1
|
Gupta A, Skjefte M, Muppidi P, Sikka R, Pandey M, Bharti PK, Gupta H. Unravelling the Influence of Host Genetic Factors on Malaria Susceptibility in Asian Populations. Acta Trop 2023; 249:107055. [PMID: 39491156 DOI: 10.1016/j.actatropica.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Malaria is a deadly blood-borne disease caused by a Plasmodium parasite. Infection results in various forms of malaria, including an asymptomatic state, uncomplicated disease, or severe disease. Severe malaria (SM) is particularly prevalent among young children and is a significant cause of mortality. SM is associated with the sequestration of parasitized erythrocytes in the microvasculature of vital host organs, disrupting the normal functioning of the immune system. Although the exact mechanisms of malaria pathogenesis are yet to be fully understood, researchers have been investigating the role of host genetics in determining the severity of the disease and the outcome of infection. The objective of this study is to identify specific host genes that have been examined for their association with malaria in Asian populations and pinpoint those most likely to influence susceptibility. Through an extensive screening process, a total of 982 articles were initially identified, and after careful review, 40 articles discussing 68 genes were included in this review. By constructing a network of protein-protein interactions (PPIs), we identified six key proteins (TNF, IL6, TLR4, IL1β, IL10, and IL8) that exhibited substantial interactions (more than 30 edges), suggesting their potential as significant targets for influencing malaria susceptibility. Notably, these six proteins have been previously identified as crucial components of the immune response, associated with malaria susceptibility, and capable of affecting different clinical forms of the disease. Identifying genes that contribute to malaria susceptibility or resistance holds the promise of enhancing the diagnosis and treatment of this debilitating illness. Such knowledge has the potential to pave the way for more targeted and effective strategies in combating malaria, particularly in Asian populations where controlling Plasmodium vivax is challenging, and India contributes the highest number of cases. By understanding the genetic factors underlying malaria vulnerability, we can develop interventions that are tailored to the specific needs of Asian populations, ultimately leading to better outcomes in the fight against this disease.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Malia Skjefte
- Population Services International, Malaria Department, Washington, DC, USA
| | - Pranavi Muppidi
- GKT School of Medical Education, King's College London, London, UK
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Manju Pandey
- Department of Medicine, K. D. Medical College Hospital & Research Center, Mathura, Uttar Pradesh, India
| | - Praveen Kumar Bharti
- ICMR- National Institute of Malaria Research (ICMR-NIMR), Dwarka, New Delhi, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
2
|
Assessing the Roles of Molecular Markers of Antimalarial Drug Resistance and the Host Pharmacogenetics in Drug-Resistant Malaria. J Trop Med 2022; 2022:3492696. [PMID: 35620049 PMCID: PMC9129956 DOI: 10.1155/2022/3492696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Malaria caused by the Plasmodium parasites is a major public health concern in malaria-endemic regions with P. falciparum causing the most severe form of the disease. The use of antimalarial drugs for the management of the disease proves to be one of the best methods to manage the disease. Unfortunately, P. falciparum has developed resistance to almost all the current in-use antimalarial drugs. Parasite development of resistance is primarily caused by both parasite and host genetic factors. The parasite genetic factors involve undergoing mutation in the drug target sites or increasing the drug target gene copy number to prevent the intended action of the antimalarial drugs. The host pharmacogenetic factors which determine how a particular antimalarial drug is metabolized could result in variations of drug plasma concentration and consequently contribute to variable treatment outcomes and the emergence or propagation of resistant parasites. Since both host and parasite genomes play a role in antimalarial drug action, a key question often asked is, “which of the two strongly drives or controls antimalarial drug resistance?” A major finding in our recent study published in the Malaria Journal indicates that the parasite's genetic factors rather than the host are likely to energize resistance to an antimalarial drug. However, others have reported contrary findings suggesting that the host genetic factors are the force behind resistance to antimalarial drugs. To bring clarity to these observations, there is the need for deciphering the major driving force behind antimalarial drug resistance through optimized strategies aimed at alleviating the phenomenon. In this direction, literature was systematically reviewed to establish the role and importance of each of the two factors aforementioned in the etiology of drug-resistant malaria. Using Internet search engines such as Pubmed and Google, we looked for terms likely to give the desired information which we herein present. We then went ahead to leverage the obtained information to discuss the globally avid aim of combating antimalarial drug resistance.
Collapse
|
3
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
4
|
Kumbhar P, Manjappa A, Shah R, Jha NK, Singh SK, Dua K, Disouza J, Patravale V. Inhalation delivery of repurposed drugs for lung cancer: Approaches, benefits and challenges. J Control Release 2021; 341:1-15. [PMID: 34780880 DOI: 10.1016/j.jconrel.2021.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer (LC) is one of the leading causes of mortality accounting for almost 25% of cancer deaths throughout the world. The shortfall of affordable and effective first-line chemotherapeutics, the existence of resistant tumors, and the non-optimal route of administration contribute to poor prognosis and high mortality in LC. Administration of repurposed non-oncology drugs (RNODs) loaded in nanocarriers (NCs) via inhalation may prove as an effective alternative strategy to treat LC. Furthermore, their site-specific release through inhalation route using an appropriate inhalation device would offer improved therapeutic efficacy, thereby reducing mortality and improving patients' quality of life. The current manuscript offers a comprehensive overview on use of RNODs in LC treatment with an emphasis on their inhalation delivery and the associated challenges. The role of NCs to improve lung deposition and targeting of RNODs via inhalation are also elaborated. In addition, information about various RNODs in clinical trials for the treatment of LC, possibility for repurposing phytoceuticals against LC via inhalation and the bottlenecks associated with repurposing RNODs against cancer are also highlighted. Based on the reported studies covered in this manuscript, it was understood that delivery of RNODs via inhalation has emerged as a propitious approach. Hence, it is anticipated to provide effective first-line treatment at an affordable cost in debilitating LC from low and middle-income countries (LMIC).
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India
| | - Rohit Shah
- Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra 416416, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia..
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India, 400019
| |
Collapse
|
5
|
Boonprasert K, Kosa N, Muhamad P, Cheoymang A, Na-Bangchang K. Association between ABCB1 Polymorphisms and Artesunate-Mefloquine Treatment Responses of Patients with Falciparum Malaria on the Thailand-Myanmar Border. Am J Trop Med Hyg 2021; 104:2152-2158. [PMID: 33939644 DOI: 10.4269/ajtmh.21-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
A decrease in the clinical efficacy of a 3-day artesunate-mefloquine combination treatment was reported in the areas of multidrug-resistant Plasmodium falciparum along the Thailand-Myanmar border. The current study investigated the possible contribution of genetic polymorphisms of the three major genes encoding drug efflux transporters, ABCB1, ABCG2, and ABCC1, to responses to the aforementioned treatment in 91 patients with acute uncomplicated falciparum malaria residing along the Thailand-Myanmar border. Patients carrying homozygous mutant genotype ABCB1 c.1236C>T (TT) were found to have a three-times higher chance of successful treatment with this combination compared with other genotypes (CC and CT). Furthermore, whole blood mefloquine concentrations in these patients with the TT genotype were significantly lower than those of patients carrying the CC genotype. Patients with heterozygous mutant genotype (CT), however, were three-times more likely to experience treatment failure. No significant association was found with the ABCG2 and ABCC1 gene polymorphisms. The results suggest that ABCB1 c.1236CT polymorphisms could be useful genetic markers for predicting responses to the 3-day artesunate-mefloquine treatment; however, studies using larger sample sizes in different malaria-endemic areas are necessary to confirm this finding. This study highlights the impact of pharmacogenetic factors on antimalarial treatment responses and the basis for the application of control policies in various malaria-endemic areas.
