1
|
Jang YL, Park MK. Advanced clinical symptoms of the antihangover compound HK-GCM-H01 in healthy Koreans. Transl Clin Pharmacol 2024; 32:137-149. [PMID: 39386267 PMCID: PMC11458339 DOI: 10.12793/tcp.2024.32.e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
A hangover is a combination of negative mental and physical symptoms, such as headache, diarrhea, and loss of appetite, that occur after alcohol consumption and can vary depending on individual genetic and environmental factors. To quickly relieve these hangover symptoms, a new hangover relief compound called HK-GCM-H01 has been developed. This compound, HK-GCM-H01, consists of fermented rice germ extracts, yeast extract mixtures, cili extract powder, and concentrated nipafam powder, all of which are known to relieve hangover symptoms. The safety and clinical symptoms of HK-GCM-H01 were evaluated, along with the pharmacokinetic properties of alcohol and acetaldehyde after its administration. This study was conducted on 50 healthy Korean men using a randomized, double-blind, placebo-controlled, single-intake, crossover design. To evaluate clinical symptoms, Acute Hangover Scale and Alcohol Hangover Severity Scale were used, and the pharmacokinetic evaluation parameters included the maximum plasma concentration, the time to peak plasma concentration, the terminal half-life, and the area under the plasma concentration-time curve from X hours to Y hours. A significant reduction in clinical symptoms was observed after alcohol consumption in the group that consumed HK-GCM-H01 with added hangover relief compound, as was a significant decrease in blood exposure to acetaldehyde compared to the placebo group. There were no adverse events or significant changes in liver function indicators reported during the safety evaluation. These findings indicate that HK-GCM-H01 is safe and significantly reduces plasma concentrations of acetaldehyde, the main cause of hangover, suggesting that it improves hangover symptoms.
Collapse
Affiliation(s)
- Ye Lim Jang
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Min Kyu Park
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
2
|
Li K, Kidawara M, Chen Q, Munemasa S, Murata Y, Nakamura T, Nakamura Y. Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes. Int J Mol Sci 2024; 25:9038. [PMID: 39201725 PMCID: PMC11354654 DOI: 10.3390/ijms25169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Minori Kidawara
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
| | - Qiguang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Cazacu N, Stan DL, Târcă R, Chilom CG. Binding of flavonoids to yeast aldehyde dehydrogenase: a molecular mechanism and computational approach. J Biomol Struct Dyn 2023; 41:11247-11254. [PMID: 36571489 DOI: 10.1080/07391102.2022.2160820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
The interaction of three flavonoids, apigenin, fisetin and quercetin with yeast aldehyde dehydrogenase, ALDH was studied by spectroscopic and molecular docking methods. A combination of both static and dynamic processes interaction mechanism for the binding of flavonoids with ALDH was found. The interaction takes place with moderate binding and the interaction was driven by hydrophobic contacts. The microenvironments of the fluorescent amino acids changed upon flavonoids binding. The distances between ALDH and flavonoids determined by Förster Resonant Energy Transfer (FRET) confirmed the results obtained by fluorescence. The structure of ALDH against thermal denaturation was stabilized by apigenin and destabilized by fisetin and quercetin. Molecular docking simulation showed that all flavonoids bind to the same site of ALDH and confirmed the moderate binding straight found in fluorescence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Diana L Stan
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Raluca Târcă
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Claudia G Chilom
- Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| |
Collapse
|
4
|
Devi A, Levin M, Waterhouse AL. Inhibition of ALDH2 by quercetin glucuronide suggests a new hypothesis to explain red wine headaches. Sci Rep 2023; 13:19503. [PMID: 37985790 PMCID: PMC10662156 DOI: 10.1038/s41598-023-46203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The consumption of red wine induces headaches in some subjects who can drink other alcoholic beverages without suffering. The cause for this effect has been attributed to a number of components, often the high level of phenolics in red wine, but a mechanism has been elusive. Some alcohol consumers exhibit flushing and experience headaches, and this is attributed to a dysfunctional ALDH2 variant, the enzyme that metabolizes acetaldehyde, allowing it to accumulate. Red wine contains much higher levels of quercetin and its glycosides than white wine or other alcoholic beverages. We show that quercetin-3-glucuronide, a typical circulating quercetin metabolite, inhibits ALDH2 with an IC50 of 9.6 µM. Consumption of red wine has been reported to result in comparable levels in circulation. Thus, we propose that quercetin-3-glucoronide, derived from the various forms of quercetin in red wines inhibits ALDH2, resulting in elevated acetaldehyde levels, and the subsequent appearance of headaches in susceptible subjects. Human-subject testing is needed to test this hypothesis.
