1
|
Li P, Lyu T. Research Progress on Ferroptosis in Multiple Myeloma. Curr Treat Options Oncol 2024; 25:1276-1282. [PMID: 39287715 PMCID: PMC11485180 DOI: 10.1007/s11864-024-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
OPINION STATEMENT Multiple myeloma (MM) is the second most common hematological malignant (HM) tumor, and a large proportion of patients still suffer from treatment failure and a poor prognosis despite the use of some newly approved drugs, a deeper understanding of the underlying mechanism is still needed. Ferroptosis is a new form of programmed cell death (PCD) that is different from other traditional forms of cell death such as apoptosis, necrosis and autophagy. With the continuous deepening of research on ferroptosis, ferroptosis has been found to be closely related to MM. This article reviews the regulatory mechanism of ferroptosis and research progress on ferroptosis in MM, providing a new theoretical basis and strategies for the diagnosis and treatment of MM.
Collapse
Affiliation(s)
- Po Li
- Department of Orthopedic, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
2
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, Wang YF, Liu H. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer 2024; 23:213. [PMID: 39342168 PMCID: PMC11437708 DOI: 10.1186/s12943-024-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Cheng-Hu Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qian-Jia Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jia-Cheng Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wen-Xuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Xu J, Zheng B, Wang W, Zhou S. Ferroptosis: a novel strategy to overcome chemoresistance in gynecological malignancies. Front Cell Dev Biol 2024; 12:1417750. [PMID: 39045454 PMCID: PMC11263176 DOI: 10.3389/fcell.2024.1417750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis, necrosis, and autophagy, and is characterized by altered iron homeostasis, reduced defense against oxidative stress, and increased lipid peroxidation. Extensive research has demonstrated that ferroptosis plays a crucial role in the treatment of gynecological malignancies, offering new strategies for cancer prevention and therapy. However, chemotherapy resistance poses an urgent challenge, significantly hindering therapeutic efficacy. Increasing evidence suggests that inducing ferroptosis can reverse tumor resistance to chemotherapy. This article reviews the mechanisms of ferroptosis and discusses its potential in reversing chemotherapy resistance in gynecological cancers. We summarized three critical pathways in regulating ferroptosis: the regulation of glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation pathways, considering their prospects and challenges as strategies to reverse chemotherapy resistance. These studies provide a fresh perspective for future cancer treatment modalities.
Collapse
Affiliation(s)
- Jing Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zeng L, Liu X, Geng C, Gao X, Liu L. Ferroptosis in cancer (Review). Oncol Lett 2024; 28:304. [PMID: 38774452 PMCID: PMC11106693 DOI: 10.3892/ol.2024.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Ferroptosis is a type of programmed cell death depending on iron and reactive oxygen species. This unique cell death process has attracted a great deal of attention in the field of cancer research over the past decade. Research on the association of ferroptosis signal pathways and cancer development indicated that targeting ferroptosis has great potential for cancer therapy. In the present study, the latest research progress of ferroptosis was reviewed, focusing on the relationship between ferroptosis and the development of cancer, in order to further promote the clinical application of ferroptosis in cancer.
Collapse
Affiliation(s)
- Liyi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chengjie Geng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
6
|
Dang KPT, Nguyen TTG, Cao TD, Le VD, Dang CH, Duy NPH, Phuong PTT, Huy DM, Kim Chi TT, Nguyen TD. Biogenic fabrication of a gold nanoparticle sensor for detection of Fe 3+ ions using a smartphone and machine learning. RSC Adv 2024; 14:20466-20478. [PMID: 38946772 PMCID: PMC11208897 DOI: 10.1039/d4ra03265a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
In recent years, smartphones have been integrated into rapid colorimetric sensors for heavy metal ions, but challenges persist in accuracy and efficiency. Our study introduces a novel approach to utilize biogenic gold nanoparticle (AuNP) sensors in conjunction with designing a lightbox with a color reference and machine learning for detection of Fe3+ ions in water. AuNPs were synthesized using the aqueous extract of Eleutherine bulbosa leaf as reductants and stabilizing agents. Physicochemical analyses revealed diverse AuNP shapes and sizes with an average size of 19.8 nm, with a crystalline structure confirmed via SAED and XRD techniques. AuNPs exhibited high sensitivity and selectivity in detection of Fe3+ ions through UV-vis spectroscopy and smartphones, relying on nanoparticle aggregation. To enhance image quality, we developed a lightbox and implemented a reference color value for standardization, significantly improving performance of machine learning algorithms. Our method achieved approximately 6.7% higher evaluation metrics (R 2 = 0.8780) compared to non-normalized approaches (R 2 = 0.8207). This work presented a promising tool for quantitative Fe3+ ion analysis in water.
