was blocked by spinal application of l‐NAME, an inhibitor of NO synthase (NOS). Furthermore, no spreading potentiation was observed in neural NOS (nNOS) knockout mice. Spinal application of an NO donor was enough to induce cortical potentiation and mechanical hypersensitivity. The spatial distribution of NO during unilateral hindpaw ischaemia was visualized using 4‐amino‐5‐methylamino‐2′,7′‐difluorofluorescein (DAF‐FM). An increase in fluorescence derived from the complex of DAF‐FM with NO was observed on the ischaemic side of the spinal cord. A similar but smaller increase was also observed on the contralateral side. Somatosensory potentiation after hindpaw ischaemia is known to be inhibited by spinal application of LY354740, an agonist of group II metabotropic glutamate receptors (mGluRs). We confirmed that the spinal DAF‐FM fluorescence increases during hindpaw ischaemia were not observed in the presence of LY354740. We also confirmed that approximately half of the nNOS‐positive neurons in the superficial laminae of the dorsal horn expressed mGluR2 mRNA. These results suggest that disinhibition of mGluR2 produces NO which in turn induces a spreading potentiation in a wide area of the spinal cord. Such spreading, along with the consequent non‐specific potentiation in the spinal cord, may trigger neuropathic pain. Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Collapse
Affiliation(s)
- Takeshi Onishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.,Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Tatsunori Watanabe
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Mika Sasaki
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Yoshinori Kamiya
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Masao Horie
- Department of Morphological Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Hirohide Takebayashi
- Department of Neurobiology and Anatomy, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Hiroshi Baba
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| |
Collapse
|
9
|
Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Astrocyte D-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain 2019; 15:1744806919843046. [PMID: 30900515 PMCID: PMC6495448 DOI: 10.1177/1744806919843046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Spinal D-serine plays an important role in nociception via an increase in phosphorylation of the N-Methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). However, the cellular mechanisms underlying this process have not been elucidated. Here, we investigate the possible role of neuronal nitric oxide synthase (nNOS) in the D-serine-induced potentiation of NMDA receptor function and the induction of neuropathic pain in a chronic constriction injury (CCI) model. Intrathecal administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt (LSOS) or the D-serine degrading enzyme, D-amino acid oxidase (DAAO) on post-operative days 0-3 significantly reduced the CCI-induced increase in nitric oxide (NO) levels and nicotinamide adenine dinucleotide phosphate-diaphorase staining in lumbar dorsal horn neurons, as well as the CCI-induced decrease in phosphorylation (Ser847) of nNOS (pnNOS) on day 3 post-CCI surgery. LSOS or DAAO administration suppressed the CCI-induced development of mechanical allodynia and protein kinase C (PKC)-dependent (Ser896) phosphorylation of GluN1 on day 3 post-surgery, which were reversed by the co-administration of the NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1). In naïve mice, exogenous D-serine increased NO levels via decreases in pnNOS. D-serine-induced increases in mechanical hypersensitivity, NO levels, PKC-dependent pGluN1, and NMDA-induced spontaneous nociception were reduced by pretreatment with the nNOS inhibitor, 7-nitroindazole or with the NMDA receptor antagonists, 7-chlorokynurenic acid and MK-801. Collectively, we show that spinal D-serine modulates nNOS activity and concomitant NO production leading to increases in PKC-dependent pGluN1 and ultimately contributing to the induction of mechanical allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Seo-Yeon Yoon
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ho-Jae Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Alvin James Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Brewer AL, Liu S, Buhler AV, Shirachi DY, Quock RM. Role of spinal GABA receptors in the acute antinociceptive response of mice to hyperbaric oxygen. Brain Res 2018; 1699:107-116. [PMID: 30077648 DOI: 10.1016/j.brainres.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/15/2018] [Accepted: 08/02/2018] [Indexed: 02/01/2023]
Abstract
New pain treatments are in demand due to the pervasive nature of pain conditions. Hyperbaric oxygen (HBO2) has shown potential in treating pain in both clinical and preclinical settings, although the mechanism of this effect is still unknown. The aim of this study was to investigate whether the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) is involved in HBO2-induced antinociception in the central nervous system (CNS). To accomplish this goal, pharmacological interactions between GABA drugs and HBO2 were investigated using the behavioral acetic acid abdominal constriction test. Western blotting was used to quantify protein changes that might occur as a result of the interactions. GABAA but not GABAB receptor antagonists dose-dependently reduced HBO2 antinociception, while antagonism of the GABA reuptake transporter enhanced this effect. Western blot results showed an interaction between the pain stimulus and HBO2 on expression of the phosphorylated β3 subunit of the GABAA receptor at S408/409 in homogenates of the lumbar but not thoracic spinal cord. A significant interaction was also found in neuronal nitric oxide synthase (nNOS) expression in the lumbar but not thoracic spinal cord. These findings support the notion that GABA may be involved in HBO2-induced antinociception at the GABAA receptor but indicate that more study will be needed to understand the intricacies of this interaction.
Collapse
Affiliation(s)
- Abigail L Brewer
- Department of Psychology, Washington State University, Pullman, WA 99164, USA
| | - Shulin Liu
- Department of Aviation Medicine, Naval Medicine Research Institute, Second Military Medical University, Shanghai 200433, China
| | - Amber V Buhler
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA
| | - Donald Y Shirachi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Raymond M Quock
- Department of Psychology, Washington State University, Pullman, WA 99164, USA; Translational Addiction Research Center, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
11
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
12
|
Salehi F, Hosseini-Zare MS, Aghajani H, Seyedi SY, Hosseini-Zare MS, Sharifzadeh M. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam Clin Pharmacol 2017; 31:411-419. [PMID: 28267871 DOI: 10.1111/fcp.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.
