1
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Sharma N, Phan HTT, Yoda T, Shimokawa N, Vestergaard MC, Takagi M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics (Basel) 2019; 4:biomimetics4010017. [PMID: 31105202 PMCID: PMC6477667 DOI: 10.3390/biomimetics4010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/03/2022] Open
Abstract
Capsaicin is a natural compound that produces a warm sensation and is known for its remarkable medicinal properties. Understanding the interaction between capsaicin with lipid membranes is essential to clarify the molecular mechanisms behind its pharmacological and biological effects. In this study, we investigated the effect of capsaicin on thermoresponsiveness, fluidity, and phase separation of liposomal membranes. Liposomal membranes are a bioinspired technology that can be exploited to understand biological mechanisms. We have shown that by increasing thermo-induced membrane excess area, capsaicin promoted membrane fluctuation. The effect of capsaicin on membrane fluidity was dependent on lipid composition. Capsaicin increased fluidity of (1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes, while it rigidified DOPC and cholesterol-based liposomes. In addition, capsaicin tended to decrease phase separation of heterogeneous liposomes, inducing homogeneity. We imagine this lipid re-organization to be associated with the physiological warming sensation upon consumption of capsaicin. Since capsaicin has been reported to have biological properties such as antimicrobial and as antiplatelet, the results will help unravel these biological properties.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Huong T T Phan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Tsuyoshi Yoda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | - Mun'delanji C Vestergaard
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan.
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
3
|
Su C, Ying W, Xiangming L, Xinxin P. Inhibitive effect of loureirin B plus capsaicin on tetrodotoxin-resistant sodium channel. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Duo L, Hu L, Tian N, Cheng G, Wang H, Lin Z, Wang Y, Yang Y. TRPV1 gain-of-function mutation impairs pain and itch sensations in mice. Mol Pain 2018; 14:1744806918762031. [PMID: 29424270 PMCID: PMC5846932 DOI: 10.1177/1744806918762031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel, which can detect various noxious stimuli that cause pain, inflammation, hyperalgesia, and itch. TRPV1 knock-out mice show deficiency in nociception, but the in vivo effects of persistent activation of TRPV1 are not completely understood. Here, we generated TRPV1 knock-in mice with a G564S mutation. In the heterologous expression system, an electrophysiological study showed that the G564S mutation in mouse TRPV1 caused increased basal current and a leftward shift of voltage dependence. Intriguingly, using behavioral analysis, we found that knock-in mice showed a thermosensory defect, impaired inflammatory thermal pain, and capsaicin sensitivity. We also demonstrated an attenuated behavioral response to the pruritic agent histamine in the knock-in mice. Indeed, calcium imaging together with electrophysiology showed that the overactive mutant had decreased capsaicin sensitivity. Western blot analysis revealed that the G564S mutant reduced TRPV1 phosphorylation and cell membrane trafficking. Together, we have generated a mouse model with a gain-of-function mutation in Trpv1 gene and demonstrated that the pain and histamine-dependent itch sensations in these mice are impaired due to a decreased phosphorylation level and reduced membrane localization of TRPV1.
Collapse
Affiliation(s)
- Lina Duo
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Department of Dermatology, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Linghan Hu
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Department of Dermatology, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Naxi Tian
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
| | - Gen Cheng
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
| | - Huijun Wang
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Department of Dermatology, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhimiao Lin
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yun Wang
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
| | - Yong Yang
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Department of Dermatology, Peking University First Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
5
|
Dang HX, Li J, Liu C, Fu Y, Zhou F, Tang L, Li L, Xu F. CGRP attenuates hyperoxia-induced oxidative stress-related injury to alveolar epithelial type II cells via the activation of the Sonic hedgehog pathway. Int J Mol Med 2017; 40:209-216. [PMID: 28560441 DOI: 10.3892/ijmm.2017.3002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/17/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effect of calcitonin gene-related peptide (CGRP) on primary alveolar epithelial type II (AECII) cells and expression of Sonic hedgehog (SHH) signaling pathway components following exposure to hyperoxia. The AECII cells were isolated and purified from premature rats and exposed to air (21% oxygen), air + CGRP, hyperoxia (95% oxygen) or hyperoxia + CGRP. The production of intracellular reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate molecular probe. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the culture supernatant were detected by spectrophotometry. The apoptosis of AECII cells was assayed by flow cytometry, and the mRNA and protein expression levels of Shh and Ptc1 in the AECII cells were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunofluorescence, respectively. The cellular pathological changes partly improved and apoptosis was markedly decreased upon treatment with CGRP under hyperoxic conditions. The levels of ROS in the hyperoxia + CGRP group were significantly lower than thoe in the hyperoxia group. In addition, the hyperoxia-induced increase in MDA levels and the decrease in SOD activity in the culture supernatant of the AECII cells were attenuated by CGRP. Compared with the cells exposed to air, hyperoxia markedly inhibited the mRNA and protein expression levels of Shh and Ptc1 in the AECII cells; however, this inhibition was partly attenuated by treatment with CGRP. On the whole, our data suggest that CGRP can partly protect AECII cells from hyperoxia-induced injury, and the upregulation of CGRP may be a potential therapeutic approach with which to combat hyperoxia-induced lung injury, which may be associated with the activation of the SHH signaling pathway.
Collapse
Affiliation(s)
- Hong-Xing Dang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Jing Li
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Chengjun Liu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Yueqiang Fu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Fang Zhou
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lei Tang
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Long Li
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Feng Xu
- Department of PICU, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| |
Collapse
|
6
|
Abdullah M, Mahowald ML, Frizelle SP, Dorman CW, Funkenbusch SC, Krug HE. The effect of intra-articular vanilloid receptor agonists on pain behavior measures in a murine model of acute monoarthritis. J Pain Res 2016; 9:563-70. [PMID: 27574462 PMCID: PMC4993562 DOI: 10.2147/jpr.s107385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Arthritis is the most common cause of disability in the US, and the primary manifestation of arthritis is joint pain that leads to progressive physical limitation, disability, morbidity, and increased health care utilization. Capsaicin (CAP) is a vanilloid agonist that causes substance P depletion by interacting with vanilloid receptor transient receptor potential V1 on small unmyelinated C fibers. It has been used topically for analgesia in osteoarthritis with variable success. Resiniferatoxin (RTX) is an ultra potent CAP analog. The aim of this study was to measure the analgesic effects of intra-articular (IA) administration of CAP and RTX in experimental acute inflammatory arthritis in mice. Evoked pain score (EPS) and a dynamic weight bearing (DWB) device were used to measure nociceptive behaviors in a murine model of acute inflammatory monoarthritis. A total of 56 C57B16 male mice underwent EPS and DWB testing – 24 nonarthritic controls and 32 mice with carrageenan-induced arthritis. The effects of pretreatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX were measured. Nociception was reproducibly demonstrated by increased EPS and reduced DWB measures in the affected limb of arthritic mice. Pretreatment with 0.001% RTX resulted in statistically significant improvement in EPS and DWB measures when compared with those observed in carrageenan-induced arthritis animals. Pretreatment with IA 0.0003% RTX and IA 0.01% CAP resulted in improvement in some but not all of these measures. The remaining 24 mice underwent evaluation following treatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX, and the results obtained were similar to that of naïve, nonarthritic mice.