Collapse
Affiliation(s)
- Apramita Devi
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Morris Levin
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Wang C, Qu Z, Kong L, Xu L, Zhang M, Liu J, Yang Z. RETRACTED: Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp Mol Pathol 2019; 108:1-8. [PMID: 30849307 DOI: 10.1016/j.yexmp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Chong Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenghai Qu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lingpeng Kong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lei Xu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengxue Zhang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianke Liu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhaochuan Yang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
6
|
Taslidere E, Dogan Z, Elbe H, Vardi N, Cetin A, Turkoz Y. Quercetin protection against ciprofloxacin induced liver damage in rats. Biotech Histochem 2015; 91:116-21. [DOI: 10.3109/10520295.2015.1085093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Freestone PPE, Walton NJ, Haigh RD, Lyte M. Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol 2007; 119:159-69. [PMID: 17850907 DOI: 10.1016/j.ijfoodmicro.2007.07.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/12/2007] [Accepted: 07/22/2007] [Indexed: 11/29/2022]
Abstract
The dietary constituents that may act, in the broadest sense, as co-factors to enable bacterial enteropathogens to replicate in gastrointestinal environments are still largely unknown. Recent work has demonstrated that certain non-nutritional components of food, such as the catecholamines, can contribute to the ability of Gram-negative pathogens to replicate in iron-restrictive media that may be reflective of gastrointestinal environments. The present report examines whether other, non-catecholamine, dietary catechols, which occur widely in plant foods, can also influence enteropathogen growth in an iron-restrictive environment such as might be found in the gastrointestinal tract. In the present study, we have examined the ability of a range of catechol-rich foodstuffs, ranging from beverages (tea and coffee) to fruit and vegetable extracts, as well as purified preparations of commonly consumed dietary catechols (catechins, chlorogenic acid, caffeic acid and tannic acid), to modulate the growth of the Gram-negative enteric pathogens Escherichia coli O157:H7 and Salmonella enterica SV Enteriditis. Time-dependent growth in response to dietary catechols (0.05-5.0% v/v of beverage or fruit/vegetable extracts; 10-200 microM of purified catechols) was examined in an iron-replete, rich medium as well as in an iron-limited, basal medium designed to reflect the iron-restricted environment that is more characteristic of human and animal tissues. Results obtained in iron-replete, rich medium demonstrated dose-dependent bacteriostatic effects for certain catechols, consistent with previous studies. However, in iron-restricted medium, all of the dietary catechols produced marked growth stimulation of up to 4 logs greater than non-supplemented controls. Mechanistic studies measuring the uptake of radiolabelled (55)Fe from (55)Fe-labelled lactoferrin and transferrin in bacteria grown in the presence or absence of dietary catechols demonstrated that the ability of catechols to stimulate bacterial growth was dependent on the provision of iron from iron-sequestering glycoproteins. Urea gel analysis of transferrin incubated in the presence of the dietary catechols confirmed that these compounds were directly chelating and removing transferrin-complexed iron. Analysis using E. coli O157:H7 entA and tonB mutants further showed that a functional siderophore synthesis and uptake system was required for the growth-stimulatory response. In contrast to previous studies, which have reported the anti-microbial activity of dietary catechols, the present study demonstrates that these non-nutritional components of foods can, under iron-restrictive conditions, provide iron and enable the growth of enteric bacterial pathogens.