Collapse
Affiliation(s)
- Forouz Salehi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | - Mahshid S Hosseini-Zare
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran.,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Haleh Aghajani
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Seyedeh Yalda Seyedi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | | | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| |
Collapse
|
13
|
Carey LM, Lee WH, Gutierrez T, Kulkarni PM, Thakur GA, Lai YY, Hohmann AG. Small molecule inhibitors of PSD95-nNOS protein-protein interactions suppress formalin-evoked Fos protein expression and nociceptive behavior in rats. Neuroscience 2017; 349:303-317. [PMID: 28285942 DOI: 10.1016/j.neuroscience.2017.02.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Excessive activation of NMDA receptor (NMDAR) signaling within the spinal dorsal horn contributes to central sensitization and the induction and maintenance of pathological pain states. However, direct antagonism of NMDARs produces undesirable side effects which limit their clinical use. NMDAR activation produces central sensitization, in part, by initiating a signaling cascade that activates the enzyme neuronal nitric oxide synthase (nNOS) and generates the signaling molecule nitric oxide. NMDAR-mediated activation of nNOS requires a scaffolding protein, postsynaptic density protein 95kDa (PSD95), which tethers nNOS to NMDARs. Thus, disrupting the protein-protein interaction between PSD95 and nNOS may inhibit pro-nociceptive signaling mechanisms downstream of NMDARs and suppress central sensitization while sparing unwanted side effects associated with NMDAR antagonists. We examined the impact of small molecule PSD95-nNOS protein-protein interaction inhibitors (ZL006, IC87201) on both nociceptive behavior and formalin-evoked Fos protein expression within the lumbar spinal cord of rats. Comparisons were made with ZL007, an inactive analog of ZL006, and the NMDAR antagonist MK-801. IC87201 and ZL006, but not ZL007, suppressed phase 2 of formalin-evoked pain behavior and decreased the number of formalin-induced Fos-like immunoreactive cells in spinal dorsal horn regions associated with nociceptive processing. MK-801 suppressed Fos protein expression in both dorsal and ventral horns. MK-801 produced motor ataxia in the rotarod test whereas IC87201 and ZL006 failed to do so. ZL006 but not ZL007 suppressed paclitaxel-induced mechanical and cold allodynia in a model of chemotherapy-induced neuropathic pain. Co-immunoprecipitation experiments revealed the presence of the PSD95-nNOS complex in lumbar spinal cord of paclitaxel-treated rats, although ZL006 did not reliably disrupt the complex in all subjects. The present findings validate use of putative small molecule PSD95-nNOS protein-protein interaction inhibitors as novel analgesics and demonstrate, for the first time, that these inhibitors suppress inflammation-evoked neuronal activation at the level of the spinal dorsal horn.
Collapse
Affiliation(s)
- Lawrence M Carey
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Wan-Hung Lee
- Interdisciplinary Biochemistry Program, Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, United States
| | - Tannia Gutierrez
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Pushkar M Kulkarni
- Center for Drug Discovery, and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Yvonne Y Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Anagin, Inc., Indianapolis, IN, United States
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Interdisciplinary Biochemistry Program, Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
14
|
Shibrya EE, Radwan RR, Abd El Fattah MA, Shabaan EA, Kenawy SA. Evidences for amelioration of reserpine-induced fibromyalgia in rat by low dose of gamma irradiation and duloxetine. Int J Radiat Biol 2017; 93:553-560. [DOI: 10.1080/09553002.2017.1270475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eman E. Shibrya
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Rasha R. Radwan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mai A. Abd El Fattah
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Esmat A. Shabaan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Sanaa A. Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Liu Q, Gao Z, Zhu X, Wu Z, Li D, He H, Huang F, Fan W. Changes in nitric oxide synthase isoforms in the trigeminal ganglion of rat following chronic tooth pulp inflammation. Neurosci Lett 2016; 633:240-245. [PMID: 27687716 DOI: 10.1016/j.neulet.2016.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) possibly plays an important role in the events resulting in hyperalgesia. NO synthase (NOS) is a key enzyme in the production of NO. Changes in NOS expression in primary sensory neurons may be involved in the persistent sensory abnormalities that can be induced by inflammation. To assess the possible roles of NOS in trigeminal sensory system, we studied changes in the expression of NOS isoforms in the trigeminal ganglion (TG) following chronic inflammation after pulp exposure (PX) in rats. The neurons innervating injured tooth in the TG were labeled by fluoro-gold (FG). Immunohistochemical staining was used to reveal the presence of NOS. The results showed that within the FG-labeled population, neuron counts revealed a significant increase in the proportion of NOS neurons following PX, in which the frequency of iNOS and nNOS-positive neurons started to increase at 3 and 7day, respectively, and peaked at 28day. There was no eNOS expression observed in the control group and PX-treated groups. The results demonstrate that PX-induced chronic pulpal inflammation results in significant increase of nNOS and iNOS in the TG. It suggests that nNOS and iNOS could be involved in mediation of peripheral processing of nociceptive information following chronic tooth pulp inflammation.
Collapse
Affiliation(s)
- Qin Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhixiong Gao
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Zhi Wu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Antinociceptive effect of 1400 W, an inhibitor of inducible nitric oxide synthase, following hind paw incision in rats. Nitric Oxide 2015; 50:98-104. [PMID: 26362773 DOI: 10.1016/j.niox.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/29/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022]
Abstract
Acute tissue damage is accompanied by synthesis of nitric oxide (NO) in the inflamed tissue as well as in the spinal cord. NO release at the spinal level is likely involved in the neuroplastic changes contributing to pain. Also, previous studies indicate that this could be due to the inducible isoform of the nitric oxide synthase (iNOS) enzyme. Though, the role of NO has been investigated in several animal models of nociception, the precise contribution of NO to nociception arising from hind paw incision is unknown, which is a rodent model of postoperative pain. In the present work, we have estimated the formation of NO in Sprague-Dawley rats, both at the site of incision and the corresponding spinal cord levels by Griess assay. Subsequently, naive rats were implanted with chronic indwelling intrathecal (i.t.) catheters. Fixed quantity (30 μg) of 1400 W, an iNOS inhibitor, was either administered locally into the wound at the time of incision or into the i.t. space, 15 min before hind paw incision. In a different set, i.t. 1400 W was administered, 20 h after incision. Control group received i.t. saline. Nociception was evaluated by guarding score, mechanical allodynia and thermal hyperalgesia. NO level was significantly increased between 4 h - day 1 locally and at 4 h at the spinal level after incision. Local inhibition of iNOS produced transient decrease of guarding (4-12 h) whereas pronounced decrease of guarding and allodynia was evident after spinal inhibition of iNOS. Also, spinal NO level decreased after i.t. drug administration. Post-incision drug treatment resulted in greater antinociceptive effect at day 1 though not on day 2. These results indicate involvement of NO in postincisional nociception in rats.
Collapse
|
17
|
Twisk FNM. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms. World J Methodol 2015; 5:68-87. [PMID: 26140274 PMCID: PMC4482824 DOI: 10.5662/wjm.v5.i2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/10/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional “malaise”: a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional “malaise” and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially.
