1
|
Peña-Diaz P, Braymer JJ, Vacek V, Zelená M, Lometto S, Mais CN, Hrdý I, Treitli SC, Hochberg GKA, Py B, Lill R, Hampl V. Characterization of the SUF FeS cluster synthesis machinery in the amitochondriate eukaryote Monocercomonoides exilis. Curr Biol 2024; 34:3855-3865.e7. [PMID: 39089256 DOI: 10.1016/j.cub.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Monocercomonoides exilis is the first known amitochondriate eukaryote. Loss of mitochondria in M. exilis ocurred after the replacement of the essential mitochondrial iron-sulfur cluster (ISC) assembly machinery by a unique, bacteria-derived, cytosolic SUF system. It has been hypothesized that the MeSuf pathway, in cooperation with proteins of the cytosolic iron-sulfur protein assembly (CIA) system, is responsible for the biogenesis of FeS clusters in M. exilis, yet biochemical evidence is pending. Here, we address the M. exilis MeSuf system and show that SUF genes, individually or in tandem, support the loading of iron-sulfur (FeS) clusters into the reporter protein IscR in Escherichia coli. The Suf proteins MeSufB, MeSufC, and MeSufDSU interact in vivo with one another and with Suf proteins of E. coli. In vitro, the M. exilis Suf proteins form large complexes of varying composition and hence may function as a dynamic biosynthetic system in the protist. The putative FeS cluster scaffold MeSufB-MeSufC (MeSufBC) forms multiple oligomeric complexes, some of which bind FeS clusters and form selectively only in the presence of adenosine nucleotides. The multi-domain fusion protein MeSufDSU binds a PLP cofactor and can form higher-order complexes with MeSufB and MeSufC. Our work demonstrates the biochemical property of M. exilis Suf proteins to act as a functional FeS cluster assembly system and provides insights into the molecular mechanism of this unique eukaryotic SUF system.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic.
| | - Joseph J Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany.
| | - Vojtěch Vacek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Marie Zelená
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Stefano Lometto
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic
| | - Georg K A Hochberg
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
2
|
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022; 11:1174. [PMID: 36297231 PMCID: PMC9611177 DOI: 10.3390/pathogens11101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we demonstrate that Trypanosoma cruzi epimastigotes previously grown in LIT medium supplemented with 20 mM galactose and exposed to sub-lethal concentrations of hydrogen peroxide (100 μM) showed two-fold and five-fold viability when compared to epimastigotes grown in LIT medium supplemented with two different glucose concentrations (20 mM and 1.5 mM), respectively. Similar results were obtained when exposing epimastigotes from all treatments to methylene blue 30 μM. Additionally, through differential centrifugation and the selective permeabilization of cellular membranes with digitonin, we found that phosphoglucomutase activity (a key enzyme in galactose metabolism) occurs predominantly within the cytosolic compartment. Furthermore, after partially permeabilizing epimastigotes with digitonin (0.025 mg × mg-1 of protein), intact glycosomes treated with 20 mM galactose released a higher hexose phosphate concentration to the cytosol in the form of glucose-1-phosphate, when compared to intact glycosomes treated with 20 mM glucose, which predominantly released glucose-6-phosphate. These results shine a light on T. cruzi's galactose metabolism and its interplay with mechanisms that enable resistance to oxidative stress.