Collapse
Affiliation(s)
- Kanyarat Boonprasert
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,2Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Nanthawat Kosa
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Poonuch Muhamad
- 3Drug Discovery Center, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Anurak Cheoymang
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,2Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,3Drug Discovery Center, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| |
Collapse
|
6
|
Martins AC, Paoliello MMB, Docea AO, Santamaria A, Tinkov AA, Skalny AV, Aschner M. Review of the mechanism underlying mefloquine-induced neurotoxicity. Crit Rev Toxicol 2021; 51:209-216. [PMID: 33905310 DOI: 10.1080/10408444.2021.1901258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mefloquine, a potent blood schizontocide, is effective against drug-resistant Plasmodium falciparum. This property, along with its unique pharmacokinetic profile, makes mefloquine a widely prescribed antimalarial drug. However, several epidemiological studies have raised concerns on the safety of mefloquine as prophylaxis for malaria. Well-documented side-effects of mefloquine include abnormal dreams, insomnia, anxiety, and depressed mood, as well as nausea and dizziness (the last two most frequent effects). The mechanisms that underlie the neurological/psychiatric complications of mefloquine are poorly understood. The aim of this study was to review the literature on the neurotoxic mechanisms of action of mefloquine to better understand its potential toxicity in the central nervous system, highlighting the mechanisms that lead to its psychiatric disorders. Experimental studies on the neurotoxic effects of mefloquine discussed herein include brain transporters of mefloquine, alteration in neurotransmitters, disruption on calcium (Ca2+) homeostasis and neuroinflammation, generation of oxidative stress response in neurons (involving glutathione, increased F2-isoprostanes, accumulation of cytosolic lipid globules), and alteration of voltage-dependent channels, as well as gap junction intercellular communications. Although several hypotheses have been proposed for the mechanisms that mediate mefloquine-induced brain damage, they are not fully understood, necessitating additional studies in the future.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anca O Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Abel Santamaria
- Laboratorio de Aminoacidos Excitadores, Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez, Mexico City, Mexico
| | - Alexey A Tinkov
- I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia.,KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia.,KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,I.M. Sechenov First, Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
7
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Mollazadeh S, Hadizadeh F, Ferreira RJ. Theoretical studies on 1,4-dihydropyridine derivatives as P-glycoprotein allosteric inhibitors: insights on symmetry and stereochemistry. J Biomol Struct Dyn 2020; 39:4752-4763. [DOI: 10.1080/07391102.2020.1780942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Bentzinger G, Pair E, Guillon J, Marchivie M, Mullié C, Agnamey P, Dassonville-Klimpt A, Sonnet P. Enantiopure substituted pyridines as promising antimalarial drug candidates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bolaji OO, Adehin A, Adeagbo BA. Pharmacogenomics in the Nigerian population: the past, the present and the future. Pharmacogenomics 2019; 20:915-926. [DOI: 10.2217/pgs-2019-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Nigerian population exhibits huge ethnic and genetic diversity, typical of African populations, which can be harnessed for improved drug-response and disease management. Existing data on genes relevant to drug response, so far generated for the population, indeed confirm the prevalence of some clinically significant pharmacogenes. These reports detail prevailing genetic alleles and metabolic phenotypes of vital drug metabolizing monooxygenases, transferases and drug transporters. While the utilization of existing pharmacogenomic data for healthcare delivery remains unpopular, several past and on-going studies suggest that a future shift toward genotype-stratified dosing of drugs and disease management in the population is imminent. This review discusses the present state of pharmacogenomics in Nigeria and the potential benefits of sustained research in this field for the population.
Collapse
Affiliation(s)
- Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ayorinde Adehin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Babatunde A Adeagbo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
11
|
Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules 2019; 24:molecules24132505. [PMID: 31323993 PMCID: PMC6651381 DOI: 10.3390/molecules24132505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common neurological disorder in the world. Many antiepileptic drugs cause multiple adverse effects. Moreover, multidrug resistance is a serious problem in epilepsy treatment. In the present study we evaluated the safety profile of three (1–3) new chiral N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol demonstrating anticonvulsant activity. Our aim was also to determine differences between the enantiomeric compounds with respect to their safety profile. The results of the study indicated that compounds 1–3 are non-cytotoxic for astrocytes, although they exhibit cytotoxic activity against human glioblastoma cells. Moreover, 1–3 did not affect the viability of HepG2 cells and did not produce adducts with glutathione. Compounds 1–3 demonstrated no mutagenic activity either in the Salmonella typhimurium or in Vibrio harveyi tests. Additionally, the compounds displayed a strong or moderate antimutagenic effect. Finally, the P-glycoprotein (P-gp) ATPase assay demonstrated that both enantiomers are potent P-gp inhibitors. To sum up, our results indicate that the newly synthesized derivatives may be considered promising candidates for further research on anticonvulsant drug discovery and development. Our study indicated the similar safety profile of the enantiomeric N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol, although in the previous studies both enantiomers differ in their biotransformation pathways and pharmacological activity.
Collapse
|
12
|
Johnson TN, Cleary Y, Parrott N, Reigner B, Smith JR, Toovey S. Development of a physiologically based pharmacokinetic model for mefloquine and its application alongside a clinical effectiveness model to select an optimal dose for prevention of malaria in young Caucasian children. Br J Clin Pharmacol 2018; 85:100-113. [PMID: 30198595 DOI: 10.1111/bcp.13764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/20/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022] Open
Abstract
AIMS To predict the optimal chemoprophylactic dose of mefloquine in infants of 5-10 kg using physiologically based pharmacokinetic (PBPK) and clinical effectiveness models. METHODS The PBPK model was developed in Simcyp version 14.1 and verified against clinical pharmacokinetic data in adults; the final model, accounting for developmental physiology and enzyme ontogeny was then applied in the paediatric population. The clinical effectiveness model utilized real-world chemoprophylaxis data with stratification of output by age and including infant data from the UK population. RESULTS PBPK simulations in infant populations depend on the assumed fraction of mefloquine metabolized by CYP3A4 (0.47, 0.95) and on the associated CYP3A4 ontogeny (Salem, Upreti). However, all scenarios suggest that a dose of 62.5 mg weekly achieves or exceeds the exposure in adults following a 250 mg weekly dose and results in a minimum plasma concentration of 620 ng ml-1 , which is considered necessary to achieve 95% prophylactic efficacy. The clinical effectiveness model predicts a 96% protective efficacy from mefloquine chemoprophylaxis at 62.5 mg weekly. CONCLUSIONS The PBPK and clinical effectiveness models are mutually supportive and suggest a prophylactic dose of 62.5 mg weekly in the Caucasian 5-10 kg infant population travelling to endemic countries. This dual approach offers a novel route to dose selection in a vulnerable population, where clinical trials would be difficult to conduct.