Collapse
Affiliation(s)
- Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - T Thanh-Giang Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tien-Dung Cao
- School of Information Technology, Tan Tao University Long An Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Nguyen Phuc Hoang Duy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Pham Thi Thuy Phuong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Do Manh Huy
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay District Hanoi Vietnam
| |
Collapse
|
7
|
Shukla AK, Verma M, Bathla M, Randhawa S, Saini TC, Kumari A, Acharya A. Transferrin Immobilized Graphene Oxide Nanocomposite for Targeted Cancer Chemodynamic Therapy via Increasing Intracellular Labile Fe 2+ Concentration. ACS APPLIED BIO MATERIALS 2024; 7:3649-3659. [PMID: 38728425 DOI: 10.1021/acsabm.3c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Recently, different alternative regulated cell death (RCD) pathways, viz., necroptosis, pyroptosis, ferroptosis, cuproptosis etc., have been explored as important targets for the development of cancer medications in recent years, as these can change the immunogenicity of the tumor microenvironment (TME) and will finally lead to the inhibition of cancer progression and metastasis. Here, we report the development of transferrin immobilized graphene oxide (Tfn@GOAPTES) nanocomposite as a therapeutic strategy toward cancer cell killing. The electrostatic immobilization of Tfn on the GOAPTES surface was confirmed by different spectroscopy and microscopy techniques. The Tfn immobilization was found to be ∼74 ± 4%, whereas the stability of the protein on the GO surface suggested a robust nature of the nanocomposite. The MTT assay suggested that Tfn@GOAPTES exhibited cytotoxicity toward HeLa cells via increased lipid peroxidation and DNA damage. Western blot studies resulted in decreased expression of acetylation on lysine 40 of α-tubulin and increased expression of LC3a/b for Tfn@GOAPTES treated HeLa cells, suggesting autophagy to be the main cause of the cell death mechanism. Overall, we predict that the present approach can be used as a therapeutic strategy for cancer cell killing via selective induction of a high concentration of intracellular iron.
Collapse
Affiliation(s)
- Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manik Bathla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avnesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Guo L, Wang Z, Fu Y, Wu S, Zhu Y, Yuan J, Liu Y. MiR-122-5p regulates erastin-induced ferroptosis via CS in nasopharyngeal carcinoma. Sci Rep 2024; 14:10019. [PMID: 38693171 PMCID: PMC11063070 DOI: 10.1038/s41598-024-59080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a tumor that occurs in the nasopharynx. Although advances in detection and treatment have improved the prognosis of NPC the treatment of advanced NPC remains challenging. Here, we explored the effect of microRNA (miR)-122-5p on erastin-induced ferroptosis in NPC cells and the role of ferroptosis in the development of NPC. The effect of miR-122-5p silencing and overexpression and the effect of citrate synthase on erastin-induced lipid peroxidation in NPC cells was analyzed by measuring the amounts of malondialdehyde, Fe2+, glutathione, and reactive oxygen species and the morphological alterations of mitochondria. The malignant biological behavior of NPC cells was examined by cell counting kit-8, EDU, colony formation, Transwell, and wound healing assays. The effects of miR-122-5p on cell proliferation and migration associated with ferroptosis were examined in vivo in a mouse model of NPC generated by subcutaneous injection of NPC cells. We found that erastin induced ferroptosis in NPC cells. miR-122-5p overexpression inhibited CS, thereby promoting erastin-induced ferroptosis in NPC cells and decreasing NPC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Liqing Guo
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Zhi Wang
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yanpeng Fu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Shuhong Wu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yaqiong Zhu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Jiasheng Yuan
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Yuehui Liu
- Department of Otolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China.
| |
Collapse
|
9
|
Miljuš G, Penezić A, Pažitná L, Gligorijević N, Baralić M, Vilotić A, Šunderić M, Robajac D, Dobrijević Z, Katrlík J, Nedić O. Glycosylation and Characterization of Human Transferrin in an End-Stage Kidney Disease. Int J Mol Sci 2024; 25:4625. [PMID: 38731843 PMCID: PMC11083005 DOI: 10.3390/ijms25094625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a global health concern affecting approximately one billion individuals worldwide. End-stage kidney disease (ESKD), the most severe form of CKD, is often accompanied by anemia. Peritoneal dialysis (PD), a common treatment for ESKD, utilizes the peritoneum for solute transfer but is associated with complications including protein loss, including transferrin (Tf) a key protein involved in iron transport. This study investigated Tf characteristics in ESKD patients compared to healthy individuals using lectin microarray, spectroscopic techniques and immunocytochemical analysis to assess Tf interaction with transferrin receptors (TfRs). ESKD patients exhibited altered Tf glycosylation patterns, evidenced by significant changes in lectin reactivity compared to healthy controls. However, structural analyses revealed no significant differences in the Tf secondary or tertiary structures between the two groups. A functional analysis demonstrated comparable Tf-TfR interaction in both PD and healthy samples. Despite significant alterations in Tf glycosylation, structural integrity and Tf-TfR interaction remained preserved in PD patients. These findings suggest that while glycosylation changes may influence iron metabolism, they do not impair Tf function. The study highlights the importance of a glucose-free dialysis solutions in managing anemia exacerbation in PD patients with poorly controlled anemia, potentially offering a targeted therapeutic approach to improve patient outcomes.