Collapse
Affiliation(s)
- Mishal Abdullah
- Department of Medicine, Rheumatology Fellowship Training Program, University of Minnesota Medical School
| | - Maren L Mahowald
- Department of Medicine, Minneapolis Veterans' Affairs Health Care System
| | - Sandra P Frizelle
- Department of Medicine, Minneapolis Veterans' Affairs Health Care System
| | | | | | - Hollis E Krug
- Department of Medicine, Minneapolis Veterans' Affairs Health Care System; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
7
|
Fernandes ES, Cerqueira ARA, Soares AG, Costa SKP. Capsaicin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:91-125. [PMID: 27771922 DOI: 10.1007/978-3-319-41342-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.
Collapse
Affiliation(s)
- E S Fernandes
- Programa de Pós-Graduação, Universidade Ceuma, São Luís-MA, Brazil.,Vascular Biology Section, Cardiovascular Division, King's College London, London, UK
| | - A R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - A G Soares
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Giner JL, Schroeder TN. Polygonifoliol, a New Tirucallane Triterpene from the Latex of the Seaside SandmatEuphorbia polygonifolia. Chem Biodivers 2015; 12:1126-9. [DOI: 10.1002/cbdv.201400426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/08/2022]
|
9
|
Chen D, Xiong Y, Lin Y, Tang Z, Wang J, Wang L, Yao J. Capsaicin alleviates abnormal intestinal motility through regulation of enteric motor neurons and MLCK activity: Relevance to intestinal motility disorders. Mol Nutr Food Res 2015; 59:1482-90. [PMID: 26011134 DOI: 10.1002/mnfr.201500039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
SCOPE Capsaicin is an active component of chili peppers, having diverse effects. However, the effects of capsaicin on intestinal motility are still controversial. The present study aimed to investigate the effects of capsaicin on intestinal motility disorder and uncover related mechanisms. MATERIALS AND RESULTS A rat model with intestinal motility disorder was established in vitro through adding different stimuli into tissue bath; in vivo using constipation and diarrhea model, respectively. Capsaicin exerted dual effects on intestinal motility, i.e. the relaxation and contraction of jejunum induced by corresponding stimulus were, respectively, regulated to be normal contraction by capsaicin. The mechanisms underlined capsaicin-induced dual effects were investigated using Western blotting, qRT-PCR, and whole-cell patch clamp, respectively. Results showed that cholinergic excitatory nerves, adrenergic nerves, and neurons containing nitric oxide synthase, which are the main muscle motor neurons in enteric nervous system (ENS), are involved in capsaicin-induced dual effects. The competition for regulation of Ca(2+) influx by capsaicin induced the interaction with components of the ENS. Capsaicin significantly increased myosin light chain kinase (MLCK) expression and myosin phosphorylation extent in jejunal segments of constipation-prominent rats and significantly decreased MLCK expression and myosin phosphorylation extent in jejunal segments of diarrhea-prominent rats. CONCLUSION In summary, capsaicin alleviates abnormal intestinal motility through regulating enteric motor neurons and MLCK activity, which is beneficial for the treatment of gastrointestinal motility disorders.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China.,Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yongjian Xiong
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuan Lin
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
10
|
Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment. Brain Res 2015; 1618:212-21. [PMID: 26054303 DOI: 10.1016/j.brainres.2015.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/16/2022]
Abstract
To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.
Collapse
|
11
|
Dang H, Yang L, Wang S, Fang F, Xu F. Calcitonin gene-related peptide ameliorates hyperoxia-induced lung injury in neonatal rats. TOHOKU J EXP MED 2013; 227:129-38. [PMID: 22706400 DOI: 10.1620/tjem.227.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Therapies with prolonged exposure to high-concentration oxygen are common in the treatment of critical pulmonary and cardiac conditions in newborns. However, prolonged exposure to hyperoxia could result in lung damages and developmental disorders manifested as acute lung injury and bronchopulmonary dysplasia, respectively. Calcitonin gene-related peptide (CGRP) has been shown to have a broad regulatory effect on the respiratory system. In this study, we explored the protective effects of CGRP on the hyperoxia-induced lung damage. Newborn Sprague-Dawley rats were randomly divided into three groups: normoxia, hyperoxia, and hyperoxia with CGRP. Hyperoxia groups were exposed to 95% oxygen for 14 days and treated once every other day with saline or CGRP. Hyperoxia exposure reduced the survival rate to 73%, when compared with the 93% survival rate observed in the normoxia group. The survival rate was improved to 84% with CGRP treatment. Treatment with CGRP under hyperoxia significantly alleviated the hyperoxia-induced lung histomorphological changes and the increases in leukocyte counts and total protein levels in bronchoalveolar lavage fluid that reflect the pulmonary microvasular damages. CGRP treatment also restored the decreased activity of superoxide dismutase, while it decreased the increased level of malondialdehyde in the lung tissues. Importantly, CGRP treatment significantly decreased the magnitude of the hyperoxia-mediated increase in the expression levels of tumor necrosis factor-α mRNA and transforming growth factor-β 1 protein. In conclusion, the hyperoxia-induced acute lung injury is associated with both oxidative stress and inflammatory responses, and CGRP may ameliorate the hyperoxia-induced lung injury by down-regulating these processes.
Collapse
Affiliation(s)
- Hongxing Dang
- Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Yu Zhong District, Chongqing, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Kim NJ, Li FN, Lee JH, Park SG, Kim K, Lim C, Han YT, Yun H, Jung JW, Park HG, Kim HD, Woo BY, Shin SS, Kim SY, Choi JK, Jeong YS, Park Y, Park YH, Kim DD, Choi S, Suh YG. Heterocycle-linked Phenylbenzyl Amides as Novel TRPV1 Antagonists and Their TRPV1 Binding Modes: Constraint-Induced Enhancement of In Vitro and In Vivo Activities. Chem Asian J 2012. [DOI: 10.1002/asia.201200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nam-Jung Kim
- College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Blumberg PM, Pearce LV, Lee J. TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation. Curr Top Med Chem 2012; 11:2151-8. [PMID: 21671879 DOI: 10.2174/156802611796904825] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/18/2010] [Indexed: 12/26/2022]
Abstract
TRPV1 has emerged as a promising therapeutic target for pain as well as a broad range of other conditions such as asthma or urge incontinence. The identification of resiniferatoxin as an ultrapotent ligand partially able to dissect the acute activation of TRPV1 from subsequent desensitization and the subsequent intense efforts in medicinal chemistry have revealed that TRPV1 affords a dramatic landscape of opportunities for pharmacological manipulation. While agonism and antagonism have represented the primary directions for drug development, the pharmacological complexity of TRPV1 affords additional opportunities. Partial agonism/partial antagonism, its modulation by signaling pathways, variable desensitization, and slow kinetics of action can all be exploited through drug design.