Collapse
|
18
|
Rocha MG, Gomes VA, Tanus-Santos JE, Rosa-e-Silva JC, Candido-dos-Reis FJ, Nogueira AA, Poli-Neto OB. Reduction of blood nitric oxide levels is associated with clinical improvement of the chronic pelvic pain related to endometriosis. ACTA ACUST UNITED AC 2015; 48:363-9. [PMID: 25714893 PMCID: PMC4418368 DOI: 10.1590/1414-431x20143619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 10/29/2014] [Indexed: 11/21/2022]
Abstract
The objective of this prospective study was to determine the plasma levels of nitric
oxide (NO) in women with chronic pelvic pain secondary to endometriosis (n=24) and
abdominal myofascial pain syndrome (n=16). NO levels were measured in plasma
collected before and 1 month after treatment. Pretreatment NO levels (μM) were lower
in healthy volunteers (47.0±12.7) than in women with myofascial pain (64.2±5.0,
P=0.01) or endometriosis (99.5±12.9, P<0.0001). After treatment, plasma NO levels
were reduced only in the endometriosis group (99.5±12.9 vs 61.6±5.9,
P=0.002). A correlation between reduction of pain intensity and reduction of NO level
was observed in the endometriosis group [correlation = 0.67 (95%CI = 0.35 to 0.85),
P<0.0001]. Reduction of NO levels was associated with an increase of pain
threshold in this group [correlation = -0.53 (-0.78 to -0.14), P<0.0001]. NO
levels appeared elevated in women with chronic pelvic pain diagnosed as secondary to
endometriosis, and were directly associated with reduction in pain intensity and
increase in pain threshold after treatment. Further studies are needed to investigate
the role of NO in the pathophysiology of pain in women with endometriosis and its
eventual association with central sensitization.
Collapse
Affiliation(s)
- M G Rocha
- Faculdade de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brasil
| | - V A Gomes
- Hospital Universitário, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - J E Tanus-Santos
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J C Rosa-e-Silva
- Departamento de Ginecologia e Obstetrícia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F J Candido-dos-Reis
- Departamento de Ginecologia e Obstetrícia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A A Nogueira
- Departamento de Ginecologia e Obstetrícia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O B Poli-Neto
- Departamento de Ginecologia e Obstetrícia, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
19
|
Huang F, He H, Fan W, Liu Y, Zhou H, Cheng B. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion. Neural Regen Res 2014; 8:2991-3002. [PMID: 25206619 PMCID: PMC4146210 DOI: 10.3969/j.issn.1673-5374.2013.32.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Abstract
Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.
Collapse
Affiliation(s)
- Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Hongwen He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Yongliang Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Hongyu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Bin Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| |
Collapse
|
20
|
Carr FB, Géranton SM, Hunt SP. Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn. Mol Pain 2014; 10:39. [PMID: 24947159 PMCID: PMC4080690 DOI: 10.1186/1744-8069-10-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Background Descending control of nociceptive processing, by pathways originating in the rostral ventromedial medulla (RVM) and terminating in the dorsal horn, contributes to behavioural hypersensitivity in a number of pain models. Two facilitatory pathways have been identified and are characterized by serotonin (5-HT) content or expression of the mu opiate receptor. Here we investigated the contribution of these pathways to inflammatory joint pain behaviour and gene expression changes in the dorsal horn. Results Selective lesion of the descending serotonergic (5-HT) pathway by prior intrathecal administration of 5,7-dihydroxytryptamine attenuated hypersensitivity at early time points following ankle injection of CFA. In a separate study ablation of the mu opioid receptor expressing (MOR+) cells of the RVM, by microinjection of the toxin dermorphin-saporin, resulted in a more prolonged attenuation of hypersensitivity post CFA. Microarray analysis was carried out to identify changes in dorsal horn gene expression associated with descending facilitation by the MOR+ pathway at 7d post joint inflammation. This analysis led to the identification of a number of genes including the chemokines Cxcl9 and Cxcl10, their common receptor Cxcr3, and the proinflammatory gene Nos2 (inducible nitric oxide synthase, iNOS). Conclusions These findings demonstrate that joint pain behaviour is dependent in part on descending facilitation via the RVM, and identify a novel pathway driving CXC chemokine and iNOS expression in the dorsal horn.
Collapse
Affiliation(s)
| | | | - Stephen P Hunt
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Barbanti P, Egeo G, Aurilia C, Fofi L, Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert Opin Investig Drugs 2014; 23:1141-8. [PMID: 24818644 DOI: 10.1517/13543784.2014.918953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Ample evidence that nitric oxide (NO) is a causative molecule in migraine has encouraged research to develop drugs that target the NO-cGMP cascade for migraine treatment. NO synthase (NOS) inhibition is an innovative therapeutic principle. AREAS COVERED This paper reviews the rationale underlying NOS inhibition in migraine treatment. It also provides a review on the efficacy and safety data for NOS inhibitors (nonselective NOS inhibitor L-N(G)-methyl-arginine hydrochloride [L-NMMA], selective inducible NOS [iNOS] inhibitors GW273629 and GW274150, combined neuronal NOS [nNOS] inhibitor and 5-HT1B/1D receptor agonist NXN-188) in acute or preventive migraine treatment. EXPERT OPINION The data highlighted herein, from four placebo-controlled trials and 1 open-labeled clinical trial using 4 different NOS inhibitors on a total of 705 patients, provide convincing efficacy data only for the nonselective NOS inhibitor L-NMMA. Unfortunately, this NOS inhibitor raises cardiovascular safety concerns and has an unfavorable pharmacokinetic profile. As experimental studies predicted, iNOS inhibitors are ineffective in migraine. Still, upcoming selective nNOS inhibitors are a hope for migraine treatment, with the nNOS isoform being most clearly involved in trigeminovascular transmission and central sensitization. Future studies should help to clarify whether NOS inhibition is equally fruitful in acute and preventive treatment. It should also clarify if nNOS inhibition holds promise as a therapeutic tool for the treatment of chronic migraine and other forms of headache.
Collapse
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana , Rome , Italy
| | | | | | | | | |
Collapse
|
22
|
Jay M, Bradley S, McDearmid JR. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One 2014; 9:e86930. [PMID: 24489806 PMCID: PMC3904980 DOI: 10.1371/journal.pone.0086930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.