Collapse
Affiliation(s)
- Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Nikola Gligorijević
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Baralić
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy (INEP), Department for Biology of Reproduction, University of Belgrade, 11000 Belgrade, Serbia
| | - Miloš Šunderić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragana Robajac
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Zorana Dobrijević
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Department for Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Din MAU, Lin Y, Wang N, Wang B, Mao F. Ferroptosis and the ubiquitin-proteasome system: exploring treatment targets in cancer. Front Pharmacol 2024; 15:1383203. [PMID: 38666028 PMCID: PMC11043542 DOI: 10.3389/fphar.2024.1383203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is an emerging mode of programmed cell death fueled by iron buildup and lipid peroxidation. Recent evidence points to the function of ferroptosis in the aetiology and development of cancer and other disorders. Consequently, harnessing iron death for disease treatment has diverted the interest of the researchers in the field of basic and clinical research. The ubiquitin-proteasome system (UPS) represents a primary protein degradation pathway in eukaryotes. It involves labelling proteins to be degraded by ubiquitin (Ub), followed by recognition and degradation by the proteasome. Dysfunction of the UPS can contribute to diverse pathological processes, emphasizing the importance of maintaining organismal homeostasis. The regulation of protein stability is a critical component of the intricate molecular mechanism underlying iron death. Moreover, the intricate involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for targeted treatment strategies. Besides, it highlights the potential of ferroptosis as a promising target for cancer therapy, emphasizing the combination between ferroptosis and the UPS. The molecular mechanisms underlying ferroptosis, including key regulators such as glutathione peroxidase 4 (GPX4), cysteine/glutamate transporter (system XC-), and iron metabolism, are thoroughly examined, alongside the role of the UPS in modulating the abundance and activity of crucial proteins for ferroptotic cell death, such as GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2). As a pivotal regulatory system for macromolecular homeostasis, the UPS substantially impacts ferroptosis by directly or indirectly modulating iron death-related molecules or associated signaling pathways. This review explores the involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for the targeted treatment of diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Yan Lin
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
11
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
12
|
Wei R, Fu G, Li Z, Liu Y, Xue M. Engineering Iron-Based Nanomaterials for Breast Cancer Therapy Associated with Ferroptosis. Nanomedicine (Lond) 2024; 19:537-555. [PMID: 38293902 DOI: 10.2217/nnm-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Ferroptosis has received increasing attention as a novel nonapoptotic programmed death. Recently, iron-based nanomaterials have been extensively exploited for efficient tumor ferroptosis therapy, as they directly release high concentrations of iron and increase intracellular reactive oxygen species levels. Breast cancer is one of the commonest malignant tumors in women; inhibiting breast cancer cell proliferation through activating the ferroptosis pathway could be a potential new target for patient treatment. Here, we briefly introduce the background of ferroptosis and systematically review the current cancer therapeutic strategies based on iron-based ferroptosis inducers. Finally, we summarize the advantages of these various ferroptosis inducers and shed light on future perspectives. This review aims to provide better guidance for the development of iron-based nanomaterial ferroptosis inducers.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites & Applications, Institute of Nanostructured Functional Materials, Huanghe Science & Technology College, Zhengzhou, 450006, Henan, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
13
|
Zhang EX, Hao WW, Wang ZH, Shi YR. Mechanism of prevention and treatment of ulcerative colitis from the perspective of iron death. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:109-115. [DOI: 10.11569/wcjd.v32.i2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
14
|
Jin X, Tang J, Qiu X, Nie X, Ou S, Wu G, Zhang R, Zhu J. Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation. Cell Death Discov 2024; 10:45. [PMID: 38267442 PMCID: PMC10808233 DOI: 10.1038/s41420-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Ferroptosis represents a distinct form of programmed cell death triggered by excessive iron accumulation and lipid peroxidation-induced damage. This mode of cell death differentiates from classical programmed cell death in terms of morphology and biochemistry. Ferroptosis stands out for its exceptional biological characteristics and has garnered extensive research and conversations as a form of programmed cell death. Its dysfunctional activation is closely linked to the onset of diseases, particularly inflammation and cancer, making ferroptosis a promising avenue for combating these conditions. As such, exploring ferroptosis may offer innovative approaches to treating cancer and inflammatory diseases. Our review provides insights into the relevant regulatory mechanisms of ferroptosis, examining the impact of ferroptosis-related factors from both physiological and pathological perspectives. Describing the crosstalk between ferroptosis and tumor- and inflammation-associated signaling pathways and the potential of ferroptosis inducers in overcoming drug-resistant cancers are discussed, aiming to inform further novel therapeutic directions for ferroptosis in relation to inflammatory and cancer diseases.
Collapse
Affiliation(s)
- Xin Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiuren Tang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengming Ou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
15
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
18
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
19
|
D'Acunto CW, Gbelcová H, Kaplánek R, Pospíšilová M, Havlík M, Ruml T. Chelators as Antineuroblastomas Agents. Physiol Res 2023; 72:S277-S286. [PMID: 37888971 PMCID: PMC10669945 DOI: 10.33549/physiolres.935184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.
Collapse
Affiliation(s)
- C W D'Acunto
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Lyle AN, Budd JR, Kennerley VM, Smith BN, Danilenko U, Pfeiffer CM, Vesper HW. Assessment of WHO 07/202 reference material and human serum pools for commutability and for the potential to reduce variability among soluble transferrin receptor assays. Clin Chem Lab Med 2023; 61:1719-1729. [PMID: 37071928 DOI: 10.1515/cclm-2022-1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES The clinical use of soluble transferrin receptor (sTfR) as an iron status indicator is hindered by a lack of assay standardization and common reference ranges and decision thresholds. In 2009, the WHO and National Institute for Biological Standards and Controls (NIBSC) released a sTfR reference material (RM), 07/202, for assay standardization; however, a comprehensive, formal commutability study was not conducted. METHODS This study evaluated the commutability of WHO 07/202 sTfR RM and human serum pools and the impacts of their use as common calibrators. Commutability was assessed for six different measurement procedures (MPs). Serum pools were prepared according to updated CLSI C37-A procedures (C37) or non-C37 procedures. The study design and analyses were based on Parts 2 and 3 of the 2018 IFCC Commutability in Metrological Traceability Working Group's Recommendations for Commutability Assessment. WHO 07/202 and serum pools were used for instrument/assay and mathematical recalibration, respectively, to determine if their use decreases inter-assay measurement variability for clinical samples. RESULTS The WHO 07/202 RM dilutions were commutable for all 6 MPs assessed and, when used for instrument calibration, decreased inter-assay variability from 208 to 55.7 %. Non-C37 and C37 serum pools were commutable for all 6 MPs assessed and decreased inter-assay variability from 208 to 13.8 % and 4.6 %, respectively, when used for mathematical recalibration. CONCLUSIONS All materials evaluated, when used as common calibrators, substantially decreased inter-assay sTfR measurement variability. MP calibration to non-C37 and C37 serum pools may reduce the sTfR IMPBR to a greater extent than WHO 07/202 RM.