Collapse
Affiliation(s)
- Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | |
Collapse
|
14
|
Saku O, Ishida H, Atsumi E, Sugimoto Y, Kodaira H, Kato Y, Shirakura S, Nakasato Y. Discovery of Novel 5,5-Diarylpentadienamides as Orally Available Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists. J Med Chem 2012; 55:3436-51. [DOI: 10.1021/jm300101n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Osamu Saku
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Hiroshi Ishida
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Eri Atsumi
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Yoshiyuki Sugimoto
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Hiroshi Kodaira
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Yoshimitsu Kato
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Shiro Shirakura
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| | - Yoshisuke Nakasato
- Fuji Research Park, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Suntou-gun,
Shizuoka 411-8731, Japan
| |
Collapse
|
15
|
Allergic rhinitis: an update on disease, present treatments and future prospects. Int Immunopharmacol 2011; 11:1646-62. [PMID: 21784174 DOI: 10.1016/j.intimp.2011.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/21/2011] [Accepted: 07/06/2011] [Indexed: 11/20/2022]
Abstract
Allergic rhinitis (AR) is an inflammation of nasal mucosa mediated by IgE-associated processes occurring independently, or concurrently with asthma. AR is characterized by sensitization-formation and expression of antigen specific IgE, followed by inflammation in two phases. The early phase response involves cross linking of IgE molecules leading to degranulation of mast cells and release of preformed mediators such as histamine and tryptase, or newly synthesized mediators such as prostaglandins and leukotrienes. The late phase response is predominated by the presence of eosinophils, lymphocytes, cytokines, and adhesion molecules. Newer insights reveal that the whole phenomenon of immunological inflammation is intricately knit with neural pathways, which strongly influence the process. Furthermore, AR can impact psychological health and vice versa. Classical pharmacotherapy of AR includes use of oral or topical antihistamines, oral antileukotrienes, topical corticosteroids, mast cell stabilizers, decongestants, and an anticholinergic agent. Among immunomodulatory treatments, immunotherapy is gaining widespread use, while antibody treatment is restricted mainly to resistant cases. Several small molecules with improved safety profile, or targeting novel mechanisms are in the clinical research. Newer antihistamines and corticosteroids with improved safety profile and antagonists of the prostaglandin D(2) (CRTH2) receptors are likely to be available for clinical use in the near future. Lack of properly validated animal models and complexities associated with clinical evaluation are some of the challenges facing the researchers in AR. Comprehensive understanding of immunological and neurological processes in AR would facilitate the future quest for more effective and safer management of this disease.
Collapse
|
16
|
Luqman S, Meena A, Marler LE, Kondratyuk TP, Pezzuto JM. Suppression of tumor necrosis factor-α-induced nuclear factor κB activation and aromatase activity by capsaicin and its analog capsazepine. J Med Food 2011; 14:1344-51. [PMID: 21663483 DOI: 10.1089/jmf.2010.0236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Target-specific drugs, including natural products, offer promise for the amelioration of cancer and other human ailments. Capsaicin, the pungent ingredient present in chilies (Capsicum annuum L.), and capsazepine, a synthetic analog of capsaicin (collectively referred to as vanilloids), are known to possess a variety of pharmacological and physiological properties. In our continuous effort to discover and characterize cancer chemopreventive agents from natural products, we investigated the effect of vanilloids on nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activation using stably transfected 293/NFκB-Luc human embryonic kidney cells induced by treatment with tumor necrosis factor-α (TNFα) and on aromatase activity. Capsaicin and capsazepine blocked TNFα-induced NFκB activation in a dose-dependent manner with 50% inhibitory concentration (IC(50)) values of 0.68 and 4.2 μM, respectively. No significant cytotoxicity was observed at the highest concentrations tested (53.1 μM for capsazepine and 65.5 μM for capsaicin). In addition, these vanilloids inhibited aromatase activity with IC(50) values of 13.6 and 8.8 μM, respectively. Computer-aided molecular docking studies showed docking scores indicative of good binding affinity of vanilloids with aromatase and NFκB. The highly conserved residues for capsaicin and capsazepine binding with NFκB p50 were Ser299 and Ile278 (H-bond 2.81Å) and with NFκB p100 were Ser6, Arg82, Val86, Arg90 (H-bond 2.89Å), Gly4, and Ser2 (H-bond 2.81Å). The amino acids Trp224, Arg435, and Val373 (H-bond 2.80Å) were found to be important for the binding of capsaicin and capsazepine with aromatase. Based on these findings, aromatase and NFκB are suggested as valid targets for these compounds; additional investigation of chemopreventive or chemotherapeutic potential is required.
Collapse
Affiliation(s)
- Suaib Luqman
- Department of Molecular Bioprospection, Division of Biotechnology, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, India
| | | | | | | | | |
Collapse
|
17
|
Hunter AJ. Targets for chemical intervention: How natural products can provide leads for new CNS therapeutics. J Pharm Pharmacol 2011. [DOI: 10.1111/j.2042-7158.1998.tb02218.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Jackie Hunter
- SmithKline Beecham Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW
| |
Collapse
|
18
|
Abraham TS, Chen ML, Ma SX. TRPV1 expression in acupuncture points: response to electroacupuncture stimulation. J Chem Neuroanat 2011; 41:129-36. [PMID: 21256210 PMCID: PMC3117662 DOI: 10.1016/j.jchemneu.2011.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023]
Abstract
The present study was to examine the distribution of transient receptor potential vanilloid type-1 (TRPV1) receptor immunoreactivity in the acupuncture points (acupoint), and determine the influences of electroacupuncture (EA) stimulation on TRPV1 expression. EA stimulation of BL 40 was conducted in two sessions of 20 min separated by an 80 min interval in anesthetized rats. Sections of skin containing BL 40, and its non-meridian control were examined by immunolabeling with antibodies directed against TRPV1. Without EA, the number of subepidermal nerve fibers expressing TRPV1 was higher in the acupoint than in non-acupoint control skin (p<0.01). The subepidermal nerve fibers showed the co-localization of TRPV1 with peripherine, a marker for the C-fibers and A-δ fibers. The expression of TRPV1 in nerve fibers is significantly increased by EA stimulation in acupoints (p<0.01). However the upregulation in the non acupoint meridian and the non-meridian control skin was short of statistical significance. Double immunostaining of TRPV1 and neuronal nitric oxide synthase (nNOS) revealed their co-localization in both the subepidermal nerve fibers and in the dermal connective tissue cells. These results show that a high expression of TRPV1 endowed with nNOS in subepidermal nerve fibers exists in the acupoints and the expression is increased by EA. We conclude that the higher expression of TRPV1 in the subepidermal nerve fibers and its upregulation after EA stimulation may play a key role in mediating the transduction of EA signals to the CNS, and its expression in the subepidermal connective tissue cells may play a role in conducting the local effect of the EA.
Collapse
Affiliation(s)
- Therese S Abraham
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | |
Collapse
|
19
|
Mitchell K, Bates BD, Keller JM, Lopez M, Scholl L, Navarro J, Madian N, Haspel G, Nemenov MI, Iadarola MJ. Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates. Mol Pain 2010; 6:94. [PMID: 21167052 PMCID: PMC3019206 DOI: 10.1186/1744-8069-6-94] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 12/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX) results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy. Results RTX was injected into rat hind paws (mid-plantar) to produce thermal hypoalgesia. An infrared diode laser was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm), high-energy, 100 msec pulse, or C-fibers with a wide-diameter (5 mm), long-duration, low-energy pulse. We monitored behavioral responses to indicate loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin) are upregulated in the dorsal root ganglia (DRG) when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal cord and MCP-1 in DRG), although induced immediately after RTX treatment, returned to normal. Conclusion Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control.