Collapse
Affiliation(s)
- Michael Jay
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Sophie Bradley
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Jonathan Robert McDearmid
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Neuroprotective activity of thioctic acid in central nervous system lesions consequent to peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:985093. [PMID: 24527432 PMCID: PMC3914604 DOI: 10.1155/2013/985093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (−)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/−)-, (+)-, or (−)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/−)- or (−)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
Collapse
|
24
|
Chopra K, Arora V. An intricate relationship between pain and depression: clinical correlates, coactivation factors and therapeutic targets. Expert Opin Ther Targets 2013; 18:159-76. [PMID: 24295272 DOI: 10.1517/14728222.2014.855720] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION An apparent clinical relationship between pain and depression has long been recognized, which makes an enormous impact on the individual health care. At present, the practical implication of such overlapping symptomatology between pain and depression is not clear, but the prevalence estimates for depression are substantially inflated among patients with chronic pain and vice versa. This interaction has been labeled as the depression-pain syndrome or depression-pain dyad. AREAS COVERED This article discusses the neurobiological substrates and neuroanatomical pathways involved in pain-depression dyad along with newer therapeutic targets. EXPERT OPINION Several key themes emerged from our review of the relationship between depression and pain. First, the diagnosis of depression in pain or vice versa is particularly challenging, and the development of better diagnostic framework that involves both pain and depression is particularly required. Secondly, the entwined relationship between pain and depression supports the possibility of common coactivating factors that results in their neurophysiological overlap. A broad understanding of the role played by the central nervous system (CNS) in the processing of pain and depression may eventually lead to the introduction of triple reuptake inhibitors, agomelatine, vilazodone and ketamine with novel mechanism of action, hence appear to be of promising potential for pain with depression.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Panjab University, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Pharmacology Research Laboratory , Chandigarh-160 014 , India +91 172 2534105 ; +91 172 2541142 ;
| | | |
Collapse
|
25
|
Carrión MD, Chayah M, Entrena A, López A, Gallo MA, Acuña-Castroviejo D, Camacho ME. Synthesis and biological evaluation of 4,5-dihydro-1H-pyrazole derivatives as potential nNOS/iNOS selective inhibitors. Part 2: Influence of diverse substituents in both the phenyl moiety and the acyl group. Bioorg Med Chem 2013; 21:4132-42. [DOI: 10.1016/j.bmc.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
26
|
Sushko BS. Interaction between Antinociceptive Effects of Preventive Microwave Irradiation of an Acupuncture Point and Pharmacological Blocking of NO Synthase in Mice. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Chun YH, Auh QS, Lee J, Ro JY. Masseter inflammation differentially regulates three nitric oxide synthases in the rat trigeminal subnucleus caudalis. Arch Oral Biol 2012; 57:1141-6. [PMID: 22480457 DOI: 10.1016/j.archoralbio.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 01/09/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate changes in expression levels of three nitric oxide synthases (NOSs), namely inducible NOS (iNOS), neuronal NOS (nNOS) and endothelial NOS (eNOS), in the subnucleus caudalis of the trigeminal sensory nuclear complex (Vc) under experimental myositis conditions. DESIGN Male Sprague Dawley rats were injected with an inflammatory agent, complete Freund's adjuvant (CFA), or capsaicin in the masseter muscle. The brainstem region containing the Vc was extracted at both immediate (30 and 60 min) and longer (1, 3, 7 days) time points to examine the changes in the three NOS protein levels via the Western blot technique. Subsequently, the RT-PCR experiments were carried out to verify the changes in iNOS mRNA. RESULTS Following the injections of CFA, there were no significant changes in the level of the three NOS proteins at the immediate time points. However, there was a significant upregulation of iNOS mRNA and protein 3 days after CFA-induced inflammation. Neither nNOS nor eNOS showed significant changes in the protein level at any of the longer time points. Capsaicin injection in the masseter, which we recently reported to upregulate all three NOS at the immediate time points, did not result in significant changes at longer time points. CONCLUSION Acute and chronic muscle inflammation differentially modulates the expression of the three NOS in the Vc. These data suggest that the contribution of each NOS in craniofacial muscle pain processing under inflammatory conditions may be anticipated with distinct temporal profiles.
Collapse
Affiliation(s)
- Yang Hyun Chun
- Kyung Hee University, School of Dentistry, Department of Oral Medicine, 1 Hoegi Dong, Dongdaemun Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Tiwari V, Kuhad A, Chopra K. Neuroprotective Effect of Vitamin E Isoforms Against Chronic Alcohol-induced Peripheral Neurotoxicity: Possible Involvement of Oxidative-Nitrodative Stress. Phytother Res 2012; 26:1738-45. [DOI: 10.1002/ptr.4635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/21/2011] [Accepted: 01/25/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| |
Collapse
|
29
|
Finkel J, Guptill V, Khaibullina A, Spornick N, Vasconcelos O, Liewehr DJ, Steinberg SM, Quezado ZM. The three isoforms of nitric oxide synthase distinctively affect mouse nocifensive behavior. Nitric Oxide 2012; 26:81-8. [PMID: 22202903 PMCID: PMC3413204 DOI: 10.1016/j.niox.2011.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/27/2011] [Accepted: 12/12/2011] [Indexed: 11/23/2022]
Abstract
Nitric oxide synthases (NOSs) have been shown to modulate thermal hyperalgesia and mechanical hypersensitivity in inflammatory and neuropathic pain. However, little is known about the effect of NOSs on baseline function of sensory nerve fibers. Using genetic deficiency and pharmacologic inhibition of NOSs, we examined the impact of the three isoforms NOS1, NOS2, and NOS3 on baseline nocifensive behavior by measuring current vocalization threshold in response to electrical stimulation at 5, 250, 2000 Hz that preferentially stimulate C, Aδ, and Aβ fibers. In response to 5, 250 and 2000 Hz, NOS1-deficient animals had significantly higher current vocalization thresholds compared with wild-type. Genetic deficiency of NOS2 was associated with higher current vocalization thresholds in response to 5 Hz (C-fiber) stimulation. In contrast, NOS3-deficient animals had an overall weak trend toward lower current vocalization thresholds at 5 Hz and significantly lower current vocalization threshold compared with wild-type animals at 250 and 2000 Hz. Therefore, NOSs distinctively affect baseline mouse current vocalization threshold and appear to play a role on nocifensive response to electrical stimulation of sensory nerve fibers.