Collapse
Affiliation(s)
- Alicia N Lyle
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Victoria M Kennerley
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Uliana Danilenko
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christine M Pfeiffer
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hubert W Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
21
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
23
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
24
|
Li S, He Q, Chen B, Zeng J, Dou X, Pan Z, Xiao J, Li M, Wang F, Chen C, Lin Y, Wang X, Wang H, Chen J. Cardamonin protects against iron overload induced arthritis by attenuating ROS production and NLRP3 inflammasome activation via the SIRT1/p38MAPK signaling pathway. Sci Rep 2023; 13:13744. [PMID: 37612419 PMCID: PMC10447427 DOI: 10.1038/s41598-023-40930-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Iron homeostasis plays an essential role in joint health, while iron overload can cause damage and death of cartilage cells. Cardamonin (CAR) is a substance found in the fruit of the chasteberry plant and has anti-inflammatory and anti-tumor activities. We first administered iron dextran (500 mg/kg) intraperitoneally to establish an iron overload mouse model and surgically induced osteoarthritis. The extent of OA and iron deposition were assessed using Micro-ct, Safranin-O/fast green staining, H&E staining, and Prussian Blue 10 weeks later. We administered primary chondrocytes with Ferric Ammonium Citrate (FAC) to evaluate the chondrocyte changes. Chondrocytes were identified in vitro by toluidine blue staining, and chondrocyte viability was evaluated by CCK-8. The rate of apoptosis was determined by Annexin V-FITC/PI assay. The mechanism of action of CAR was verified by adding the SIRT1 inhibitor EX527, and the expression of SIRT1 and MAPK signaling pathways was detected by Western blot. Iron overload also promoted chondrocyte apoptosis, a process that was reversed by CAR. In addition, CAR reduced NLRP3 inflammasome production via the SIRT1-MAPK pathway, and the SIRT1 inhibitor EX527 inhibited the treatment of OA by CAR.CAR inhibited cartilage degeneration induced by iron overload both in vivo and in vitro. Besides, our study showed that iron overload not only inhibited type II collagen expression but also induced MMP expression by catalyzing the generation of NLRP3 inflammasome. Our results suggest that CAR can treat KOA by promoting SIRT1 expression and inhibiting p38MAPK pathway expression to reduce the production of NLRP3 inflammasome vesicles.
Collapse
Affiliation(s)
- Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Baihao Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jiaxu Zeng
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiangyun Dou
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Zhaofeng Pan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Fanchen Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chuyi Chen
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yuewei Lin
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xintian Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, , Guangzhou, 510405, People's Republic of China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, People's Republic of China.
| | - Jianfa Chen
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun Area, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
25
|
Hasegawa N, Takahashi Y, Itai T. Tissue-variation of iron stable isotopes in marine fish coupled with speciation analysis using X-ray absorption fine structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163449. [PMID: 37061065 DOI: 10.1016/j.scitotenv.2023.163449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The Fe stable isotope ratio (δ56Fe) in tissues is a potential parameter for examining the Fe metabolism in marine fish. Although the effect of ferritin storage has been proposed as a possible cause of heavy isotope (56Fe) enrichment in the liver, no speciation and stable isotope ratio coupling data are available. Here, we report the δ56Fe values measured by multicollector ICP-MS and the result of Fe K-edge X-ray absorption near-edge structure (XANES) analysis of multiple tissues obtained from a skipjack tuna (Katsuwonus pelamis) and a chub mackerel (Scomber japonicus). Apparent isotopic fractionation between the liver and the muscle samples (Δ56FeL-M = δ56Feliver - δ56Femuscle) from these species was observed (0.85 ‰ and 0.57 ‰, respectively). The dominant Fe species in the muscle was heme Fe (the sum of methemoglobin, oxyhemoglobin, and deoxyhemoglobin), while ferritin was not detected according to the linear combination fitting of the XANES spectra. In the liver, ferritin contribution was ca. 28 %-54 % of the total Fe content. The apparent difference in δ56Fe between heme Fe and ferritin was estimated to range from 1.41 ‰ to 1.52 ‰ based on the tissue-specific δ56Fe values and the XANES results. These results indicate that the Fe storage as ferritin does not induce the lowering of δ56Fe in the muscle, considering the low contribution of the liver Fe to the total Fe content in the body.