Collapse
Affiliation(s)
- Trevor N Johnson
- Certara UK Limited (Simcyp) Level 2-Acero, 1 Concourse Way, Sheffield, UK
| | - Yumi Cleary
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Neil Parrott
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruno Reigner
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - James R Smith
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
13
|
Lopes A, Martins E, Silva R, Pinto MMM, Remião F, Sousa E, Fernandes C. Chiral Thioxanthones as Modulators of P-glycoprotein: Synthesis and Enantioselectivity Studies. Molecules 2018. [PMID: 29534440 PMCID: PMC6017912 DOI: 10.3390/molecules23030626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, thioxanthone derivatives were found to protect cells against toxic P-glycoprotein (P-gp) substrates, acting as potent inducers/activators of this efflux pump. The study of new P-gp chiral modulators produced from thioxanthone derivatives could clarify the enantioselectivity of this ABC transporter towards this new class of modulators. The aim of this study was to evaluate the P-gp modulatory ability of four enantiomeric pairs of new synthesized chiral aminated thioxanthones (ATxs) 1–8, studying the influence of the stereochemistry on P-gp induction/ activation in cultured Caco-2 cells. The data displayed that all the tested compounds (at 20 μM) significantly decreased the intracellular accumulation of a P-gp fluorescent substrate (rhodamine 123) when incubated simultaneously for 60 min, demonstrating an increased activity of the efflux, when compared to control cells. Additionally, all of them except ATx 3 (+), caused similar results when the accumulation of the P-gp fluorescent substrate was evaluated after pre-incubating cells with the test compounds for 24 h, significantly reducing the rhodamine 123 intracellular accumulation as a result of a significant increase in P-gp activity. However, ATx 2 (−) was the only derivative that, after 24 h of incubation, significantly increased P-gp expression. These results demonstrated a significantly increased P-gp activity, even without an increase in P-gp expression. Therefore, ATxs 1–8 were shown to behave as P-gp activators. Furthermore, no significant differences were detected in the activity of the protein when comparing the enantiomeric pairs. Nevertheless, ATx 2 (−) modulates P-gp expression differently from its enantiomer, ATx 1 (+). These results disclosed new activators and inducers of P-gp and highlight the existence of enantioselectivity in the induction mechanism.
Collapse
Affiliation(s)
- Ana Lopes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Eva Martins
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Fernando Remião
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Carla Fernandes
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
14
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
15
|
Gu J, Sui Z, Fang C, Tan Q. Stereochemical considerations in pharmacokinetic processes of representative antineoplastic agents. Drug Metab Rev 2017; 49:438-450. [PMID: 29078726 DOI: 10.1080/03602532.2017.1394322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vast majority of chemical drugs or drug candidates contain stereocenter(s) in their molecular structures. In these molecules, stereochemical properties are vital properties that influence or even determine their drug actions. Therefore, studying the stereochemical issues of drugs (or drug candidates) is necessary for rational drug use. These stereochemical issues are usually involved with the stereoselectivity in pharmacokinetic processes, especially in the metabolism process. Thus, the investigation of the stereochemical issues in drug metabolism process deserves great attention, especially in those chiral/prochiral antineoplastic agents exhibiting pharmacodynamics and toxicologic differences between stereoisomers. Published reviews concerning this certain issue are inspiring, however they were covering all drug types and only limited antineoplastic drugs were discussed. Here in this review, the research on stereochemical issues in pharmacokinetic processes of some representative antineoplastic agents were described, especially focusing on some newly developed compounds. We highlight the chemical transformations in pharmacokinetic processes of these chiral/prochiral compounds and discuss their different behaviors with metabolic enzymes or transporter proteins, to explicate the observed stereoselectivity intrinsically.
Collapse
Affiliation(s)
- Jing Gu
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Zheng Sui
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Chunshu Fang
- b The Health Team of 77133th Troops , Chinese People's Liberation Army , Chongqing , China
| | - Qunyou Tan
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
16
|
Abstract
Drug-drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.
Collapse
|
17
|
Hubeny A, Keiser M, Oswald S, Jedlitschky G, Kroemer HK, Siegmund W, Grube M. Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy. Drug Metab Dispos 2016; 44:1562-8. [DOI: 10.1124/dmd.116.069807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
|
18
|
Immortalized endothelial cell lines for in vitro blood–brain barrier models: A systematic review. Brain Res 2016; 1642:532-545. [DOI: 10.1016/j.brainres.2016.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
|
19
|
Senarathna SMDKG, Page-Sharp M, Crowe A. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation. PLoS One 2016; 11:e0152677. [PMID: 27045516 PMCID: PMC4821601 DOI: 10.1371/journal.pone.0152677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6) cm/sec, followed by amodiaquine around 20 x 10(-6) cm/sec; both mefloquine and artesunate were around 10 x 10(-6) cm/sec. Methylene blue was between 2 and 6 x 10(-6) cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.
Collapse
Affiliation(s)
- S M D K Ganga Senarathna
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
| | - Andrew Crowe
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
20
|
Bentzinger G, De Souza W, Mullié C, Agnamey P, Dassonville-Klimpt A, Sonnet P. Asymmetric synthesis of new antimalarial aminoquinolines through Sharpless aminohydroxylation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2015.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective Inhibition of Methotrexate Excretion by Glucuronides of Nonsteroidal Anti-inflammatory Drugs via Multidrug Resistance Proteins 2 and 4. ACTA ACUST UNITED AC 2015; 356:366-74. [DOI: 10.1124/jpet.115.229104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
22
|
Quinn JC. Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine. J Parasitol Res 2015; 2015:368064. [PMID: 26576290 PMCID: PMC4630403 DOI: 10.1155/2015/368064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
The alkaloid toxin quinine and its derivative compounds have been used for many centuries as effective medications for the prevention and treatment of malaria. More recently, synthetic derivatives, such as the quinoline derivative mefloquine (bis(trifluoromethyl)-(2-piperidyl)-4-quinolinemethanol), have been widely used to combat disease caused by chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. However, the parent compound quinine, as well as its more recent counterparts, suffers from an incidence of adverse neuropsychiatric side effects ranging from mild mood disturbances and anxiety to hallucinations, seizures, and psychosis. This review considers how the pharmacology, cellular neurobiology, and membrane channel kinetics of mefloquine could lead to the significant and sometimes life-threatening neurotoxicity associated with mefloquine exposure. A key role for mefloquine blockade of ATP-sensitive potassium channels and connexins in the substantia nigra is considered as a unifying hypothesis for the pathogenesis of severe neuropsychiatric events after mefloquine exposure in humans.