Collapse
Affiliation(s)
- Primrose P E Freestone
- Department of Infection, Immunology and Inflammation, University of Leicester School of Medicine, Leicester, UK
| | | | | | | |
Collapse
|
8
|
Silvestrini A, Meucci E, Vitali A, Giardina B, Mordente A. Chalcone Inhibition of Anthracycline Secondary Alcohol Metabolite Formation in Rabbit and Human Heart Cytosol. Chem Res Toxicol 2006; 19:1518-24. [PMID: 17112240 DOI: 10.1021/tx060159a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antineoplastic therapy with anthracyclines like doxorubicin (DOX) and daunorubicin (DNR) is limited by the possible development of a dose-related cardiomyopathy. Secondary alcohol metabolites like doxorubicinol (DOXol) and daunorubicinol (DNRol), formed by cytoplasmic two-electron reductases, have been implicated as potential mediators of anthracycline-induced cardiomyopathy. In the present study, we characterized the effects of 12 chalcones on the formation of anthracycline secondary alcohol metabolites by rabbit or human heart cytosol and compared them with those of quercetin and other flavonoids. Both chalcones and flavonoids inhibited DOXol or DNRol formation in isolated rabbit heart cytosol. Structure--activity relationships showed that inhibition by chalcones was determined primarily by the position of hydroxyl groups in their phenolic A and B rings. In particular, the presence of a hydroxyl group at C-4' in the A ring was an important determinant of the inhibitory activity of chalcones. Among chalcones, 2',4',2-trihydroxychalcone exhibited the highest inhibition of both DOXol and DRNol formation, but it proved less efficient than quercetin. Different results were obtained with isolated human heart cytosol: in the latter, 2',4',2-trihydroxychalcone and other hydroxychalcones inhibited both DOXol and DNRol formation, whereas quercetin and other flavonoids inhibited DNRol formation but failed to inhibit or slightly stimulated DOXol formation. These results identify chalcones as versatile inhibitors of the cytoplasmic reductases that convert anthracyclines to cardiotoxic secondary alcohol metabolites.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, Institute of Chemistry of Molecular Recognition CNR, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
| | | | | | | | | |
Collapse
|
9
|
Mordente A, Minotti G, Martorana GE, Silvestrini A, Giardina B, Meucci E. Anthracycline secondary alcohol metabolite formation in human or rabbit heart: biochemical aspects and pharmacologic implications. Biochem Pharmacol 2003; 66:989-98. [PMID: 12963485 DOI: 10.1016/s0006-2952(03)00442-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clinical use of the anticancer anthracyclines doxorubicin (DOX) and daunorubicin (DNR) is limited by development of cardiotoxicity upon chronic administration. Secondary alcohol metabolites, formed after two-equivalent reduction of a carbonyl group in the side chain of DOX or DNR, have been implicated as potential mediators of chronic cardiotoxicity. In the present study we characterized how human heart converted DOX or DNR to their alcohol metabolites DOXol or DNRol. Experiments were carried out using post-mortem myocardial samples obtained by ethically-acceptable procedures, and results showed that DOXol and DNRol were formed by flavin-independent cytoplasmic reductases which shared common features like pH-dependence and requirement for NADPH, but not NADH, as a source of reducing equivalents. However, studies performed with inhibitors exhibiting absolute or mixed specificity toward best known cytoplasmic reductases revealed that DOX and DNR were metabolized to DOXol or DNRol through the action of distinct enzymes. Whereas DOX was converted to DOXol by aldehyde-type reductase(s) belonging to the superfamily of aldo-keto reductases, DNR was converted to DNRol by carbonyl reductase(s) belonging to the superfamily of short-chain dehydrogenase/reductases. This pattern changed in cardiac cytosol derived from rabbit, a laboratory animal often exploited to reproduce cardiotoxicity induced by anthracyclines and to develop protectants for use in cancer patients. In fact, only carbonyl reductases were involved in metabolizing DOX and DNR in rabbit cardiac cytosol, although with different K(m) and V(max). Collectively, these results demonstrate that human myocardium convert DOX and DNR to DOXol or DNRol by virtue of different reductases, an information which may be of value to prevent alcohol metabolite formation during the course of anthracycline-based anticancer therapy. These results also raise caution on the preclinical value of animal models of anthracycline cardiotoxicity, as they demonstrate that the metabolic routes leading to DOXol in a laboratory animal may not be the same as those occurring in patients.
Collapse
Affiliation(s)
- Alvaro Mordente
- Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|