Collapse
Affiliation(s)
- Nanako Hasegawa
- Department of Earth and Planetary Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshio Takahashi
- Department of Earth and Planetary Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaaki Itai
- Department of Earth and Planetary Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
26
|
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, Pulliero A. Modulation of Ferroptosis by microRNAs in Human Cancer. J Pers Med 2023; 13:jpm13050719. [PMID: 37240889 DOI: 10.3390/jpm13050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a cell death pathway triggered by an imbalance between the production of oxidants and antioxidants, which plays an emerging role in tumorigenesis. It is mainly regulated at three different levels including iron metabolism, the antioxidant response, and lipid metabolism. Epigenetic dysregulation is a "hallmark" of human cancer, with nearly half of all human cancers harboring mutations in epigenetic regulators such as microRNA. While being the crucial player in controlling gene expression at the mRNA level, microRNAs have recently been shown to modulate cancer growth and development via the ferroptosis pathway. In this scenario, some miRNAs have a function in upregulating, while others play a role in inhibiting ferroptosis activity. The investigation of validated targets using the miRBase, miRTarBase, and miRecords platforms identified 13 genes that appeared enriched for iron metabolism, lipid peroxidation, and antioxidant defense; all are recognized contributors of tumoral suppression or progression phenotypes. This review summarizes and discuss the mechanism by which ferroptosis is initiated through an imbalance in the three pathways, the potential function of microRNAs in the control of this process, and a description of the treatments that have been shown to have an impact on the ferroptosis in cancer along with potential novel effects.
Collapse
Affiliation(s)
- Irena Velkova
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Pasino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
27
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
28
|
Palsa K, Baringer SL, Shenoy G, Spiegelman VS, Simpson IA, Connor JR. Exosomes are involved in iron transport from human blood-brain barrier endothelial cells and are modified by endothelial cell iron status. J Biol Chem 2023; 299:102868. [PMID: 36603765 PMCID: PMC9929479 DOI: 10.1016/j.jbc.2022.102868] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.
Collapse
Affiliation(s)
- Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Stephanie L Baringer
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ian A Simpson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
29
|
Ghio C, Soukup JM, Dailey LA, Ghio AJ, Schreinemachers DM, Koppes RA, Koppes AN. Lactate Production can Function to Increase Human Epithelial Cell Iron Concentration. Cell Mol Bioeng 2022; 15:571-585. [PMID: 36531860 PMCID: PMC9751240 DOI: 10.1007/s12195-022-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability. Methods Here we investigate (1) if lactate can increase cell metal import of epithelial cells in vitro, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis. Results Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts. Conclusions Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.
Collapse
Affiliation(s)
- Caroline Ghio
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | | | - Lisa A. Dailey
- US Environmental Protection Agency, Chapel Hill, NC 27514 USA
| | - Andrew J. Ghio
- US Environmental Protection Agency, Chapel Hill, NC 27514 USA
| | | | - Ryan A. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115 USA
- Northeastern University, 360 Huntington Ave., 332 Mugar Life Science Building, Boston, MA 02115 USA
| |
Collapse
|
30
|
Dang Q, Sun Z, Wang Y, Wang L, Liu Z, Han X. Ferroptosis: a double-edged sword mediating immune tolerance of cancer. Cell Death Dis 2022; 13:925. [PMID: 36335094 PMCID: PMC9637147 DOI: 10.1038/s41419-022-05384-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
The term ferroptosis was put forward in 2012 and has been researched exponentially over the past few years. Ferroptosis is an unconventional pattern of iron-dependent programmed cell death, which belongs to a type of necrosis and is distinguished from apoptosis and autophagy. Actuated by iron-dependent phospholipid peroxidation, ferroptosis is modulated by various cellular metabolic and signaling pathways, including amino acid, lipid, iron, and mitochondrial metabolism. Notably, ferroptosis is associated with numerous diseases and plays a double-edged sword role. Particularly, metastasis-prone or highly-mutated tumor cells are sensitive to ferroptosis. Hence, inducing or prohibiting ferroptosis in tumor cells has vastly promising potential in treating drug-resistant cancers. Immunotolerant cancer cells are not sensitive to the traditional cell death pathway such as apoptosis and necroptosis, while ferroptosis plays a crucial role in mediating tumor and immune cells to antagonize immune tolerance, which has broad prospects in the clinical setting. Herein, we summarized the mechanisms and delineated the regulatory network of ferroptosis, emphasized its dual role in mediating immune tolerance, proposed its significant clinical benefits in the tumor immune microenvironment, and ultimately presented some provocative doubts. This review aims to provide practical guidelines and research directions for the clinical practice of ferroptosis in treating immune-resistant tumors.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ziqi Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
31
|
Chen Y, Qian J, Ding P, Wang W, Li X, Tang X, Tang C, Yang Y, Gu C. Elevated SFXN2 limits mitochondrial autophagy and increases iron-mediated energy production to promote multiple myeloma cell proliferation. Cell Death Dis 2022; 13:822. [PMID: 36163342 PMCID: PMC9513108 DOI: 10.1038/s41419-022-05272-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/23/2023]
Abstract
Human sideroflexin 2 (SFXN2) belongs to the SFXN protein family, which is a mitochondrial outer membrane protein involved in mitochondrial iron metabolism. Mitochondria are indispensable for cellular energy production and iron metabolism. However, it remains elusive how SFXN2 modulates mitochondrial homeostasis and cellular iron metabolism in multiple myeloma (MM). In this study, we first found that SFXN2 was significantly elevated and correlated to poor outcomes in MM patients from clinical datasets. SFXN2 overexpression promoted MM cell proliferation and suppressed starvation-induced autophagy/mitophagy, while SFXN2 knockdown aggravated mitochondria damage and autophagic processes in ARP1 and H929 MM cell lines. Furthermore, inhibition of SFXN2 exerted effectively anti-myeloma activity in vivo by using myeloma xenograft model. Mechanism studies indicated that heme oxygenase 1 (HO1) with anti-oxidant function contributed to the process of autophagy suppression and cellular proliferation mediated by SFXN2. Our study revealed the critical role of SFXN2 in regulating mitochondrial bioenergetics, mitophagy, cellular iron metabolism, and redox homeostasis in interconnected and intricate way. Collectively, these findings not only provide insights into the metabolic reprogramming of tumor cells, but also highlight the therapeutic potential of SFXN2 in combination with iron metabolism as target for prognosis and treatment in MM patients.