Collapse
Affiliation(s)
- Kendall Mitchell
- Neurobiology and Pain Therapeutics Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang C, Hu ZL, Wu WN, Yu DF, Xiong QJ, Song JR, Shu Q, Fu H, Wang F, Chen JG. Existence and distinction of acid-evoked currents in rat astrocytes. Glia 2010; 58:1415-24. [PMID: 20549751 DOI: 10.1002/glia.21017] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are vital structures that support and/or protect neighboring neurons from pathology. Although it is generally accepted that glutamate receptors mediate most astrocyte effects, acid-evoked currents have recently attracted attention for their role in this regard. Here, we identified the existence and characteristics of acid-sensing ion channels (ASICs) and the transient receptor potential vanilloid type 1 (TRPV1) in astrocytes. There were two types of currents recorded under the application of acidic solution (pH 6.0) in cultured rat astrocytes. Transient currents were exhibited by 10% of the astrocytes, and sustained currents were exhibited by the other 90%, consistent with the features of ASIC and TRPV1 currents, respectively. Western blotting and immunofluorescence confirmed the expression of ASIC1, ASIC2a, ASIC3, and TRPV1 in cultured and in situ astrocytes. Unlike the ASICs expressed in neurons, which were mainly distributed in the cell membrane/cytoplasm, most of the ASICs in astrocytes were expressed in the nucleus. TRPV1 was more permeable to Na(+) in cultured astrocytes, which differed from the typical neuronal TRPV1 that was mainly permeable to Ca(2+). This study demonstrates that there are two kinds of acid-evoked currents in rat astrocytes, which may provide a new understanding about the functions of ligand-gated ion channels in astrocytes.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This article is a review of the current and past literature on medical management of the neurogenic bladder, with a particular focus on spinal cord injury and multiple sclerosis. The use of antimuscarinics, αα-blocker, and tricyclic antidepressants and their combined use are discussed along with new therapies in human and animal trials.
Collapse
Affiliation(s)
- Anne P Cameron
- Department of Urology, University of Michigan, 3875 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5330, USA.
| |
Collapse
|
22
|
Willcockson HH, Chen Y, Han JE, Valtschanoff JG. Effect of genetic deletion of the vanilloid receptor TRPV1 on the expression of Substance P in sensory neurons of mice with adjuvant-induced arthritis. Neuropeptides 2010; 44:293-7. [PMID: 20303589 PMCID: PMC2879442 DOI: 10.1016/j.npep.2010.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/11/2010] [Accepted: 02/20/2010] [Indexed: 12/24/2022]
Abstract
The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release SP is not completely understood. We here wanted to ascertain whether the increase in the number of SP-positive primary afferents in arthritis may be affected by genetic deletion of TRPV1. For this, we used immunohistochemistry to quantify the expression of SP in primary afferent neurons in wild-type mice (WT) vs. TRPV1-knockout (KO) mice with adjuvant-induced arthritis (AIA). We found that the expression of SP in DRG (1) increased significantly over naïve level in both WT and KO mice 3 weeks after AIA, (2) was significantly higher in KO mice than in WT mice in naïve mice and 2-3 weeks after AIA, (3) was significantly higher on the side of AIA than on the contralateral, vehicle-injected side at all time points in WT mice, but not in KO mice, and (4) increased predominantly in small-size neurons in KO mice and in small- and medium-size neurons in WT mice. Since the size distribution of SP-positive DRG neurons in arthritic TRPV1-KO mice was not significantly different from that in naïve mice, we speculate that the increased expression of SP is unlikely to reflect recruitment of A-fiber primary afferents and that the higher expression of SP in KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit.
Collapse
Affiliation(s)
- Helen H Willcockson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
23
|
Premkumar LS, Sikand P. TRPV1: a target for next generation analgesics. Curr Neuropharmacol 2010; 6:151-63. [PMID: 19305794 PMCID: PMC2647151 DOI: 10.2174/157015908784533888] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 11/11/2007] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects.
Collapse
Affiliation(s)
- Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA.
| | | |
Collapse
|
24
|
Schumacher MA. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 2010; 10:185-200. [PMID: 20230457 DOI: 10.1111/j.1533-2500.2010.00358.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (transient receptor potential cation channel, subfamily V, member 1 [TRPV1]), the search for "new" analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this "paradoxical" action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion, and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation, including bradykinin, H+, adenosine triphosphate, fatty acid derivatives, nerve growth factor, and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 has been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin, another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally administered high-affinity TRPV1 antagonists holds promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRP cation channel, subfamily A, member 1, additional opportunities are emerging in the development of safe and effective analgesics.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0427, USA.
| |
Collapse
|
25
|
Wang H, Papoiu A, Coghill R, Patel T, Wang N, Yosipovitch G. Ethnic differences in pain, itch and thermal detection in response to topical capsaicin: African Americans display a notably limited hyperalgesia and neurogenic inflammation. Br J Dermatol 2010; 162:1023-9. [DOI: 10.1111/j.1365-2133.2009.09628.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Jara-Oseguera A, Simon SA, Rosenbaum T. TRPV1: on the road to pain relief. Curr Mol Pharmacol 2010; 1:255-69. [PMID: 20021438 DOI: 10.2174/1874467210801030255] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
27
|
Wang H, Papoiu A, Coghill R, Patel T, Wang N, Yosipovitch G. Ethnic differences in pain, itch and thermal detection in response to topical capsaicin: African Americans display a notably limited hyperalgesia and neurogenic inflammation. Br J Dermatol 2010. [DOI: 10.1111/j.1365-2133.2010.09628.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 2009; 7:689-704. [PMID: 20098607 PMCID: PMC2810220 DOI: 10.3390/md7040689] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/04/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022] Open
Abstract
The antinociceptive and anti-inflammatory activity of caulerpin was investigated. This bisindole alkaloid was isolated from the lipoid extract of Caulerpa racemosa and its structure was identified by spectroscopic methods, including IR and NMR techniques. The pharmacological assays used were the writhing and the hot plate tests, the formalin-induced pain, the capsaicin-induced ear edema and the carrageenan-induced peritonitis. Caulerpin was given orally at a concentration of 100 micromol/kg. In the abdominal constriction test caulerpin showed reduction in the acetic acid-induced nociception at 0.0945 micromol (0.0103-1.0984) and for dypirone it was 0.0426 micromol (0.0092-0.1972). In the hot plate test in vivo the inhibition of nociception by caulerpin (100 micromol/kg, p.o.) was also favorable. This result suggests that this compound exhibits a central activity, without changing the motor activity (seen in the rotarod test). Caulerpin (100 micromol/kg, p.o.) reduced the formalin effects in both phases by 35.4% and 45.6%, respectively. The possible anti-inflammatory activity observed in the second phase in the formalin test of caulerpin (100 micromol/kg, p.o.) was confirmed on the capsaicin-induced ear edema model, where an inhibition of 55.8% was presented. Indeed, it was also observed in the carrageenan-induced peritonitis that caulerpin (100 micromol/kg, p.o.) exhibited anti-inflammatory activity, reducing significantly the number of recruit cells by 48.3%. Pharmacological studies are continuing in order to characterize the mechanism(s) responsible for the antinociceptive and anti-inflammatory actions and also to identify other active principles present in Caulerpa racemosa.
Collapse
|
29
|
Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 2009; 106:20097-102. [PMID: 19897733 DOI: 10.1073/pnas.0902675106] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensitization can be recapitulated in excised inside-out membrane patches, reversed by strong reducing agents, and blocked by pretreatment with maleimide that alkylates cysteines. We identify multiple cysteines required for full modulation of TRPV1 by oxidative challenges. Robust oxidative modulation recovers the agonist sensitivity of receptors desensitized by prolonged exposure to capsaicin. Moreover, oxidative modulation operates synergistically with kinase or proton modulations. Thus, oxidative modulation is a robust mechanism tuning TRPV1 activity via covalent modification of evolutionarily conserved cysteines and may play a role in pain sensing processes during inflammation, infection, or tissue injury.