Collapse
Affiliation(s)
- Jane C. Quinn
- Plant and Animal Toxicology Group, School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
23
|
Slanina J, Páchniková G, Carnecká M, Porubová Koubíková L, Adámková L, Humpa O, Smejkal K, Slaninová I. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition. JOURNAL OF NATURAL PRODUCTS 2014; 77:2255-63. [PMID: 25302569 DOI: 10.1021/np500521v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein. A preliminary quantitative structure-activity relationship analysis revealed three main structural features involved in P-glycoprotein inhibition: a 1,2,3-trimethoxy moiety, a 6-acyloxy group, and the absence of a 7-hydroxy group. The most effective inhibitors, (-)-gomisin N (1) and (+)-deoxyschizandrin [(+)-2], were selected for further evaluation of their effects. Both these lignans restored the cytotoxic effect of doxorubicin in HL60/MDR cells and when combined with a subtoxic concentration of this compound increased the proportion of G2/M cells significantly, which is a usual response to treatment with this anticancer drug.
Collapse
Affiliation(s)
- Jiří Slanina
- Department of Biochemistry, Faculty of Medicine, Masaryk University , Kamenice 5, Building A16, 625 00 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou Q, Yu LS, Zeng S. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction. Drug Metab Rev 2014; 46:283-90. [PMID: 24796860 DOI: 10.3109/03602532.2014.887094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang Province , China and
| | | | | |
Collapse
|
25
|
Nevin RL. Idiosyncratic quinoline central nervous system toxicity: Historical insights into the chronic neurological sequelae of mefloquine. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:118-25. [PMID: 25057461 PMCID: PMC4095041 DOI: 10.1016/j.ijpddr.2014.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/04/2022]
Abstract
Regulators now warn adverse neurological effects from mefloquine may be irreversible. Many neurological effects resemble those of a common quinoline CNS toxidrome. The quinoline toxidrome is associated with a risk of CNS neuronal degeneration. CNS neuronal degeneration may underlie some neurological effects from mefloquine.
Mefloquine is a quinoline derivative antimalarial which demonstrates promise for the treatment of schistosomiasis. Traditionally employed in prophylaxis and treatment of chloroquine-resistant Plasmodium falciparum malaria, recent changes to the approved European and U.S. product labeling for mefloquine now warn of a risk of permanent and irreversible neurological sequelae including vertigo, loss of balance and symptoms of polyneuropathy. The newly described permanent nature of certain of these neurological effects challenges the conventional belief that they are due merely to the long half-life of mefloquine and its continued presence in the body, and raises new considerations for the rational use of the drug against parasitic disease. In this opinion, it is proposed that many of the reported lasting adverse neurological effects of mefloquine are consistent with the chronic sequelae of a well characterized but idiosyncratic central nervous system (CNS) toxicity syndrome (or toxidrome) common to certain historical antimalarial and antiparasitic quinolines and associated with a risk of permanent neuronal degeneration within specific CNS regions including the brainstem. Issues in the development and licensing of mefloquine are then considered in the context of historical awareness of the idiosyncratic CNS toxicity of related quinoline drugs. It is anticipated that the information presented in this opinion will aid in the future clinical recognition of the mefloquine toxidrome and its chronic sequelae, and in informing improved regulatory evaluation of mefloquine and related quinoline drugs as they are explored for expanded antiparasitic use and for other indications.
Collapse
Affiliation(s)
- Remington L Nevin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Room 782, Baltimore, MD 21205, United States
| |
Collapse
|
26
|
Moradi S, Charkhpour M, Ghavimi H, Motahari R, Ghaderi M, Hassanzadeh K. Gap junction blockers: a potential approach to attenuate morphine withdrawal symptoms. J Biomed Sci 2013; 20:77. [PMID: 24143922 PMCID: PMC4015126 DOI: 10.1186/1423-0127-20-77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background The exact mechanisms of morphine-induced dependence and withdrawal symptoms remain unclear. In order to identify an agent that can prevent withdrawal syndrome, many studies have been performed. This study was aimed to evaluate the effect of gap junction blockers; carbenoxolone (CBX) or mefloquine (MFQ); on morphine withdrawal symptoms in male rat. Adult male Wistar rats (225 – 275 g) were selected randomly and divided into 10 groups. All groups underwent stereotaxic surgery and in order to induce dependency, morphine was administered subcutaneously) Sc) at an interval of 12 hours for nine continuous days. On the ninth day of the experiment, animals received vehicle or CBX (100, 400, 600 μg/10 μl/rat, icv) or MFQ (50, 100 and 200 μg/10 μl/rat, icv) after the last saline or morphine (Sc) injection. Morphine withdrawal symptoms were precipitated by naloxone hydrochloride 10 min after the treatments. The withdrawal signs including: jumping, rearing, genital grooming, abdomen writhing, wet dog shake and stool weight, were recorded for 60 minutes. Results Results showed that CBX and MFQ decreased all withdrawal signs; and the analysis indicated that they could attenuate the total withdrawal scores significantly. Conclusion Taking together it is concluded that gap junction blockers prevented naloxone-precipitated withdrawal symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
27
|
du Plessis LH, Helena C, van Huysteen E, Wiesner L, Kotzé AF. Formulation and evaluation of Pheroid vesicles containing mefloquine for the treatment of malaria. ACTA ACUST UNITED AC 2013; 66:14-22. [PMID: 24117456 DOI: 10.1111/jphp.12147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Mefloquine (MQ) is an antimalarial drug with high efficacy, often used in the treatment and chemoprophylaxis of malaria. However, it has low solubility in water, a long elimination half-life (4 days), and is neurotoxic, which leads to unwanted side effects. METHODS We investigated a lipid-based drug delivery system, Pheroid vesicles, in combination with MQ (Pheroid MQ), to promote future clinical use. MQ was incorporated into Pheroid vesicles and the formulations characterized. The formulations were evaluated in terms of in-vitro efficacy and toxicity. In-vivo bioavailability studies were conducted in C57 BL6 mice. KEY FINDINGS The vesicles incorporated MQ with ~63% entrapment efficiency. The IC50 values of MQ after 48-h incubation in chloroquine-resistant (RSA11) and chloroquine sensitive (3D7) strains, were reduced by ~50% and ~30% respectively. In-vivo bioavailability study revealed no change in the pharmacokinetic parameters of MQ, and the incorporation of the drug in Pheroid vesicles reduced the in-vitro haemolytic activity by ~75%. Furthermore, the cytotoxicity against human neuroblastoma cells (SH-SY5Y) of the free drug was reduced by ~64% with Pheroid MQ. CONCLUSIONS Pheroid vesicles may therefore decrease the toxicity of MQ and thereby improve its therapeutic index, a strategy that may provide an effective alternative for malaria chemoprophylaxis and treatment.