Collapse
Affiliation(s)
- Ying Chen
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Qian
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinying Li
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhu Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Tang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- grid.410745.30000 0004 1765 1045Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China ,grid.410745.30000 0004 1765 1045School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Russell TM, Richardson DR. Glutathione-S-Transferases as Potential Targets for Modulation of Nitric Oxide-Mediated Vasodilation. Biomolecules 2022; 12:biom12091292. [PMID: 36139130 PMCID: PMC9496536 DOI: 10.3390/biom12091292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione-S-transferases (GSTs) are highly promiscuous in terms of their interactions with multiple proteins, leading to various functions. In addition to their classical detoxification roles with multi-drug resistance-related protein-1 (MRP1), more recent studies have indicated the role of GSTs in cellular nitric oxide (NO) metabolism. Vasodilation is classically induced by NO through its interaction with soluble guanylate cyclase. The ability of GSTs to biotransform organic nitrates such as nitroglycerin for NO generation can markedly modulate vasodilation, with this effect being prevented by specific GST inhibitors. Recently, other structurally distinct pro-drugs that generate NO via GST-mediated catalysis have been developed as anti-cancer agents and also indicate the potential of GSTs as suitable targets for pharmaceutical development. Further studies investigating GST biochemistry could enhance our understanding of NO metabolism and lead to the generation of novel and innovative vasodilators for clinical use.
Collapse
Affiliation(s)
- Tiffany M. Russell
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Des R. Richardson
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|
33
|
Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X, Mao L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomed Pharmacother 2022; 153:113524. [DOI: 10.1016/j.biopha.2022.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
|
34
|
Unlu G, Prizer B, Erdal R, Yeh HW, Bayraktar EC, Birsoy K. Metabolic-scale gene activation screens identify SLCO2B1 as a heme transporter that enhances cellular iron availability. Mol Cell 2022; 82:2832-2843.e7. [PMID: 35714613 PMCID: PMC9356996 DOI: 10.1016/j.molcel.2022.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Iron is the most abundant transition metal essential for numerous cellular processes. Although most mammalian cells acquire iron through transferrin receptors, molecular players of iron utilization under iron restriction are incompletely understood. To address this, we performed metabolism-focused CRISPRa gain-of-function screens, which revealed metabolic limitations under stress conditions. Iron restriction screens identified not only expected members of iron utilization pathways but also SLCO2B1, a poorly characterized membrane carrier. SLCO2B1 expression is sufficient to increase intracellular iron, bypass the essentiality of the transferrin receptor, and enable proliferation under iron restriction. Mechanistically, SLCO2B1 mediates heme analog import in cellular assays. Heme uptake by SLCO2B1 provides sufficient iron for proliferation through heme oxygenases. Notably, SLCO2B1 is predominantly expressed in microglia in the brain, and primary Slco2b1-/- mouse microglia exhibit strong defects in heme analog import. Altogether, our work identifies SLCO2B1 as a microglia-enriched plasma membrane heme importer and provides a genetic platform to identify metabolic limitations under stress conditions.
Collapse
Affiliation(s)
- Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin Prizer
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Ranya Erdal
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA; Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Erol C Bayraktar
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
35
|
Soluble transferrin receptor can predict all-cause mortality regardless of anaemia and iron storage status. Sci Rep 2022; 12:11911. [PMID: 35831434 PMCID: PMC9279452 DOI: 10.1038/s41598-022-15674-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Despite interest in the clinical implications of soluble transferrin receptor (sTfR), previous studies on the association of sTfR with mortality in the general population are lacking. Therefore, we analysed the association between sTfR and all-cause mortality in the general United States adult population. We conducted a prospective cohort study using National Health and Nutrition Examination Survey data from 2003 to 2010. A total of 5403 premenopausal nonpregnant females were analysed in this study. The mean age was 34.2 years (range 20.0–49.9 years). Participants were divided into log(sTfR) tertiles. The primary outcome was all-cause mortality. The secondary outcome was chronic kidney disease (CKD) development (composite of estimated glomerular filtration rate < 60 ml/min/1.73 m2 and/or random urine albumin-to-creatinine ratio ≥ 30 mg/g). During a median 8.7 years of follow-up, 103 (1.9%) participants died. Compared with the reference group (log(sTfR) 0.45–0.57), the highest tertile of log(sTfR) was associated with all-cause mortality (log(sTfR) > 0.57, hazard ratio [HR] 1.77 [95% CI 1.05–2.98]) in a multivariable hazards model including covariates such as haemoglobin and ferritin. Patients in the highest tertile of log(sTfR) also had an increased risk of CKD relative to those in the reference tertile. High sTfR was associated with all-cause mortality and CKD regardless of anaemia and iron storage status.
Collapse
|
36
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
37
|
Park WR, Choi B, Kim YJ, Kim YH, Park MJ, Kim DI, Choi HS, Kim DK. Melatonin Regulates Iron Homeostasis by Inducing Hepcidin Expression in Hepatocytes. Int J Mol Sci 2022; 23:ijms23073593. [PMID: 35408955 PMCID: PMC8998539 DOI: 10.3390/ijms23073593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.