Collapse
Affiliation(s)
- Julia Finkel
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Virginia Guptill
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD 20892, United States
| | - Alfia Khaibullina
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Nicholas Spornick
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
| | - Olavo Vasconcelos
- Electromyography Laboratory, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA, United States
| | - David J. Liewehr
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Seth M. Steinberg
- Biostatistics & Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zenaide M.N. Quezado
- Division of Anesthesiology and Pain Medicine, The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010, United States
- Department of Perioperative Medicine, NIH Clinical Center, Bethesda, MD 20892, United States
| |
Collapse
|
30
|
Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpine-induced pain-depression dyad: behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology 2011; 36:1570-81. [PMID: 21612876 DOI: 10.1016/j.psyneuen.2011.04.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 01/19/2023]
Abstract
An apparent clinical relationship between pain and depression has long been recognized. Depression and pain are often diagnosed in the same patients. The emerging concept for pain-depression pathogenesis is the dysfunction of biogenic amine-mediated pain-depression control and the possible involvement of nitrodative stress-induced neurogenic inflammation. The present study was designed to investigate the effect of curcumin on reserpine-induced pain-depression dyad in rats. Administration of reserpine (1mg/kg subcutaneous daily for three consecutive days) led to a significant decrease in nociceptive threshold as evident from reduced paw withdrawal threshold in Randall Sellitto and von-Frey hair test as well as significant increase in immobility time in forced swim test. This behavioural deficit was integrated with decrease in the biogenic amine (dopamine, norepinephrine and serotonin) levels along with increased substance P concentration, nitrodative stress, inflammatory cytokines, NF-κβ and caspase-3 levels in different brain regions (cortex and hippocampus) of the reserpinised rats. Curcumin (100, 200, 300mg/kg; ip) dose dependently ameliorated the behavioural deficits associated with pain and depression by restoring behavioural, biochemical, neurochemical and molecular alterations against reserpine-induced pain-depression dyad in rats.
Collapse
Affiliation(s)
- V Arora
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
31
|
Chopra K, Kuhad A, Arora V. Neoteric pharmacotherapeutic targets in fibromyalgia. Expert Opin Ther Targets 2011; 15:1267-81. [DOI: 10.1517/14728222.2011.617366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Kumar S, Ruchi R, James SR, Chidiac EJ. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? PAIN MEDICINE 2011; 12:808-22. [PMID: 21564510 DOI: 10.1111/j.1526-4637.2011.01120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic neuropathic pain has been an enigma to physicians and researchers for decades. A better understanding of its pathophysiology has given us more insight into its various mechanisms and possible treatment options. We now have an understanding of the role of various ionic channels, biologically active molecules involved in pain, and also the intricate pain pathways where possible interventions might lead to substantial pain relief. The recent research on laboratory animals using virus-based vectors for gene transfer at targeted sites is very promising and may lead to additional human clinical trials. However, one needs to be aware that this "novel" approach is still in its infancy and that many of its details need to be further elucidated. The purpose of this article is to thoroughly review the current available literature and analyze the deficiencies in our current knowledge. DESIGN Literature review. METHODS After an extensive online literature search, a total of 133 articles were selected to synthesize a comprehensive review about chronic neuropathic pain and gene therapy in order to understand the concepts and mechanisms. RESULTS Most of the studies have shown benefits of gene therapy in animal models, and recently, phase 1 human trials using herpes simplex virus vector have started for intractable cancer pain. CONCLUSION Although animal data have shown safety and efficacy, and initial human trials have been promising, additional studies in humans are required to more completely understand the actual benefits and risks of using gene therapy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Anesthesiology, Wayne State University/Detroit Medical Center, Harper University Hospital, MI 48201, USA
| | | | | | | |
Collapse
|
33
|
Potential mechanisms of prospective antimigraine drugs: A focus on vascular (side) effects. Pharmacol Ther 2011; 129:332-51. [DOI: 10.1016/j.pharmthera.2010.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022]
|
34
|
Symons KT, Nguyen PM, Massari ME, Anzola JV, Staszewski LM, Wang L, Yazdani N, Dorow S, Muhammad J, Sablad M, Rozenkrants N, Bonefous C, Payne JE, Rix PJ, Shiau AK, Noble SA, Smith ND, Hassig CA, Zhang Y, Rao TS. Pharmacological characterization of KLYP961, a dual inhibitor of inducible and neuronal nitric-oxide synthases. J Pharmacol Exp Ther 2011; 336:468-78. [PMID: 21036913 DOI: 10.1124/jpet.110.172817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Nitric oxide (NO) derived from neuronal nitric-oxide synthase (nNOS) and inducible nitric-oxide synthase (iNOS) plays a key role in various pain and inflammatory states. KLYP961 (4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one) inhibits the dimerization, and hence the enzymatic activity of human, primate, and murine iNOS and nNOS (IC(50) values 50-400 nM), with marked selectivity against endothelial nitric-oxide synthase (IC(50) >15,000 nM). It has ideal drug like-properties, including excellent rodent and primate pharmacokinetics coupled with a minimal off-target activity profile. In mice, KLYP961 attenuated endotoxin-evoked increases in plasma nitrates, a surrogate marker of iNOS activity in vivo, in a sustained manner (ED(50) 1 mg/kg p.o.). KLYP961 attenuated pain behaviors in a mouse formalin model (ED(50) 13 mg/kg p.o.), cold allodynia in the chronic constriction injury model (ED(50) 25 mg/kg p.o.), or tactile allodynia in the spinal nerve ligation model (ED(50) 30 mg/kg p.o.) with similar efficacy, but superior potency relative to gabapentin, pregabalin, or duloxetine. Unlike morphine, the antiallodynic activity of KLYP961 did not diminish upon repeated dosing. KLYP961 also attenuated carrageenin-induced edema and inflammatory hyperalgesia and writhing response elicited by phenylbenzoquinone with efficacy and potency similar to those of celecoxib. In contrast to gabapentin, KLYP961 did not impair motor coordination at doses as high as 1000 mg/kg p.o. KLYP961 also attenuated capsaicin-induced thermal allodynia in rhesus primates in a dose-related manner with a minimal effective dose (≤ 10 mg/kg p.o.) and a greater potency than gabapentin. In summary, KLYP961 represents an ideal tool with which to probe the physiological role of NO derived from iNOS and nNOS in human pain and inflammatory states.