Collapse
Affiliation(s)
- Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
28
|
Ferreira RJ, Ferreira MJU, dos Santos DJVA. Molecular Docking Characterizes Substrate-Binding Sites and Efflux Modulation Mechanisms within P-Glycoprotein. J Chem Inf Model 2013; 53:1747-60. [DOI: 10.1021/ci400195v] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003
Lisbon, Portugal
| | - Maria-José U. Ferreira
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003
Lisbon, Portugal
| | - Daniel J. V. A. dos Santos
- Research Institute for Medicines
and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003
Lisbon, Portugal
- REQUIMTE, Department of Chemistry & Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Pharmacokinetic considerations in the repositioning of mefloquine for treatment of progressive multifocal leukoencephalopathy. Clin Neurol Neurosurg 2012; 114:1204-5. [DOI: 10.1016/j.clineuro.2012.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/19/2012] [Indexed: 11/23/2022]
|
30
|
Oga EF, Sekine S, Shitara Y, Horie T. Potential P-glycoprotein-mediated drug-drug interactions of antimalarial agents in Caco-2 cells. Am J Trop Med Hyg 2012; 87:64-9. [PMID: 22764293 DOI: 10.4269/ajtmh.2012.11-0817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antimalarials are widely used in African and Southeast Asian countries, where they are combined with other drugs for the treatment of concurrent ailments. The potential for P-glycoprotein (P-gp)-mediated drug-drug interactions (DDIs) between antimalarials and P-gp substrates was examined using a Caco-2 cell-based model. Selected antimalarials were initially screened for their interaction with P-gp based on the inhibition of rhodamine-123 (Rho-123) transport in Caco-2 cells. Verapamil (100 μM) and quinidine (1 μM) were used as positive inhibition controls. Lumefantrine, amodiaquin, and artesunate all showed blockade of Rho-123 transport. Subsequently, the inhibitory effect of these antimalarials on the bi-directional passage of digoxin (DIG) was examined. All of the drugs decreased basal-to-apical (B-A) P-gp-mediated DIG transport at concentrations of 100 μM and 1 mM. These concentrations may reflect therapeutic doses for amodiaquin and artesunate. Therefore, clinically relevant DDIs may occur between certain antimalarials and P-gp substrates in general.
Collapse
Affiliation(s)
- Enoche F Oga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
31
|
Abuznait AH, Patrick SG, Kaddoumi A. Exposure of LS-180 cells to drugs of diverse physicochemical and therapeutic properties up-regulates P-glycoprotein expression and activity. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2012; 14:236-48. [PMID: 21733412 DOI: 10.18433/j36016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Drug transporters are increasingly recognized as important determinants of variability in drug disposition and therapeutic response, both in pre-clinical and clinical stages of drug development process. The role P-glycoprotein (P-gp) plays in drug interactions via its inhibition is well established. However, much less knowledge is available about drugs effect on P-gp up-regulation. The objective of this work was to in vitro investigate and rank commonly used drugs according to their potencies to up-regulate P-gp activity utilizing the same experimental conditions. METHODS The in vitro potencies of several drugs of diverse physicochemical and therapeutic properties including rifampicin, dexamethasone, caffeine, verapamil, pentylenetetrazole, hyperforin, and β-estradiol over broad concentration range to up-regulate P-gp expression and activity were examined. For dose-response studies, LS-180 cells were treated with different concentrations of the selected drugs followed by P-gp protein and gene expressions analyses. P-gp functionality was determined by uptake studies with rhodamine 123 as a P-gp substrate, followed by Emax/EC50 evaluation. RESULTS The results demonstrated a dose-dependent increase in P-gp expression and activity following treatments. At 50 uM concentration (hyperforin, 0.1 uM), examined drugs increased P-gp protein and gene expressions by up to 5.5 and 6.2-fold, respectively, while enhanced P-gp activity by 1.8-4-fold. The rank order of these drugs potencies to up-regulate P-gp activity was as following: hyperforin >>> dexamethasone ~ beta-estradiol > caffeine > rifampicin ~ pentylenetetrazole > verapamil. CONCLUSIONS These drugs have the potential to be involved in drug interactions when administered with other drugs that are P-gp substrates. Further studies are needed to in vivo evaluate these drugs and verify the consequences of such induction on P-gp activity for in vitro-in vivo correlation purposes.
Collapse
Affiliation(s)
- Alaa H Abuznait
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, USA
| | | | | |
Collapse
|
32
|
Nevin RL. Investigating channel blockers for the treatment of multiple sclerosis: considerations with mefloquine and carbenoxolone. J Neuroimmunol 2012; 243:106-7. [PMID: 22236373 DOI: 10.1016/j.jneuroim.2011.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
33
|
Piedade R, Gil JP. The pharmacogenetics of antimalaria artemisinin combination therapy. Expert Opin Drug Metab Toxicol 2011; 7:1185-200. [PMID: 21899476 DOI: 10.1517/17425255.2011.608660] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Plasmodium falciparum malaria is one of the world's most lethal infectious diseases, commanding millions of drug administrations per year. The pharmacogenetics of these drugs is poorly known, although its application can be pivotal for the optimized management of this disease. AREAS COVERED The main components of artemisinin combination therapy (ACT), the worldwide main antimalarial strategy, are metabolized by the polymorphic CYP3A4 (mefloquine, artemether, lumefantrine), CYP2C8 (amodiaquine), CYP2A6 (artesunate) and CYP1A1/2 (amodiaquine/desethylamodiaquine), with dihydroartemisinin being acted by Phase II UDP-glucuronosyltransferases. The worldwide adoption of ACT is leading to a large number of antimalarial treatments. Simultaneously, the feared development of parasite drug resistance might drive dosing increases. In these scenarios of increased drug exposure, pharmacogenetics can be a key tool supporting evidence-based medicine aiming for the longest possible useful lifespan of this important chemotherapy. EXPERT OPINION Translation in this moment is not operationally possible at an individual level, but large population studies are achievable for: i) the development of robust pharmacogenetics markers; and ii) the parallel development of a pharmacogenetic cartography of malaria settings. Advances in the understanding of antimalarial pharmacogenetics are urgent in order to protect the exposed populations, enhance the effectiveness of ACT and, consequently, contributing for the long aimed elimination of the disease.
Collapse
Affiliation(s)
- Rita Piedade
- Karolinska Institute, Division of Pharmacogenetics, Department of Physiology and Pharmacology, Stockholm, Sweden
| | | |
Collapse
|
34
|
Abuznait AH, Qosa H, O'Connell ND, Akbarian-Tefaghi J, Sylvester PW, El Sayed KA, Kaddoumi A. Induction of expression and functional activity of P-glycoprotein efflux transporter by bioactive plant natural products. Food Chem Toxicol 2011; 49:2765-72. [PMID: 21851848 DOI: 10.1016/j.fct.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/24/2022]
Abstract
The effect of bioactive plant natural products on the expression and functional activity of P-glycoprotein (P-gp) is poorly understood. Interactions of bioactive plant-based food and dietary supplements with P-gp can cause significant alteration of pharmacokinetic properties of P-gp substrate drugs when used in combination. This can augment toxicity and/or interfere with the drug's therapeutic outcomes. This study investigated the effects of diverse commonly used plant natural products on the expression and activity of P-gp in human adenocarcinoma cells (LS-180). These natural products included the tobacco cembranoid (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (cembratriene), the palm oil-derived γ-tocotrienol, the extra-virgin olive oil-derived secoiridoid oleocanthal, and the triterpene acid asiatic acid derived from Melaleuca ericifolia and abundant in several other common plant dietary supplements. Treatment with 25μM of cembratriene, oleocanthal, γ-tocotrienol, or asiatic acid showed 2.3-3.0-fold increase in P-gp expression as demonstrated by Western blotting. These results were consistent with those obtained by quantitative analysis of fluorescent micrographs for P-gp. Accumulation studies demonstrated 31-38% decrease in rhodamine 123 intracellular levels when LS-180 cells were treated with the investigated compounds as a result of P-gp induction. Bioactive natural products can up-regulate the P-gp expression and functionality, which may induce herb/food-drug interactions when concomitantly used with P-gp substrate drugs.