Collapse
Affiliation(s)
- Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Byungyoon Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Min-Jung Park
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (M.-J.P.); (D.-I.K.)
| | - Dong-Il Kim
- Department of Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; (M.-J.P.); (D.-I.K.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (W.-R.P.); (B.C.); (Y.-J.K.)
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
38
|
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 2022; 21:47. [PMID: 35151318 PMCID: PMC8840702 DOI: 10.1186/s12943-022-01530-y] [Citation(s) in RCA: 516] [Impact Index Per Article: 258.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is an intracellular iron-dependent form of cell death that is distinct from apoptosis, necrosis, and autophagy. Extensive studies suggest that ferroptosis plays a pivotal role in tumor suppression, thus providing new opportunities for cancer therapy. The development of resistance to cancer therapy remains a major challenge. A number of preclinical and clinical studies have focused on overcoming drug resistance. Intriguingly, ferroptosis has been correlated with cancer therapy resistance, and inducing ferroptosis has been demonstrated to reverse drug resistance. Herein, we provide a detailed description of the mechanisms of ferroptosis and the therapeutic role of regulating ferroptosis in reversing the resistance of cancer to common therapies, such as chemotherapy, targeted therapy and immunotherapy. We discuss the prospect and challenge of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance and expect that our review could provide some references for further studies.
Collapse
|
39
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
40
|
Selyutina OY, Kononova PA, Koshman VE, Shelepova EA, Azad MG, Afroz R, Dharmasivam M, Bernhardt PV, Polyakov NE, Richardson DR. Ascorbate-and iron-driven redox activity of Dp44mT and emodin facilitates peroxidation of micelles and bicelles. Biochim Biophys Acta Gen Subj 2021; 1866:130078. [PMID: 34974127 DOI: 10.1016/j.bbagen.2021.130078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS Herein, we compared the effect of Fe complexes of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia.
| | - P A Kononova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V E Koshman
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - M Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - P V Bernhardt
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia
| | - D R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
41
|
Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol 2021; 163:67-80. [PMID: 34597613 DOI: 10.1016/j.yjmcc.2021.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Rupture of aortic aneurysm and dissection (AAD) remains a leading cause of death. Progressive smooth muscle cell (SMC) loss is a crucial feature of AAD that contributes to aortic dysfunction and degeneration, leading to aortic aneurysm, dissection, and, ultimately, rupture. Understanding the molecular mechanisms of SMC loss and identifying pathways that promote SMC death in AAD are critical for developing an effective pharmacologic therapy to prevent aortic destruction and disease progression. Cell death is controlled by programmed cell death pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis. Although these pathways share common stimuli and triggers, each type of programmed cell death has unique features and activation pathways. A growing body of evidence supports a critical role for programmed cell death in the pathogenesis of AAD, and inhibitors of various types of programmed cell death represent a promising therapeutic strategy. This review discusses the different types of programmed cell death pathways and their features, induction, contributions to AAD development, and therapeutic potential. We also highlight the clinical significance of programmed cell death for further studies.
Collapse
|
42
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
43
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
44
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
45
|
Chiang S, Braidy N, Maleki S, Lal S, Richardson DR, Huang MLH. Mechanisms of impaired mitochondrial homeostasis and NAD + metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol 2021; 46:102038. [PMID: 34416478 PMCID: PMC8379503 DOI: 10.1016/j.redox.2021.102038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Due to the high redox activity of the mitochondrion, this organelle can suffer oxidative stress. To manage energy demands while minimizing redox stress, mitochondrial homeostasis is maintained by the dynamic processes of mitochondrial biogenesis, mitochondrial network dynamics (fusion/fission), and mitochondrial clearance by mitophagy. Friedreich's ataxia (FA) is a mitochondrial disease resulting in a fatal hypertrophic cardiomyopathy due to the deficiency of the mitochondrial protein, frataxin. Our previous studies identified defective mitochondrial iron metabolism and oxidative stress potentiating cardiac pathology in FA. However, how these factors alter mitochondrial homeostasis remains uncharacterized in FA cardiomyopathy. This investigation examined the muscle creatine kinase conditional frataxin knockout mouse, which closely mimics FA cardiomyopathy, to dissect the mechanisms of dysfunctional mitochondrial homeostasis. Dysfunction of key mitochondrial homeostatic mechanisms were elucidated in the knockout hearts relative to wild-type littermates, namely: (1) mitochondrial proliferation with condensed cristae; (2) impaired NAD+ metabolism due to perturbations in Sirt1 activity and NAD+ salvage; (3) increased mitochondrial biogenesis, fusion and fission; and (4) mitochondrial accumulation of Pink1/Parkin with increased autophagic/mitophagic flux. Immunohistochemistry of FA patients' heart confirmed significantly enhanced expression of markers of mitochondrial biogenesis, fusion/fission and autophagy. These novel findings demonstrate cardiac frataxin-deficiency results in significant changes to metabolic mechanisms critical for mitochondrial homeostasis. This mechanistic dissection provides critical insight, offering the potential for maintaining mitochondrial homeostasis in FA and potentially other cardio-degenerative diseases by implementing innovative treatments targeting mitochondrial homeostasis and NAD+ metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, NSW, 2052, Australia
| | - Sanaz Maleki
- Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Sean Lal
- School of Medical Sciences, University of Sydney, NSW, 2006, Australia; Division of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; School of Medical Sciences, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
46
|
Daniłowicz-Szymanowicz L, Świątczak M, Sikorska K, Starzyński RR, Raczak A, Lipiński P. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics (Basel) 2021; 11:diagnostics11071279. [PMID: 34359361 PMCID: PMC8304945 DOI: 10.3390/diagnostics11071279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023] Open
Abstract
Hereditary hemochromatosis (HH) is a genetic disease leading to excessive iron absorption, its accumulation, and oxidative stress induction causing different organ damage, including the heart. The process of cardiac involvement is slow and lasts for years. Cardiac pathology manifests as an impaired diastolic function and cardiac hypertrophy at first and as dilatative cardiomyopathy and heart failure with time. From the moment of heart failure appearance, the prognosis is poor. Therefore, it is crucial to prevent those lesions by upfront therapy at the preclinical phase of the disease. The most useful diagnostic tool for detecting cardiac involvement is echocardiography. However, during an early phase of the disease, when patients do not present severe abnormalities in serum iron parameters and severe symptoms of other organ involvement, heart damage may be overlooked due to the lack of evident signs of cardiac dysfunction. Considerable advancement in echocardiography, with particular attention to speckle tracking echocardiography, allows detecting discrete myocardial abnormalities and planning strategy for further clinical management before the occurrence of substantial heart damage. The review aims to present the current state of knowledge concerning cardiac involvement in HH. In addition, it could help cardiologists and other physicians in their everyday practice with HH patients.