Collapse
Affiliation(s)
- Kent T Symons
- Department of Biology, Kalypsys Inc, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Payne JE, Bonnefous C, Symons KT, Nguyen PM, Sablad M, Rozenkrants N, Zhang Y, Wang L, Yazdani N, Shiau AK, Noble SA, Rix P, Rao TS, Hassig CA, Smith ND. Discovery of dual inducible/neuronal nitric oxide synthase (iNOS/nNOS) inhibitor development candidate 4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one (KD7332) part 2: identification of a novel, potent, and selective series of benzimidazole-quinolinone iNOS/nNOS dimerization inhibitors that are orally active in pain models. J Med Chem 2010; 53:7739-55. [PMID: 20931971 DOI: 10.1021/jm100828n] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three isoforms of nitric oxide synthase (NOS), dimeric enzymes that catalyze the formation of nitric oxide (NO) from arginine, have been identified. Inappropriate or excessive NO produced by iNOS and/or nNOS is associated with inflammatory and neuropathic pain. Previously, we described the identification of a series of amide-quinolinone iNOS dimerization inhibitors that although potent, suffered from high clearance and limited exposure in vivo. By conformationally restricting the amide of this progenitor series, we describe the identification of a novel series of benzimidazole-quinolinone dual iNOS/nNOS inhibitors with low clearance and sustained exposure in vivo. Compounds were triaged utilizing an LPS challenge assay coupled with mouse and rhesus pharmacokinetics and led to the identification of 4,7-imidazopyrazine 42 as the lead compound. 42 (KD7332) (J. Med. Chem. 2009, 52, 3047 - 3062) was confirmed as an iNOS dimerization inhibitor and was efficacious in the mouse formalin model of nociception and Chung model of neuropathic pain, without showing tolerance after repeat dosing. Further 42 did not affect motor coordination up to doses of 1000 mg/kg, demonstrating a wide therapeutic margin.
Collapse
Affiliation(s)
- Joseph E Payne
- Department of Chemistry, Kalypsys, Inc, 10420 Wateridge Circle, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Felice M, Ossipov MH, Wang R, Dussor G, Lai J, Meng ID, Chichorro J, Andrews JS, Rakhit S, Maddaford S, Dodick D, Porreca F. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain 2010; 133:2475-88. [PMID: 20627971 DOI: 10.1093/brain/awq159] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Migraine is a common neurological disorder often treated with triptans. Triptan overuse can lead to increased frequency of headache in some patients, a phenomenon termed medication overuse headache. Previous preclinical studies have demonstrated that repeated or sustained triptan administration for several days can elicit persistent neural adaptations in trigeminal ganglion cells innervating the dura, prominently characterized by increased labelling of neuronal profiles for calcitonin gene related peptide. Additionally, triptan administration elicited a behavioural syndrome of enhanced sensitivity to surrogate triggers of migraine that was maintained for weeks following discontinuation of drug, a phenomenon termed 'triptan-induced latent sensitization'. Here, we demonstrate that triptan administration elicits a long-lasting increase in identified rat trigeminal dural afferents labelled for neuronal nitric oxide synthase in the trigeminal ganglion. Cutaneous allodynia observed during the period of triptan administration was reversed by NXN-323, a selective inhibitor of neuronal nitric oxide synthase. Additionally, neuronal nitric oxide synthase inhibition prevented environmental stress-induced hypersensitivity in the post-triptan administration period. Co-administration of NXN-323 with sumatriptan over several days prevented the expression of allodynia and enhanced sensitivity to stress observed following latent sensitization, but not the triptan-induced increased labelling of neuronal nitric oxide synthase in dural afferents. Triptan administration thus promotes increased expression of neuronal nitric oxide synthase in dural afferents, which is critical for enhanced sensitivity to environmental stress. These data provide a biological basis for increased frequency of headache following triptans and highlight the potential clinical utility of neuronal nitric oxide synthase inhibition in preventing or treating medication overuse headache.
Collapse
Affiliation(s)
- Milena De Felice
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cha MH, Bai SJ, Lee KH, Cho ZH, Kim YB, Lee HJ, Lee BH. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats. Neurol Res 2010; 32 Suppl 1:96-100. [PMID: 20034455 DOI: 10.1179/016164109x12537002794363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. METHODS Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. RESULTS Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. DISCUSSION These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.
Collapse
Affiliation(s)
- Myeoung Hoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen Y, Boettger MK, Reif A, Schmitt A, Uçeyler N, Sommer C. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol Pain 2010; 6:13. [PMID: 20193086 PMCID: PMC2838835 DOI: 10.1186/1744-8069-6-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/02/2010] [Indexed: 11/10/2022] Open
Abstract
Background Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1β), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurology, University of Würzburg, Josef-Schneider-Str 11, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2402] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
|
40
|
Lee KY, Chung K, Chung JM. Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol 2009; 103:382-91. [PMID: 19906875 DOI: 10.1152/jn.90906.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies suggest that reactive oxygen species (ROS) are functional messenger molecules in central sensitization, an underlying mechanism of persistent pain. Because spinal cord long-term potentiation (LTP) is the electrophysiological basis of central sensitization, this study investigates the effects of the increased or decreased spinal ROS levels on spinal cord LTP. Spinal cord LTP is induced by either brief, high-frequency stimulation (HFS) of a dorsal root at C-fiber intensity or superfusion of a ROS donor, tert-butyl hydroperoxide (t-BOOH), onto rat spinal cord slice preparations. Field excitatory postsynaptic potentials (fEPSPs) evoked by dorsal root stimulations with either Abeta- or C-fiber intensity are recorded from the superficial dorsal horn. HFS significantly increases the slope of both Abeta- and C-fiber evoked fEPSPs, thus suggesting LTP development. The induction, not the maintenance, of HFS-induced LTP is blocked by a N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoic acid (D-AP5). Both the induction and maintenance of LTP of Abeta-fiber-evoked fEPSPs are inhibited by a ROS scavenger, either N-tert-butyl-alpha-phenylnitrone or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl. A ROS donor, t-BOOH-induced LTP is inhibited by N-tert-butyl-alpha-phenylnitrone but not by D-AP5. Furthermore, HFS-induced LTP and t-BOOH-induced LTP occlude each other. The data suggest that elevated ROS is a downstream event of NMDA receptor activation and an essential step for potentiation of synaptic excitability in the spinal dorsal horn.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 310 University Blvd., Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