Collapse
Affiliation(s)
- Alaa H Abuznait
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Abuznait AH, Cain C, Ingram D, Burk D, Kaddoumi A. Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer's disease. ACTA ACUST UNITED AC 2011; 63:1111-8. [PMID: 21718295 DOI: 10.1111/j.2042-7158.2011.01309.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Several studies have suggested the efflux transporter P-glycoprotein (P-gp) to play a role in the etiology of Alzheimer's disease through the clearance of amyloid beta (Aβ) from the brain. In this study, we aimed to investigate the possibility of P-gp as a potential therapeutic target for Alzheimer's disease by examining the impact of P-gp up-regulation on the clearance of Aβ, a neuropathological hallmark of Alzheimer's disease. METHODS Uptake studies for ¹²⁵I-radiolabelled Aβ₁₋₄₀, and fluorescent immunostaining technique for P-gp and fluorescent imaging of Aβ₁₋₄₀ were carried out in LS-180 cells following treatment with drugs known to induce P-gp expression. KEY FINDINGS Approximately 10-35% decrease in ¹²⁵I-Aβ₁₋₄₀ intracellular accumulation was observed in cells treated with rifampicin, dexamethasone, caffeine, verapamil, hyperforin, β-estradiol and pentylenetetrazole compared with control. Also, fluorescent micrographs showed an inverse relationship between levels of P-gp expression and 5-carboxyfluorescein labelled Aβ (FAM-Aβ₁₋₄₀) intracellular accumulation. Quantitative analysis of the micrographs revealed that the results were consistent with those of the uptake studies using ¹²⁵I-Aβ₁₋₄₀. CONCLUSIONS The investigated drugs were able to improve the efflux of Aβ₁₋₄₀ from the cells via P-gp up-regulation compared with control. Our results elucidate the importance of targeting Aβ clearance via P-gp up-regulation, which will be effective in slowing or halting the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Alaa H Abuznait
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | | | | | | | | |
Collapse
|
36
|
Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother 2011; 55:3838-44. [PMID: 21646479 DOI: 10.1128/aac.00065-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although oral miltefosine represented an important therapeutic advance in the treatment of leishmaniasis, the appearance of resistance remains a serious threat. LMDR1/LABCB4, a P-glycoprotein-like transporter included in the Leishmania ABC (ATP-binding cassette) family, was the first molecule shown to be involved in experimental miltefosine resistance. LMDR1 pumps drugs out of the parasite, thereby decreasing their intracellular accumulation. Sitamaquine, another promising oral drug for leishmaniasis, is currently in phase 2b clinical trials. The physicochemical features of this drug suggested to us that it could be considered for use as an LMDR1 inhibitor. Indeed, we report herein that nonleishmanicidal concentrations of sitamaquine reverse miltefosine resistance in a multidrug resistance Leishmania tropica line that overexpresses LMDR1. This reversal effect is due to modulation of the LMDR1-mediated efflux of miltefosine. In addition, sitamaquine is not a substrate of LMDR1, as this transporter does not affect sitamaquine accumulation or sensitivity in the parasite. Likewise, we show that ketoconazole, another oral leishmanicidal drug known to interact with ABC transporters, is also able to reverse LMDR1-mediated miltefosine resistance, although with a lower efficiency than sitamaquine. Molecular docking on a three-dimensional homology model of LMDR1 showed different preferential binding sites for each substrate-inhibitor pair, thus explaining this different behavior. Finally, we show that sitamaquine is also able to modulate the antimony resistance mediated by MRPA/LABCC3, another ABC transporter involved in experimental and clinical antimony resistance in this parasite. Taken together, these data suggest that the combination of sitamaquine with miltefosine or antimony could avoid the appearance of resistance mediated by these membrane transporters in Leishmania.
Collapse
|
37
|
Strauch S, Jantratid E, Dressman JB, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: mefloquine hydrochloride. J Pharm Sci 2011; 100:11-21. [PMID: 20602454 DOI: 10.1002/jps.22249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release solid oral dosage forms containing mefloquine hydrochloride as the only active pharmaceutical ingredient (API) are reviewed. The solubility and permeability data of mefloquine hydrochloride as well as its therapeutic use and therapeutic index, its pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability studies were taken into consideration. Mefloquine hydrochloride is not a highly soluble API. Since no data on permeability are available, it cannot be classified according to the Biopharmaceutics Classification System with certainty. Additionally, several studies in the literature failed to demonstrate BE of existing products. For these reasons, the biowaiver cannot be justified for the approval of new multisource drug products containing mefloquine hydrochloride. However, scale-up and postapproval changes (HHS-FDA SUPAC) levels 1 and 2 and most EU type I variations may be approvable without in vivo BE, using the dissolution tests described in these regulatory documents.
Collapse
Affiliation(s)
- S Strauch
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. Eur J Pharmacol 2010; 628:57-66. [DOI: 10.1016/j.ejphar.2009.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 01/16/2023]
|
39
|
Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. THE LANCET. INFECTIOUS DISEASES 2009; 9:760-74. [DOI: 10.1016/s1473-3099(09)70320-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Abstract
Chiral substances possess a unique architecture such that, despite sharing identical molecular formulas, atom-to-atom linkages, and bonding distances, they cannot be superimposed. Thus, in the environment of living systems, where specific structure-activity relationships may be required for effect (e.g., enzymes, receptors, transporters, and DNA), the physiochemical and biochemical properties of racemic mixtures and individual stereoisomers can differ significantly. In drug development, enantiomeric selection to maximize clinical effects or mitigate drug toxicity has yielded both success and failure. Further complicating genetic polymorphisms in drug disposition, stereoselective metabolism of chiral compounds can additionally influence pharmacokinetics, pharmacodynamics, and toxicity. Optically pure pharmaceuticals may undergo racemization in vivo, negating single enantiomer benefits or inducing unexpected effects. Appropriate chiral antidotes must be selected for therapeutic benefit and to minimize adverse events. Enantiomers may possess different carcinogenicity and teratogenicity. Environmental toxicology provides several examples in which compound bioaccumulation, persistence, and toxicity show chiral dependence. In forensic toxicology, chiral analysis has been applied to illicit drug preparations and biological specimens, with the potential to assist in determination of cause of death and aid in the correct interpretation of substance abuse and "doping" screens. Adrenergic agonists and antagonist, nonsteroidal anti-inflammatory agents, SSRIs, opioids, warfarin, valproate, thalidomide, retinoic acid, N-acetylcysteine, carnitine, penicillamine, leucovorin, glucarpidase, pesticides, polychlorinated biphenyls, phenylethylamines, and additional compounds will be discussed to illustrate important concepts in "chiral toxicology."