Collapse
|
30
|
Chu KM, Ngan MP, Wai MK, Yeung CK, Andrews PLR, Percie du Sert N, Rudd JA. Olvanil: a non-pungent TRPV1 activator has anti-emetic properties in the ferret. Neuropharmacology 2009; 58:383-91. [PMID: 19825380 DOI: 10.1016/j.neuropharm.2009.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/31/2023]
Abstract
Anti-emetic drugs such as the tachykinin NK(1) receptor antagonists are useful to control emesis induced by diverse challenges. Evidence suggests pungent capsaicin-like TRPV1 activators also have broad inhibitory anti-emetic activity. However, pungent compounds are associated with undesirable effects including adverse actions on the cardiovascular system and on temperature homeostasis. In the present investigations using the ferret, we examine if the non-pungent vanilloid, olvanil, has useful anti-emetic properties without adversely affecting behaviour, blood pressure or temperature control. Olvanil (0.05-5 mg/kg, s.c.) was compared to the pungent vanilloid, resiniferatoxin (RTX; 0.1 mg/kg, s.c.), and to the anandamide reuptake inhibitor, AM404 (10 mg/kg, s.c.), for a potential to inhibit emesis induced by apomorphine (0.25 mg/kg, s.c.), copper sulphate (50 mg/kg, intragastric), and cisplatin (10 mg/kg, i.p.). Changes in blood pressure and temperature were also recorded using radiotelemetry implants. In peripheral administration studies, RTX caused transient hypertension, hypothermia and reduced food and water intake, but also significantly inhibited emesis induced by apomorphine, copper sulphate, or cisplatin. Olvanil did not have a similar adverse profile, and antagonised apomorphine- and cisplatin-induced emesis but not that induced by copper sulphate. AM404 reduced only emesis induced by cisplatin without affecting other parameters measured. Following intracerebral administration only olvanil antagonised cisplatin-induced emesis, but this was associated with transient hypothermia. In conclusion, olvanil demonstrated clear anti-emetic activity in the absence of overt cardiovascular, homeostatic, or behavioural effects associated with the pungent vanilloid, RTX. Our studies indicate that non-pungent vanilloids may have a useful spectrum of anti-emetic properties via central and/or peripheral mechanisms after peripheral administration.
Collapse
Affiliation(s)
- Kit-Man Chu
- Emesis Research Group, Brain-Gut Laboratory, Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen JH, Wei SZ, Chen J, Wang Q, Liu HL, Gao XH, Li GC, Yu WZ, Chen M, Luo HS. Sensory denervation reduces visceral hypersensitivity in adult rats exposed to chronic unpredictable stress: evidences of neurogenic inflammation. Dig Dis Sci 2009; 54:1884-91. [PMID: 19051028 DOI: 10.1007/s10620-008-0575-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/13/2008] [Indexed: 02/07/2023]
Abstract
The purpose of this study is to provide evidence of neurogenic inflammation in chronic unpredictable stressed rats with the changes of visceral sensitivity, number of mast cells, and close proximity among mast cell-nerve-blood vessels. We found that (1) capsaicin denervation blocked stress-induced increase of visceral sensitivity, while doxantrazole presented a partial blocking; (2) capsaicin denervation blocked stress-induced enhancement of the proximity of mast cell-nerve fiber-blood vessels and blood vessel damage, while doxantrazole showed no effects on these; (3) doxantrazole blocked stress-induced increases of the MPO activity, the number and the degranulation of mast cells in the colon; (4) sensory denervation and doxantrazole had no effects on stress-induced behavioral inhibition. These results suggest that capsaicin-sensitive sensory fibers play a key role in stress-induced visceral hypersensitivity and the ultrastructural changes, mast cells play an important role in the generation of stress-induced colon inflammation.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Division Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fisher JT. The TRPV1 ion channel: Implications for respiratory sensation and dyspnea. Respir Physiol Neurobiol 2009; 167:45-52. [DOI: 10.1016/j.resp.2009.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/05/2023]
|
33
|
St. Pierre M, Reeh PW, Zimmermann K. Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro. Exp Brain Res 2009; 196:31-44. [DOI: 10.1007/s00221-009-1808-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/07/2009] [Indexed: 02/02/2023]
|
34
|
Carley DW, Radulovacki M. Pharmacology of vagal afferent influences on disordered breathing during sleep. Respir Physiol Neurobiol 2009; 164:197-203. [PMID: 18694851 DOI: 10.1016/j.resp.2008.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/27/2008] [Accepted: 06/29/2008] [Indexed: 10/21/2022]
Abstract
Sleep-related breathing disorders (SRBD) are a significant public health concern, with a prevalence in the US general population of approximately 2% of women and approximately 4% of men. Although significant strides have been made in our understanding of these disorders with respect to epidemiology, risk factors, pathogenesis and consequences, work to understand these factors in terms of the underlying cellular, molecular and neuromodulatory processes remains in its infancy. Current primary treatments are surgical or mechanical, with no drug treatments available. Basic investigations into the neurochemistry and neuropharmacology of sleep-related changes in respiratory pattern generation and modulation will be essential to clarify the pathogenic processes underlying SRBD and to identify rational and specific pharmacotherapeutic opportunities. Here we summarize emerging work suggesting the importance of vagal afferent feedback systems in sleep-related respiratory pattern disturbances and pointing toward a rich but complex array of neurochemical and neuromodulatory processes that may be involved.
Collapse
Affiliation(s)
- David W Carley
- Center for Narcolepsy, Sleep and Health Research, University of Illinois, Chicago, IL 60612, USA.
| | | |
Collapse
|
35
|
Falchi M, Bertelli A, Ferrara F, Galazzo R, Galazzo S, Gharib C, Dib B. Intracerebroventricular capsaicin influences the body weight increasing of rats. Brain Res Bull 2008; 77:253-6. [PMID: 18687387 DOI: 10.1016/j.brainresbull.2008.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Adult rats were treated for ten days with capsaicin or with NaCl 0.9% directly injected into the lateral cerebral ventricles through a surgically implanted cannula. A third group of rats was implanted with the same cannula but did not receive any treatment. The food intake and the body weight were recorded for at least six weeks after stopping the treatment. The animals were always kept at constant ambient temperature of 22 °C. The body weight of the capsaicin-treated group was reduced by the treatment, and showed a regular but lower degree of recovery trend than the control groups after the treatment period. In fact the capsaicin treated animals never reached the body weight of the controls. Nevertheless, food intake did not significantly vary after the capsaicin treatment. On the basis of these and previous findings, we can assume that capsaicin injected into the cerebral ventricles to rats kept at constant ambient temperature can acts on hypothalamic neurons, but a permanent action on metabolic pathways can not be excluded.