41
|
Tesser-Viscaíno SA, Denadai-Souza A, Teixeira SA, Ervolino E, Cruz-Rizzolo RJ, Costa SK, Muscará MN, Casatti CA. Putative antinociceptive action of nitric oxide in the caudal part of the spinal trigeminal nucleus during chronic carrageenan-induced arthritis in the rat temporomandibular joint. Brain Res 2009; 1302:85-96. [DOI: 10.1016/j.brainres.2009.09.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
|
42
|
Komatsu T, Sakurada S, Kohno K, Shiohira H, Katsuyama S, Sakurada C, Tsuzuki M, Sakurada T. Spinal ERK activation via NO-cGMP pathway contributes to nociceptive behavior induced by morphine-3-glucuronide. Biochem Pharmacol 2009; 78:1026-34. [PMID: 19589334 DOI: 10.1016/j.bcp.2009.06.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Intrathecal (i.t.) injection of morphine-3-glucuronide (M3G), a major metabolite of morphine without analgesic actions, produces a severe hindlimb scratching followed by biting and licking in mice. The pain-related behavior evoked by M3G was inhibited dose-dependently by i.t. co-administration of tachykinin NK(1) receptor antagonists, sendide, [D-Phe(7), D-His(9)] substance P(6-11), CP-99994 or RP-67580 and i.t. pretreatment with antiserum against substance P. The competitive NMDA receptor antagonists, D-APV and CPP, the NMDA ion-channel blocker, MK-801 or the competitive antagonist of the polyamine recognition site of NMDA receptor ion-channel complex, ifenprodil, produced inhibitory effects on i.t. M3G-evoked nociceptive response. The NO-cGMP-PKG pathway, which involves the extracellular signal-regulated kinase (ERK), has been implicated as mediators of plasticity in several pain models. Here, we investigated whether M3G could influence the ERK activation in the NO-cGMP-PKG pathway. The i.t. injection of M3G evoked a definite activation of ERK in the lumbar dorsal spinal cord, which was prevented dose-dependently by U0126, a MAP kinase-ERK inhibitor. The selective nNOS inhibitor N(omega)-propyl-l-arginine, the selective iNOS inhibitor W1400, the soluble guanylate cyclase inhibitor ODQ and the PKG inhibitor KT-5823 inhibited dose-dependently the nociceptive response to i.t. M3G. In western blotting analysis, inhibiting M3G-induced nociceptive response using these inhibitors resulted in a significant blockade of ERK activation induced by M3G in the spinal cord. Taken together, these results suggest that activation of the spinal ERK signaling in the NO-cGMP-PKG pathway contributes to i.t. M3G-evoked nociceptive response.
Collapse
Affiliation(s)
- Takaaki Komatsu
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Çimen ÖB, Çimen MYB, Yapici Y, Çamdeviren H. Arginase, NOS Activities, and Clinical Features in Fibromyalgia Patients. PAIN MEDICINE 2009; 10:813-8. [DOI: 10.1111/j.1526-4637.2009.00642.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Abstract
Hyperalgesia and allodynia are frequent symptoms of disease and may be useful adaptations to protect vulnerable tissues. Both may, however, also emerge as diseases in their own right. Considerable progress has been made in developing clinically relevant animal models for identifying the most significant underlying mechanisms. This review deals with experimental models that are currently used to measure (sect. II) or to induce (sect. III) hyperalgesia and allodynia in animals. Induction and expression of hyperalgesia and allodynia are context sensitive. This is discussed in section IV. Neuronal and nonneuronal cell populations have been identified that are indispensable for the induction and/or the expression of hyperalgesia and allodynia as summarized in section V. This review focuses on highly topical spinal mechanisms of hyperalgesia and allodynia including intrinsic and synaptic plasticity, the modulation of inhibitory control (sect. VI), and neuroimmune interactions (sect. VII). The scientific use of language improves also in the field of pain research. Refined definitions of some technical terms including the new definitions of hyperalgesia and allodynia by the International Association for the Study of Pain are illustrated and annotated in section I.
Collapse
Affiliation(s)
- Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Willis WD. The role of TRPV1 receptors in pain evoked by noxious thermal and chemical stimuli. Exp Brain Res 2009; 196:5-11. [PMID: 19294370 DOI: 10.1007/s00221-009-1760-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/26/2009] [Indexed: 12/20/2022]
Abstract
Transient receptor potential receptors (TRP) on primary afferent neurons respond to noxious and/or thermal stimuli. TRPV1 receptors can be activated by noxious heat, acid, capsaicin and resiniferatoxin, leading to burning pain or itch mediated by discharges in C polymodal and Adelta mechano-heat nociceptors and in central neurons, including spinothalamic tract (STT) cells. Central nociceptive transmission involves both non-NMDA and NMDA receptors, and inhibitory interneurons as well as projection neurons contribute to the neural interactions. Behavioral consequences of intradermal injection of capsaicin include pain, as well as primary and secondary hyperalgesia and allodynia. Primary hyperalgesia depends on sensitization of peripheral nociceptors, whereas, secondary hyperalgesia and allodynia result from sensitization of central nociceptive neurons, such as STT cells. Central sensitization is associated with enhanced responses to excitatory amino acids and decreased responses to inhibitory amino acids. The mechanism of the increase in responses to excitatory amino acids includes phosphorylation of NR1 subunits of NMDA receptors and GluR1 subunits of AMPA receptors. Central sensitization depends on activation of several protein kinases and other enzymes, such as nitric oxide synthase. This process is regulated by protein phosphatases. Central sensitization can be regarded as a spinal cord form of long-term potentiation.