Collapse
Affiliation(s)
- Silas W Smith
- New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
41
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
42
|
Two-step liquid-phase microextraction and high-performance liquid chromatography for the simultaneous analysis of the enantiomers of mefloquine and its main metabolite carboxymefloquine in plasma. Anal Bioanal Chem 2009; 393:1805-13. [DOI: 10.1007/s00216-009-2620-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 11/26/2022]
|
43
|
de Lagerie SB, Fernandez C, German-Fattal M, Gantier JC, Gimenez F, Farinotti R. MDR1A (ABCB1)-deficient CF-1 mutant mice are susceptible to cerebral malaria induced by Plasmodium berghei ANKA. J Parasitol 2009; 94:1139-42. [PMID: 18973419 DOI: 10.1645/ge-1493.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 02/27/2008] [Indexed: 11/10/2022] Open
Abstract
Under experimental conditions, Plasmodium berghei infection causes cerebral malaria (CM) in susceptible strains of mice such as C57BL/6 and CBA/Ca, whereas BALB/c or DBA/2J strains serve as a model for CM-resistant mice. The aim of the present study was to investigate the susceptibility of the CF1 mouse strain, carrying a spontaneous mutation of the mdr1a gene, to infection with Plasmodium berghei ANKA (PbA). The mdr1a gene codes for P-glycoprotein (P-gp/ABCB1), an efflux pump that is one of the major components of the blood-brain barrier. P-gp effluxes a broad range of xenobiotics from the brain to blood, preventing accumulation and toxicity in the central nervous system. CFI mdr1a (-/-) mice are used to investigate drug transport by efflux pumps. Because many antimalarial agents are effluxed by P-gp (mefloquine, quinine), it was important to determine whether CF1 mice can develop cerebral malaria to predict drug toxicity during cerebral malaria. Our work showed that CF1 mdr1a (-/-) mice are susceptible to PbA. CF1 and C57BL/6N mice (the reference strain) infected with PbA have similar profiles with regard to clinical signs, brain histological lesions, and brain macrophagic activation observed by immunohistological methods.
Collapse
Affiliation(s)
- Sylvie Barraud de Lagerie
- Clinical Pharmacy Unit EA 2706, University of Paris Sud 11, 5 rue JB Clement, Chatenay-Malabry, 92296, France.
| | | | | | | | | | | |
Collapse
|
44
|
Bhatia P, Kolinski M, Moaddel R, Jozwiak K, Wainer IW. Determination and modelling of stereoselective interactions of ligands with drug transporters: a key dimension in the understanding of drug disposition. Xenobiotica 2008; 38:656-75. [PMID: 18668426 DOI: 10.1080/00498250802109207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Stereochemistry is an important dimension in pharmacology and plays a role in every aspect of the pharmacological fate of chiral xenobiotics. This includes small molecule-drug transporter binding. 2. This paper reviews the reported stereoselectivities of substrate and inhibitor interactions with P-glycoprotein and the organic cation transporter obtained using standard functional and binding studies, as well as data obtained from online cellular membrane affinity chromatography studies. 3. The use of stereochemical data in quantitative structure-activity relationship (QSAR) and pharmacophore modelling is also addressed as is the effect of ignoring the fact that small molecule-drug transporter interactions take place in three-dimensional and asymmetric space.
Collapse
Affiliation(s)
- P Bhatia
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | |
Collapse
|
45
|
Van Nassauw L, Toovey S, Van Op den Bosch J, Timmermans JP, Vercruysse J. Schistosomicidal activity of the antimalarial drug, mefloquine, in Schistosoma mansoni-infected mice. Travel Med Infect Dis 2008; 6:253-8. [PMID: 18760248 DOI: 10.1016/j.tmaid.2008.06.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 12/16/2022]
Abstract
Therapeutic effects of racemic mefloquine were assessed in Schistosoma mansoni-infected mice, and evaluated by recording worm burden, the status of egg maturation and viability, and intestinal mast cell recruitment. Age-matched mice were divided into four groups, of which two were infected. At 8 weeks postinfection, one group of infected and one group of uninfected mice were treated with a single dose of mefloquine (150 mg/kg). Ten days after treatment, all animals were killed. Mefloquine at 150 mg/kg had no effect on worm burden, but significantly reduced the number of eggs in the first three developmental egg stages. Analysis of intestinal mast cell numbers showed that mefloquine induced mastocytosis both in infected and control animals. In conclusion, mefloquine significantly reduces egg production in S. mansoni-infected mice, suggesting a therapeutic potency in schistosomiasis therapy. Mefloquine also exerts a significant proinflammatory effect on the intestine. Through its effect on egg production, mefloquine may be a cause of silent schistosomiasis in travelers using mefloquine for malaria chemoprophylaxis. Further study of the anti-schistosomal activity of mefloquine is warranted, as its activity against other helminths.
Collapse
Affiliation(s)
- Luc Van Nassauw
- Laboratory of Histology and Cell Biology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Dow GS, Heady TN, Bhattacharjee AK, Caridha D, Gerena L, Gettayacamin M, Lanteri CA, Obaldia N, Roncal N, Shearer T, Smith PL, Tungtaeng A, Wolf L, Cabezas M, Yourick D, Smith KS. Utility of alkylaminoquinolinyl methanols as new antimalarial drugs. Antimicrob Agents Chemother 2006; 50:4132-43. [PMID: 16966402 PMCID: PMC1694001 DOI: 10.1128/aac.00631-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mefloquine has been one of the more valuable antimalarial drugs but has never reached its full clinical potential due to concerns about its neurologic side effects, its greater expense than that of other antimalarials, and the emergence of resistance. The commercial development of mefloquine superseded that of another quinolinyl methanol, WR030090, which was used as an experimental antimalarial drug by the U.S. Army in the 1970s. We evaluated a series of related 2-phenyl-substituted alkylaminoquinolinyl methanols (AAQMs) for their potential as mefloquine replacement drugs based on a series of appropriate in vitro and in vivo efficacy and toxicology screens and the theoretical cost of goods. Generally, the AAQMs were less neurotoxic and exhibited greater antimalarial potency, and they are potentially cheaper than mefloquine, but they showed poorer metabolic stability and pharmacokinetics and the potential for phototoxicity. These differences in physiochemical and biological properties are attributable to the "opening" of the piperidine ring of the 4-position side chain. Modification of the most promising compound, WR069878, by substitution of an appropriate N functionality at the 4 position, optimization of quinoline ring substituents at the 6 and 7 positions, and deconjugation of quinoline and phenyl ring systems is anticipated to yield a valuable new antimalarial drug.