Collapse
Affiliation(s)
- M Falchi
- Department of Pharmacology, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tamayo N, Liao H, Stec MM, Wang X, Chakrabarti P, Retz D, Doherty EM, Surapaneni S, Tamir R, Bannon AW, Gavva NR, Norman MH. Design and Synthesis of Peripherally Restricted Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists. J Med Chem 2008; 51:2744-57. [DOI: 10.1021/jm7014638] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuria Tamayo
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Hongyu Liao
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Markian M. Stec
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Xianghong Wang
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Partha Chakrabarti
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Dan Retz
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Elizabeth M. Doherty
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Sekhar Surapaneni
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Rami Tamir
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Anthony W. Bannon
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Narender R. Gavva
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| | - Mark H. Norman
- Department of Chemistry Research and Discovery, Department of Neuroscience, and Department of Pharmacokinetics and Drug Metabolism, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799
| |
Collapse
|
37
|
Kim SR, Chung YC, Chung ES, Park KW, Won SY, Bok E, Park ES, Jin BK. Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: neuroprotection versus neurotoxicity. Mol Neurobiol 2008; 35:245-54. [PMID: 17917113 DOI: 10.1007/s12035-007-0030-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/30/1999] [Accepted: 01/05/2007] [Indexed: 12/18/2022]
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1), also known as vanilloid receptor 1 (VR1), is a nonselective cation channel that is activated by a variety of ligands, such as exogenous capsaicin (CAP) or endogenous anandamide (AEA), as well as products of lipoxygenases. Cannabinoid type 1 (CB1) receptor belongs to the G protein-coupled receptor superfamily and is activated by cannabinoids such as AEA and exogenous Delta-9-tetrahydrocannabinol (THC). TRPV1 and CB1 receptors are widely expressed in the brain and play many significant roles in various brain regions; however, the issue of whether TRPV1 or CB1 receptors mediate neuroprotection or neurotoxicity remains controversial. Furthermore, functional crosstalk between these two receptors has been recently reported. It is therefore timely to review current knowledge regarding the functions of these two receptors and to consider new directions of investigation on their roles in the brain.
Collapse
Affiliation(s)
- Sang R Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-479, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yokoyama T, Kumon H, Nagai A. Correlation of urinary nerve growth factor level with pathogenesis of overactive bladder. Neurourol Urodyn 2008; 27:417-20. [DOI: 10.1002/nau.20519] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Banerjee B, Medda BK, Lazarova Z, Bansal N, Shaker R, Sengupta JN. Effect of reflux-induced inflammation on transient receptor potential vanilloid one (TRPV1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol Motil 2007; 19:681-91. [PMID: 17640184 DOI: 10.1111/j.1365-2982.2007.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A possible mechanism of oesophageal hypersensitivity is the acid-induced activation of transient receptor potential vanilloid receptor 1 (TRPV1) in the primary sensory neurons. We investigated TRPV1 expression and its colocalization with substance P (SP) and isolectin B4 (IB4)-positive cells in the thoracic dorsal root ganglia (DRGs) and nodose ganglia (NGs) of rats with reflux-induced oesophagitis (RO). RO was developed by fundus ligation and partial obstruction of the pylorus of Sprague-Dawley rats. Four groups of rats were used; fundus ligated acute (RO 48 h), chronic 7 days (RO 7D), RO 7D + omeprazole (7D + Omz, 40 mg kg(-1), i.p.) and sham-operated controls. Immunohistochemical analysis of TRPV1, SP and IB4 expression were carried out in spinal cord (SC), DRGs and NGs. RO rats exhibited significant inflammation and increase in TRPV1-ir and SP-ir expressions in the SC, DRGs and NGs. The maximum colocalization of TRPV1 and SP was observed in RO 7D rats, but Omz prevented inflammation and over expression of TRPV1 and SP. TRPV1-ir significantly increased in IB4-positive cells in DRGs and SC, but not in the NGs. Results document that acid-induced oesophagitis increases TRPV1 expression in both SP- and IB4-positive sensory neurons. The over expression of TRPV1 may contribute to oesophageal hypersensitivity observed in gastro-oesophageal reflux disease (GORD).
Collapse
Affiliation(s)
- B Banerjee
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Ruparel NB, Patwardhan AM, Akopian AN, Hargreaves KM. Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors. Pain 2007; 135:271-279. [PMID: 17590514 PMCID: PMC2322862 DOI: 10.1016/j.pain.2007.06.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/06/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
The transient receptor potential channel subtypes V1 (TRPV1) and A1 (TRPA1) play a critical role in the development of hyperalgesia in inflammatory pain models. Although several studies in animals and humans have demonstrated that capsaicin (CAP), a TRPV1-specific agonist, and mustard oil (MO), a TRPA1 agonist, evoke responses that undergo functional cross-desensitization in various models, the mechanisms mediating this phenomenon are largely unknown. In the present study, we evaluated the mechanisms underlying homologous and heterologous desensitization between CAP and MO responses in peripheral nociceptors using an in vitro neuropeptide release assay from acutely isolated rat hindpaw skin preparation and in vivo behavioral assessments. The pretreatment with CAP or MO significantly inhibited (50-60%) both CAP- and MO-evoked CGRP release indicating homologous and heterologous desensitization using this assay. Further studies evaluating the requirement of calcium in these phenomena revealed that homologous desensitization of CAP responses was calcium-dependent while homologous desensitization of MO responses was calcium-independent. Moreover, heterologous desensitization of both CAP and MO responses was calcium-dependent. Further studies evaluating the role of calcineurin demonstrated that heterologous desensitization of CAP responses was calcineurin-dependent while heterologous desensitization of MO responses was calcineurin-independent. Homologous and heterologous desensitization of CAP and MO was also demonstrated using in vivo behavioral nocifensive assays. Taken together, these results indicate that TRPV1 and TRPA1 could be involved in a functional interaction that is regulated via different cellular pathways. The heterologous desensitization of these receptors and corresponding inhibition of nociceptor activity might have potential application as a therapeutic target for developing novel analgesics.
Collapse
Affiliation(s)
- Nikita B. Ruparel
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Amol M. Patwardhan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Kenneth M. Hargreaves
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Department of Pharmcology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
41
|
Bladder sensory desensitization decreases urinary urgency. BMC Urol 2007; 7:9. [PMID: 17561998 PMCID: PMC1903357 DOI: 10.1186/1471-2490-7-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 06/11/2007] [Indexed: 11/10/2022] Open
Abstract
Background Bladder desensitization has been investigated as an alternative treatment for refractory detrusor overactivity. Most open and controlled clinical trials conducted with intravesical RTX showed that desensitization delays the appearance of involuntary detrusor contractions during bladder filling and decreases the number of episodes of urgency incontinence. Urgency is being recognised as the fundamental symptom of overactive bladder (OAB), a symptomatic complex which recent epidemiological studies have shown to affect more than 10% of the Western population. As anti-muscarinic drugs, the first line treatment for OAB, are far from being able to fully control urgency, the opportunity to test other therapeutic approaches is created. The present work was, therefore, designed as an exploratory investigation to evaluate the effect of bladder desensitization on urinary urgency. Methods Twenty-three OAB patients with refractory urgency entered, after given informed consent, a 30 days run-in period in which medications influencing the bladder function were interrupted. At the end of this period patients filled a seven-day voiding chart where they scored, using a 0–4 scale, the bladder sensations felt before each voiding. Then, patients were instilled with 100 ml of 10% ethanol in saline (vehicle solution) and 30 days later a second seven-day voiding chart was collected. Finally, patients were instilled with 100 ml of 50 nM RTX in 10% ethanol in saline. At 1 and 3 months additional voiding charts were collected. At the end of the vehicle and 3 months period patients were asked to give their subjective impression about the outcome of the treatment and about the willingness to repeat the previous instillation. Results At the end of the run-in period the mean number of episodes of urgency per week was 71 ± 12 (mean ± SEM). After vehicle instillation, the mean number of episodes of urgency was 56 ± 11, but only 4 patients (17%) considered that their urinary condition had improved enough to repeat the treatment. At 1 and 3 months after RTX the number of episodes of urgency decreased to 39 ± 9 (p = 0.002) and 37 ± 6 (p = 0.02), respectively (p indicates statistical differences against vehicle). The percentage of patients with subjective improvement after RTX and willing to repeat the instillation at a later occasion was 69%. Conclusion In OAB patients with refractory urgency bladder desensitization should be further investigated as an alternative to the standard management. Additionally, the specific effect of RTX on TRPV1 receptors suggests that urothelium and sub-urothelial C-fibers play an important role to the generation of urgency sensation.