Collapse
Affiliation(s)
- Ludmiła Daniłowicz-Szymanowicz
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-349-39-10
| | - Michał Świątczak
- Department of Cardiology and Electrotherapy, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
| | - Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdańsk, Dębinki 7 St., 80-211 Gdańsk, Poland;
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Wólka Kosowska, 05-552 Jastrzębiec, Poland; (R.R.S.); (P.L.)
| | - Alicja Raczak
- Clinical Psychology Department, Faculty of Health Sciences, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Wólka Kosowska, 05-552 Jastrzębiec, Poland; (R.R.S.); (P.L.)
| |
Collapse
|
47
|
CD63 is Regulated by Iron via the IRE-IRP System and is Important for Ferritin Secretion by Extracellular Vesicles. Blood 2021; 138:1490-1503. [PMID: 34265052 PMCID: PMC8667049 DOI: 10.1182/blood.2021010995] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/18/2023] Open
Abstract
CD63 is involved in EV secretion from cells and is shown herein to be regulated by iron via the IRE-IRP system. Iron-loading increased secretion of CD63+ EVs containing iron-loaded ferritin.
Extracellular vesicles (EVs) transfer functional molecules between cells. CD63 is a widely recognized EV marker that contributes to EV secretion from cells. However, the regulation of its expression remains largely unknown. Ferritin is a cellular iron storage protein that can also be secreted by the exosome pathway, and serum ferritin levels classically reflect body iron stores. Iron metabolism–associated proteins such as ferritin are intricately regulated by cellular iron levels via the iron responsive element-iron regulatory protein (IRE-IRP) system. Herein, we present a novel mechanism demonstrating that the expression of the EV-associated protein CD63 is under the regulation of the IRE-IRP system. We discovered a canonical IRE in the 5′ untranslated region of CD63 messenger RNA that is responsible for regulating its expression in response to increased iron. Cellular iron loading caused a marked increase in CD63 expression and the secretion of CD63+ EVs from cells, which were shown to contain ferritin-H and ferritin-L. Our results demonstrate that under iron loading, intracellular ferritin is transferred via nuclear receptor coactivator 4 (NCOA4) to CD63+ EVs that are then secreted. Such iron-regulated secretion of the major iron storage protein ferritin via CD63+ EVs, is significant for understanding the local cell-to-cell exchange of ferritin and iron.
Collapse
|
48
|
Orphan Nuclear Receptor ERRγ Is a Transcriptional Regulator of CB1 Receptor-Mediated TFR2 Gene Expression in Hepatocytes. Int J Mol Sci 2021; 22:ijms22116021. [PMID: 34199599 PMCID: PMC8199698 DOI: 10.3390/ijms22116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is an important transcription factor modulating gene transcription involved in endocrine control of liver metabolism. Transferrin receptor 2 (TFR2), a carrier protein for transferrin, is involved in hepatic iron overload in alcoholic liver disease (ALD). However, TFR2 gene transcriptional regulation in hepatocytes remains largely unknown. In this study, we described a detailed molecular mechanism of hepatic TFR2 gene expression involving ERRγ in response to an endocannabinoid 2-arachidonoylglycerol (2-AG). Treatment with 2-AG and arachidonyl-2′-chloroethylamide, a selective cannabinoid receptor type 1 (CB1) receptor agonist, increased ERRγ and TFR2 expression in hepatocytes. Overexpression of ERRγ was sufficient to induce TFR2 expression in both human and mouse hepatocytes. In addition, ERRγ knockdown significantly decreased 2-AG or alcohol-mediated TFR2 gene expression in cultured hepatocytes and mouse livers. Finally, deletion and mutation analysis of the TFR2 gene promoter demonstrated that ERRγ directly modulated TFR2 gene transcription via binding to an ERR-response element. This was further confirmed by chromatin immunoprecipitation assay. Taken together, these results reveal a previously unrecognized role of ERRγ in the transcriptional regulation of TFR2 gene expression in response to alcohol.
Collapse
|
49
|
Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790. [PMID: 34098495 DOI: 10.1016/j.micres.2021.126790] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.
Collapse
Affiliation(s)
- Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
50
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|