Collapse
Affiliation(s)
- G S Dow
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Crowe A, Ilett KF, Karunajeewa HA, Batty KT, Davis TME. Role of P glycoprotein in absorption of novel antimalarial drugs. Antimicrob Agents Chemother 2006; 50:3504-6. [PMID: 16917012 PMCID: PMC1610088 DOI: 10.1128/aac.00708-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bidirectional transport of four novel antimalarial compounds was determined using Caco-2 cell monolayers. P glycoprotein-mediated efflux was greatest for pyronaridine (5 to 20 microM) and low for naphthoquine (5 microM). With 20 microM naphthoquine, net efflux was blocked, suggesting saturation of the transporter. Piperaquine and dihydroartemisinin were not transported by the system.
Collapse
Affiliation(s)
- Andrew Crowe
- Curtin University of Technology, School of Pharmacy, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
48
|
Dirson G, Fernandez C, Hindlet P, Roux F, German-Fattal M, Gimenez F, Farinotti R. Efavirenz does not interact with the ABCB1 transporter at the blood-brain barrier. Pharm Res 2006; 23:1525-32. [PMID: 16779703 DOI: 10.1007/s11095-006-0279-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 02/24/2006] [Indexed: 01/11/2023]
Abstract
PURPOSE This work characterizes the interactions between efavirenz (EFV) and P-glycoprotein (P-gp/ABCB1) at the blood-brain barrier (BBB) and predicts the possible consequences on the brain uptake of coadministered P-gp substrates. METHODS The uptake of EFV was measured in whole brains of rat and mdr1a-/- and mdr1a+/+ mice, and in GPNT cells (rat brain endothelial cell line) with and without P-gp inhibitors (PSC833, S9788, Quinidine). The effect of a single dose or multiple doses of EFV on the P-gp functionality was evaluated in vivo and in vitro by measuring the brain and cell uptake of digoxin, completed by the analysis of the P-gp expression at the rat BBB after repeated administrations of EFV. RESULTS Inhibition of P-gp did not alter the uptake of EFV in rat brain and GPNT cells. The EFV brain/plasma ratio in mdr1a-/- mice, lacking the expression of P-gp, was not different from that in mdr1a+/+ mice. Moreover, a single dose of EFV did not modify the uptake of digoxin in rat brain and GPNT cells. Finally, the 3-day exposure of GPNT cells to EFV did not have any effect on the uptake of digoxin. Similarly, the 7-day treatment with EFV did not change the uptake of digoxin in rat brain nor the expression of P-gp at the BBB. CONCLUSION EFV is strongly distributed in the brain, but is neither a substrate nor an inhibitor of the P-gp at the blood-brain barrier. On the other hand, EFV did not induce P-gp, allowing to sustain the brain accumulation of associated P-gp substrates such as protease inhibitors. These findings make EFV suitable for combinations circumventing the brain HIV-1 residency.
Collapse
Affiliation(s)
- Grégoire Dirson
- Clinical Pharmacy Unit (EA 2706; Barrières et passage des medicaments), University of Paris-Sud XI, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, 92296, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Constable PA, Lawrenson JG, Dolman DEM, Arden GB, Abbott NJ. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res 2006; 83:24-30. [PMID: 16530756 DOI: 10.1016/j.exer.2005.10.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 10/14/2005] [Accepted: 10/21/2005] [Indexed: 12/28/2022]
Abstract
P-Glycoprotein (P-gp), an active efflux transporter encoded by the MDR1 gene, has recently been identified in the human and pig retinal pigment epithelium (RPE) in situ. Efflux pumps such as P-gp are major barriers to drug delivery in several tissues. We wished to establish whether human RPE cell lines express P-gp under the culture conditions recommended for each cell line so as to determine their suitability as in vitro models for predicting drug transport across the outer blood-retinal barrier. Three human RPE cell lines, ARPE19, D407 and h1RPE were investigated. Reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out to determine the expression of MDR1 mRNA. Immunocytochemistry using the P-gp-specific antibody C219 was undertaken to investigate the presence of P-gp protein in each cell type. Uptake of rhodamine 123, a P-gp substrate, in the presence or absence of pre-treatment with a P-gp inhibitor, verapamil, was measured in each cell line to determine functional expression of P-gp. For all experiments, MDCK cells stably transfected with the human MDR1 gene (MDCK-MDR1) were used as a positive control. ARPE19 cells were consistently negative for P-gp as assessed by RT-PCR and immunocytochemistry. By contrast, RT-PCR of D407 and h1RPE samples yielded weak bands corresponding to MDR1; P-gp protein expression, as demonstrated by C219 immunoreactivity, was also present. Rhodamine uptake after treatment with verapamil was significantly greater in D407 and MDCK-MDR1, indicating functional expression of P-gp in these two cell lines. No evidence of functional P-gp was found in ARPE19 and h1RPE. In conclusion, D407 and h1RPE cells express P-gp, though functional activity was demonstrable only in D407 cells. ARPE19 cells do not express P-gp. Of these human RPE cells lines D407 could be considered as a suitable model for in vitro drug transport studies, particularly those involving P-gp substrates, without modification of their usual culture conditions.
Collapse
Affiliation(s)
- Paul A Constable
- Department of Optometry and Visual Science, Henry Wellcome Laboratories for Vision Sciences, Applied Vision Research Centre, City University, Northampton Square, London EC1V OHB, UK.
| | | | | | | | | |
Collapse
|
50
|
Dow G, Bauman R, Caridha D, Cabezas M, Du F, Gomez-Lobo R, Park M, Smith K, Cannard K. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob Agents Chemother 2006; 50:1045-53. [PMID: 16495267 PMCID: PMC1426433 DOI: 10.1128/aac.50.3.1045-1053.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 08/22/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022] Open
Abstract
Mefloquine is one of the drugs approved by the FDA for malaria chemoprophylaxis. Mefloquine is also approved for the treatment of malaria and is widely used for this purpose in combination with artesunate. However, the clinical utility of the compound has been compromised by reports of adverse neurological effects in some patients. In the present study, the potential neurological effects of mefloquine were investigated with six 7-week-old female rats given a single oral dose of the compound. Potential mefloquine-induced neurological effects were monitored using a standard functional observational battery, automated open field tests, automated spontaneous activity monitoring, a beam traverse task, and histopathology. Plasma mefloquine concentrations were determined 72 h after dosing by using liquid chromatography-mass spectrometry. Mefloquine induced dose-related changes in endpoints associated with spontaneous activity and impairment of motor function and caused degeneration of specific brain stem nuclei (nucleus gracilis). Increased spontaneous motor activity was observed only during the rats' normal sleeping phase, suggesting a correlate to mefloquine-induced sleep disorders. The threshold dose for many of these effects was 187 mg/kg of body weight. This dose yielded plasma mefloquine concentrations after 72 h that are similar to those observed in humans after the treatment dose. Collectively, these data suggest that there may be a biological basis for some of the clinical neurological effects associated with mefloquine.
Collapse
Affiliation(s)
- G Dow
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|