Collapse
|
42
|
Nakayama T, Harada N, Asano M, Nomura N, Saito T, Mishima A, Okajima K. Atrial natriuretic peptide reduces ischemia/reperfusion-induced spinal cord injury in rats by enhancing sensory neuron activation. J Pharmacol Exp Ther 2007; 322:582-90. [PMID: 17522345 DOI: 10.1124/jpet.107.120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons reduces spinal cord injury (SCI) by inhibiting neutrophil activation through an increase in the endothelial production of prostacyclin (PGI(2)). Carperitide, a synthetic alpha-human atrial natriuretic peptide (ANP), reduces ischemia/reperfusion (I/R)-induced tissue injury. However, its precise therapeutic mechanism(s) remains to be elucidated. In the present study, we examined whether ANP reduces I/R-induced spinal cord injury by enhancing sensory neuron activation using rats. ANP increased CGRP release and cellular cAMP levels in dorsal root ganglion neurons isolated from rats in vitro. The increase in CGRP release induced by ANP was reversed by pretreatment with capsazepine, an inhibitor of vanilloid receptor-1 activation, or with (9S, 10S, 12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]-benzodiazocine-10-carboxylic acid hexyl ester (KT5720), an inhibitor of protein kinase A (PKA), suggesting that ANP might increase CGRP release from sensory neurons by activating PKA through an increase in the cellular cAMP level. Spinal cord ischemia was induced in rats using a balloon catheter placed in the aorta. ANP reduced mortality and motor disturbances by inhibiting reduction of the number of motor neurons in animals subjected to SCI. ANP significantly enhanced I/R-induced increases in spinal cord tissue levels of CGRP and 6-keto-prostaglandin F(1alpha). a stable metabolite of PGI(2). ANP inhibited I/R-induced increases in spinal cord tissue levels of tumor necrosis factor and myeloperoxidase. Pretreatment with 4'-chloro-3-methoxycinnamanilide (SB366791), a specific vanilloid receptor-1 antagonist, and indomethacin reversed the effects of ANP. These results strongly suggest that ANP might reduce I/R-induced SCI in rats by inhibiting neutrophil activation through enhancement of sensory neuron activation.
Collapse
Affiliation(s)
- Takuya Nakayama
- Departments of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu L, Chen L, Liedtke W, Simon SA. Changes in osmolality sensitize the response to capsaicin in trigeminal sensory neurons. J Neurophysiol 2007; 97:2001-15. [PMID: 17353553 DOI: 10.1152/jn.00887.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in tonicity in the peripheral nervous system can activate nociceptors and produce pain. Under local inflammatory conditions the peripheral terminals of nociceptors are subject to deviations from isotonicity. Previously it was shown that several members of the TRP(V) family of ion channels are responsive to changes in tonicity. Here we explore how changes in tonicity affect TRPV1 receptor-mediated responses to capsaicin in dissociated rat trigeminal ganglion (TG) neurons. Using whole cell patch-clamp and calcium imaging, we found that mild anisotonicity (260 and 348 mOsm/kg for hypotonicity and hypertonicity, respectively) strikingly sensitized the capsaicin-evoked current, I(caps). Confocal immunolocalization studies also revealed a modest anisotonicity-mediated redistribution of TRPV1 toward the plasma membrane of TG neurons. With respect to downstream signaling pathways, tonicity-induced sensitization of I(caps) was dependent on whether hypo- or hypertonic stimuli were applied. Specifically, antagonism of PKA- and PI3K-activated pathways appreciably reduced the hypertonicity-induced sensitization of I(caps), whereas inhibition of PKC-mediated pathways selectively reduced the sensitization produced by hypotonic solutions. In summary, whereas the overall effects of hypo- and hypertonicity resulted in a similar pattern of potentiation of I(caps), intracellular signaling pathways were selective for hypo- versus hypertonicity-induced tuning of capsaicin-activated currents.
Collapse
Affiliation(s)
- Lieju Liu
- 327 Bryan Research Building, 101 Research Drive, Duke University Medical Center, Durham NC 27710, USA.
| | | | | | | |
Collapse
|
44
|
Harada N, Okajima K. Inhibition of neutrophil activation by lafutidine, an H2-receptor antagonist, through enhancement of sensory neuron activation contributes to the reduction of stress-induced gastric mucosal injury in rats. Dig Dis Sci 2007; 52:469-77. [PMID: 17211693 DOI: 10.1007/s10620-006-9620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/14/2006] [Indexed: 12/23/2022]
Abstract
Sensory neuron activation reduces water-immersion restraint stress (WIR)-induced gastric mucosal injury by inhibiting neutrophil activation through increase in endothelial production of prostacyclin. This study was designed to examine whether lafutidine, which is an H(2)-receptor antagonist and activates sensory neurons, inhibits neutrophil activation, thereby reducing WIR-induced gastric mucosal injury. Lafutidine enhanced WIR-induced increases in gastric tissue levels of calcitonin gene-related peptide (CGRP) and 6-keto-PGF(1alpha), a stable metabolite of prostacyclin, whereas famotidine, another H(2)-receptor antagonist, did not. Such lafutidine-induced increases in gastric tissue levels of 6-keto-PGF(1alpha) were reversed by pretreatment with capsazepine, an inhibitor of sensory neuron activation, CGRP(8-37), a CGRP antagonist, and indomethacin. Lafutidine inhibited acid-induced exacerbation of gastric mucosal injury in animals subjected to WIR by inhibiting neutrophil activation, whereas famotidine did not. Lafutidine synergistically increased CGRP release from isolated rat dorsal root ganglion neurons in the presence of anandamide, but famotidine did not. These observations suggest that lafutidine might reduce WIR-induced gastric mucosal injury not only by inhibiting acid secretion but also by inhibiting neutrophil activation through enhancement of sensory neuron activation.