Collapse
Affiliation(s)
- William D Willis
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| |
Collapse
|
46
|
Donnerer J, Liebmann I, Schuligoi R. Capsaicin- and Mustard Oil-Induced Extracellular Signal-Regulated Protein Kinase Phosphorylation in Sensory Neuronsin vivo: Effects of Neurokinins 1 and 2 Receptor Antagonists and of a Nitric Oxide Synthase Inhibitor. Basic Clin Pharmacol Toxicol 2009; 104:11-6. [DOI: 10.1111/j.1742-7843.2008.00338.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Lee JS, Zhang Y, Ro JY. Involvement of neuronal, inducible and endothelial nitric oxide synthases in capsaicin-induced muscle hypersensitivity. Eur J Pain 2008; 13:924-8. [PMID: 19084437 DOI: 10.1016/j.ejpain.2008.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/01/2008] [Accepted: 11/02/2008] [Indexed: 01/11/2023]
Abstract
Nitric oxide, which has been implicated in the development of hyperalgesia in the spinal system, has not been systematically studied in the trigeminal system, especially in the context of inflammatory muscle pain condition. In this study, we investigated the functional role of centrally released nitric oxide in the pathogenesis of orofacial muscle pain. Specifically, we examined the contribution of neuronal, inducible and endothelial nitric oxide synthases, nNOS, iNOS and eNOS, respectively, in mediating masseter hypersensitivity under acute inflammatory condition. Time-dependent changes in nNOS, iNOS and eNOS protein expression in the subnucleus caudalis (Vc) were assessed following capsaicin injection in the masseter muscle of male Sprague Dawley rats. The expression of all three nitric oxide synthases was significantly up-regulated 30-60 min following capsaicin stimulation, which paralleled the time course of the development of capsaicin-induced masseter hypersensitivity. Pretreatment with each NOS inhibitor significantly attenuated the masseter hypersensitivity. These data showed that all three NOS in the Vc are functionally important for the development of craniofacial muscle hyperalgesia and suggest that the three NOS are closely orchestrated to regulate the level of nitric oxide under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jong-Seok Lee
- Department of Neural and Pain Sciences, University of Maryland Baltimore, School of Dentistry, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
48
|
Fan W, Huang F, Li C, Qu H, Gao Z, Leng S, Li D, He H. Involvement of NOS/NO in the development of chronic dental inflammatory pain in rats. ACTA ACUST UNITED AC 2008; 59:324-32. [PMID: 19013482 DOI: 10.1016/j.brainresrev.2008.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) is believed to be an important messenger molecule in nociceptive transmission. To assess the possible roles of NO in trigeminal sensory system, we examined the distribution and density of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), and immunohistochemical staining for c-Fos, a neuronal activity marker, in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) following pulp exposure (PX) injured rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Teeth were processed for H&E staining. We found that NADPH-d activity increased significantly in the TG and Vc following PX pretreatment (7-28 days, especially in 21-28 days). Such changes were closely corresponding to the pattern of c-Fos detected by immunocytochemistry. The results demonstrate that PX-induced chronic pulpal inflammation results in significant alterations in the TG cells and in the Vc, and such changes may underlie the observed NADPH-d activity. It suggests that NOS/NO may play an active role in both peripheral and central processing of nociceptive information following chronic tooth inflammation.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Wu J, Lin Q, Nauta H, Yue Y, Fang L. Effects of general anesthetics on visceral pain transmission in the spinal cord. Mol Pain 2008; 4:50. [PMID: 18973669 PMCID: PMC2584043 DOI: 10.1186/1744-8069-4-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/30/2008] [Indexed: 12/30/2022] Open
Abstract
Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. Animal studies report that persistent changes including nociception-associated molecular expression (e.g. neurokinin-1 (NK-1) receptors) and activation of signal transduction cascades (such as the protein kinase A [PKA]-c-AMP-responsive element binding [CREB] cascade)-in spinal PSDC neurons are observed following visceral pain stimulation. The clinical practice of interruption of the spinal PSDC pathway in patients with cancer pain further supports a role of this group of neurons in the development and maintenance of visceral pain. We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, PR China.
| | | | | | | | | | | |
Collapse
|
50
|
Infante C, Díaz M, Hernández A, Constandil L, Pelissier T. Expression of nitric oxide synthase isoforms in the dorsal horn of monoarthritic rats: effects of competitive and uncompetitive N-methyl-D-aspartate antagonists. Arthritis Res Ther 2008; 9:R53. [PMID: 17521446 PMCID: PMC2206346 DOI: 10.1186/ar2208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/10/2007] [Accepted: 05/23/2007] [Indexed: 11/29/2022] Open
Abstract
Chronic pain is associated with N-methyl-D-aspartate (NMDA) receptor activation and downstream production of nitric oxide, which has a pivotal role in multisynaptic local circuit nociceptive processing in the spinal cord. The formation of nitric oxide is catalyzed by three major nitric oxide synthase (NOS) isoforms (neuronal, nNOS; inducible, iNOS; endothelial, eNOS), which are increased in the spinal cord of rodents subjected to some tonic and chronic forms of experimental pain. Despite the important role of NOS in spinal cord nociceptive transmission, there have been no studies exploring the effect of NMDA receptor blockade on NOS expression in the dorsal horn during chronic pain. Furthermore, NOS isoforms have not been fully characterized in the dorsal horn of animals subjected to arthritic pain. The aim of this work was therefore to study the expression of nNOS, iNOS and eNOS in the dorsal horns of monoarthritic rats, and the modifications in NOS expression induced by pharmacological blockade of spinal cord NMDA receptors. Monoarthritis was produced by intra-articular injection of complete Freund's adjuvant into the right tibio-tarsal joint. At week 4, monoarthritic rats were given either the competitive NMDA antagonist (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or the uncompetitive NMDA antagonist ketamine. After 6 and 24 hours, animals were killed and posterior quadrants of the lumbar spinal cord were dissected. Sample tissues were homogenized and subjected to immunoblotting with anti-nNOS, anti-iNOS or anti-eNOS monoclonal antibodies. The nNOS isoform, but not the iNOS and eNOS isoforms, were detected in the dorsal horns of control rats. Monoarthritis increased the expression of nNOS, iNOS and eNOS in the dorsal horns ipsilateral and contralateral to the inflamed hindpaw. Intrathecal administration of CPP and ketamine reduced nNOS expression in monoarthritic rats but increased the expression of iNOS and eNOS. Results suggest that blockade of spinal cord NMDA receptors produces complex regulatory changes in the expression of NOS isoforms in monoarthritic rats that may be relevant for nitridergic neuronal/glial mechanisms involved in the pathophysiology of monoarthritis and in the pharmacological response to drugs interacting with NMDA receptors.
Collapse
Affiliation(s)
- Claudio Infante
- Program of Physiopathology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Ave. Salvador 486, P.O. Box 16038 Santiago 9, Santiago, Chile
| | - Marcelo Díaz
- Program of Physiopathology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Ave. Salvador 486, P.O. Box 16038 Santiago 9, Santiago, Chile
| | - Alejandro Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Ave. B. Libertador B. O'Higgins 3363, P.O. Box 40 Correo 33, Santiago, Chile
| | - Luis Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Ave. B. Libertador B. O'Higgins 3363, P.O. Box 40 Correo 33, Santiago, Chile
| | - Teresa Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70000 Santiago 7, Santiago, Chile
| |
Collapse
|