Collapse
Affiliation(s)
- Naoaki Harada
- Department of Biodefense Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | |
Collapse
|
45
|
Jung YS, Kang TS, Lee JC, Seong CM, Ham WH, Park NS. SYNTHESIS OF 3-ALKOXY-4-HYDROXYPHENYLACETIC ACIDS FROM METHYL 3-ALKOXYBENZOATES. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-100000539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Chapple CR, Gormley EA. Developments in pharmacological therapy for the overactive bladder. BJU Int 2006; 98 Suppl 1:78-87; discussion 88-9. [PMID: 16911610 DOI: 10.1111/j.1464-410x.2006.06381.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher R Chapple
- Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield Hallam University, Sheffield, UK.
| | | |
Collapse
|
47
|
Sahai A, Khan MS, Arya M, John J, Singh R, Patel HRH. The overactive bladder: review of current pharmacotherapy in adults. Part 2: treatment options in cases refractory to anticholinergics. Expert Opin Pharmacother 2006; 7:529-38. [PMID: 16553568 DOI: 10.1517/14656566.7.5.529] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the first part of this review the potential pathophysiological factors involved in the overactive bladder were outlined, and the wide range of first-line anticholinergic pharmacotherapies available for such patients were reviewed. The second part will focus on the intravesical instillation of resiniferatoxin and injections of botulinum toxin into the bladder to treat overactive bladder and detrusor overactivity. Resiniferatoxin has been shown to increase bladder capacity and improve incontinence in patients with neurogenic and non-neurogenic detrusor overactivity. Botulinum toxin has successfully been used to treat neurogenic and idiopathic detrusor overactivity, with improvements observed in bladder capacity, decreases in detrusor pressures on filling and voiding, and increased volumes at first contraction. Further validation is required for both treatments, in the form of large randomised controlled trials, before their use can be considered routine, with particular focus on dosing required.
Collapse
Affiliation(s)
- Arun Sahai
- Urology Department, Guy's Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Shin JC, Kim YW, Park CI, Kang SW, Yang SC. Effect of the intravesical resiniferatoxin instillation evaluated by the ice provocative urodynamic study. Spinal Cord 2006; 44:309-14. [PMID: 16186855 DOI: 10.1038/sj.sc.3101851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective urodynamic investigation before and after intravesical resiniferatoxin instillation treatment. OBJECTIVE To evaluate the effectiveness of intravesical resiniferatoxin instillation for the treatment of neurogenic detrusor overactivity (NDO), using conventional and ice provocative urodynamic studies to monitor the activity of the unmyelinated C-fiber. SETTING Spinal Cord Injury Unit, Yonsei Rehabilitation Hospital, Seoul, Korea. METHODS A measure of 100 ml of resiniferatoxin solution, at a concentration of 100 nM diluted in 10% ethanol, was intravesically instilled into the bladder of 15 spinal cord injury patients with NDO. Conventional and ice provocative urodynamic studies were performed to evaluate the change in the involuntary detrusor activity, reflex volume, maximal bladder capacity, compliance, maximal detrusor pressure and reflex volume ratio 7 days before and 30 days after the instillation. RESULTS Before the intravesical resiniferatoxin instillation, all patients exhibited NDO in both the conventional and ice provocative urodynamic studies, with a mean reflex volume ratio of 0.45+/-0.22. There was no significant change in the maximal bladder capacity, compliance and maximal detrusor pressure at the follow-up urodynamic study, but the reflex volume ratio was significantly increased (P<0.05) after the intravesical resiniferatoxin instillation. Among the 15 patients, three (20%) showed complete and nine (60%) partial suppression of the unmyelinated C-fiber activities. CONCLUSION Intravesical resiniferatoxin instillation was partially controlled by the unmyelinated C-fiber activities, which were estimated by an ice provocative urodynamic study. Therefore, further studies on the optimal dosage and accurate indications for resiniferatoxin instillation are required.
Collapse
Affiliation(s)
- J C Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
49
|
Tsunezuka Y, Oda M, Moriyama H. [A case of a second cancer of metachronous multiple primary non-small cell lung cancer successfully treated with TS-1 and CDDP chemotherapy]. Gan To Kagaku Ryoho 2006; 33:651-3. [PMID: 16685165 DOI: 10.2217/14750708.3.5.651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The patient was a 66-year-old man who had undergone right upper lobectomy and ND 2a systematic lymph node dissection for lung cancer (M/D adenocarcinoma, p-stage IB) in March of 1999 . On November 2003, postoperative routine chest computed tomography(CT) demonstrated a mass in left S6, and pathological diagnosis revealed P/D squamous cell carcinoma (cT1N2M0, stage IIIA) by CT-guided needle biopsy and mediastinoscopy. At first, we tried two courses of a combination chemotherapy consisting of carboplatin (CBDCA) and paclitaxel every 3 weeks. After 2 courses, the regimen was stopped because of grade 3 arthritis. Then, two courses of CBDCA and gemcitabine were performed. The evaluation of the response was SD by the guidelines of Response Evaluation Criteria in Solid Tumor Groups. Next, gefitinib was orally administered for 6 months but the tumor and mediastinal lymph nodes were growing. In January 2005, oral administration of TS-1 (60 mg/1, 2 courses, 75 mg/3-6 courses) was begun twice a day for 21 consecutive days while cisplatin (60 mg/m(2)) was administered intravenously on day 8. The response was PR (the tumor decreased by 46%), no serious adverse effect was observed, and the patient maintained good quality of life throughout the chemotherapy. This case suggests that TS-1+CDDP chemotherapy may be an effective treatment in patients with advanced lung cancer even after many protocols of chemotherapy.
Collapse
Affiliation(s)
- Yoshio Tsunezuka
- Dept. of General Thoracic Surgery, Ishikawa Prefectural Central Hospital
| | | | | |
Collapse
|
50
|
Reynolds PJ, Fan W, Andresen MC. Capsaicin-resistant arterial baroreceptors. J Negat Results Biomed 2006; 5:6. [PMID: 16709252 PMCID: PMC1481593 DOI: 10.1186/1477-5751-5-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/18/2006] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aortic baroreceptors (BRs) comprise a class of cranial afferents arising from major arteries closest to the heart whose axons form the aortic depressor nerve. BRs are mechanoreceptors that are largely devoted to cardiovascular autonomic reflexes. Such cranial afferents have either lightly myelinated (A-type) or non-myelinated (C-type) axons and share remarkable cellular similarities to spinal primary afferent neurons. Our goal was to test whether vanilloid receptor (TRPV1) agonists, capsaicin (CAP) and resiniferatoxin (RTX), altered the pressure-discharge properties of peripheral aortic BRs. RESULTS Periaxonal application of 1 microM CAP decreased the amplitude of the C-wave in the compound action potential conducting at <1 m/sec along the aortic depressor nerve. 10 microM CAP eliminated the C-wave while leaving intact the A-wave conducting in the A-delta range (<12 m/sec). These whole nerve results suggest that TRPV1 receptors are expressed along the axons of C- but not A-conducting BR axons. In an aortic arch--aortic nerve preparation, intralumenal perfusion with 1 microM CAP had no effect on the pressure-discharge relations of regularly discharging, single fiber BRs (A-type)--including the pressure threshold, sensitivity, frequency at threshold, or maximum discharge frequency (n = 8, p > 0.50) but completely inhibited discharge of an irregularly discharging BR (C-type). CAP at high concentrations (10-100 microM) depressed BR sensitivity in regularly discharging BRs, an effect attributed to non-specific actions. RTX (< or = 10 microM) did not affect the discharge properties of regularly discharging BRs (n = 7, p > 0.18). A CAP-sensitive BR had significantly lower discharge regularity expressed as the coefficient of variation than the CAP-resistant fibers (p < 0.002). CONCLUSION We conclude that functional TRPV1 channels are present in C-type but not A-type (A-delta) myelinated aortic arch BRs. CAP has nonspecific inhibitory actions that are unlikely to be related to TRV1 binding since such effects were absent with the highly specific TRPV1 agonist RTX. Thus, CAP must be used with caution at very high concentrations.
Collapse
Affiliation(s)
- Patrick J Reynolds
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | - Wei Fan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | - Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| |
Collapse
|