Collapse
Affiliation(s)
- Ángel Lobo-Rojas
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | |
Collapse
|
3
|
Quiñones W, Acosta H, Gonçalves CS, Motta MCM, Gualdrón-López M, Michels PAM. Structure, Properties, and Function of Glycosomes in Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:25. [PMID: 32083023 PMCID: PMC7005584 DOI: 10.3389/fcimb.2020.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Acosta H, Burchmore R, Naula C, Gualdrón-López M, Quintero-Troconis E, Cáceres AJ, Michels PAM, Concepción JL, Quiñones W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229:62-74. [PMID: 30831156 PMCID: PMC7082770 DOI: 10.1016/j.molbiopara.2019.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Besides glycolysis, activity of enzymes of other metabolic processes have been reported to be present in glycosomes, such as β-oxidation of fatty acids, purine salvage, pentose-phosphate pathway, gluconeogenesis and biosynthesis of ether-lipids, isoprenoids, sterols and pyrimidines. In this study, we have purified glycosomes from T. cruzi epimastigotes, collected the soluble and membrane fractions of these organelles, and separated peripheral and integral membrane proteins by Na2CO3 treatment and osmotic shock. Proteomic analysis was performed on each of these fractions, allowing us to confirm the presence of enzymes involved in various metabolic pathways as well as identify new components of this parasite's glycosomes.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christina Naula
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melisa Gualdrón-López
- Instituto Salud Global, Hospital Clinic-Universitat de Barcelona, and Institute for Health Sciences Trias i Pujol, Barcelona, Spain
| | - Ender Quintero-Troconis
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, The University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| |
Collapse
|
5
|
Quintero-Troconis E, Buelvas N, Carrasco-López C, Domingo-Sananes M, González-González L, Ramírez-Molina R, Osorio L, Lobo-Rojas A, Cáceres A, Michels P, Acosta H, Quiñones W, Concepción J. Enolase from Trypanosoma cruzi is inhibited by its interaction with metallocarboxypeptidase-1 and a putative acireductone dioxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018. [DOI: 10.1016/j.bbapap.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Eltahan R, Guo F, Zhang H, Xiang L, Zhu G. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:43-49. [PMID: 29414105 PMCID: PMC6114080 DOI: 10.1016/j.ijpddr.2018.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 μM; Ki = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Cryptosporidium parvum possesses a single glucose-6-phosphate isomerase (CpGPI). CpGPI displays Michaelis-Menten kinetics towards fructose-6P (Km = 0.309 mM). The organoselenium ebselen is a CpGPI inhibitor identified from 1200 existing drugs. Ebselen displays allosteric noncompetitive inhibition on CpGPI (Ki = 36.33 μM). Ebeselen could inhibit the growth of C. parvum in vitro (EC50 = 165 μM).
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA
| | - Lixin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, USA.
| |
Collapse
|
7
|
Rondón-Mercado R, Acosta H, Cáceres AJ, Quiñones W, Concepción JL. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Mol Biochem Parasitol 2017. [PMID: 28645481 DOI: 10.1016/j.molbiopara.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.
Collapse
Affiliation(s)
- Rocío Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
8
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
9
|
Quiñones W, Cáceres AJ, Ruiz MT, Concepción JL. Glycosomal membrane proteins and lipids from Leishmania mexicana. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:27-36. [DOI: 10.1016/j.cbpb.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
10
|
Acosta H, Cáceres A, González-Marcano E, Quiñones W, Avilán L, Dubourdieu M, Concepción JL. Hysteresis and positive cooperativity as possible regulatory mechanisms of Trypanosoma cruzi hexokinase activity. Mol Biochem Parasitol 2015; 198:82-91. [PMID: 25683029 DOI: 10.1016/j.molbiopara.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
In Trypanosoma cruzi, the causal agent of Chagas disease, the first six or seven steps of glycolysis are compartmentalized in glycosomes, which are authentic but specialized peroxisomes. Hexokinase (HK), the first enzyme in the glycolytic pathway, has been an important research object, particularly as a potential drug target. Here we present the results of a specific kinetics study of the native HK from T. cruzi epimastigotes; a sigmoidal behavior was apparent when the velocity of the reaction was determined as a function of the concentration of its substrates, glucose and ATP. This behavior was only observed at low enzyme concentration, while at high concentration classical Michaelis-Menten kinetics was displayed. The progress curve of the enzyme's activity displays a lag phase of which the length is dependent on the protein concentration, suggesting that HK is a hysteretic enzyme. The hysteretic behavior may be attributed to slow changes in the conformation of T. cruzi HK as a response to variations of glucose and ATP concentrations in the glycosomal matrix. Variations in HK's substrate concentrations within the glycosomes may be due to variations in the trypanosome's environment. The hysteretic and cooperative behavior of the enzyme may be a form of regulation by which the parasite can more readily adapt to these environmental changes, occurring within each of its hosts, or during the early phase of transition to a new host.
Collapse
Affiliation(s)
- Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| | - Ana Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Luisana Avilán
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Michel Dubourdieu
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
11
|
Abstract
The causative agent of Chagas disease, Trypanosoma cruzi, metabolizes glucose through two major pathways: glycolysis and the pentose phosphate pathway. Glucose is taken up via one facilitated transporter and its catabolism by the glycolytic pathway leads to the excretion of reduced products, succinate and l-alanine, even in the presence of oxygen; the first six enzymes are located in a peroxisome-like organelle, the glycosome, and the lack of regulatory controls in hexokinase and phosphofructokinase results in the lack of the Pasteur effect. All of the enzymes of the pentose phosphate pathway are present in the four major stages of the parasite's life cycle, and some of them are possible targets for chemotherapy. The gluconeogenic enzymes phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase are present, but there is no reserve polysaccharide.
Collapse
|
12
|
Immune detection of acetylcholinesterase in subcellular compartments of Trypanosoma evansi. Parasitol Res 2010; 108:1-5. [PMID: 20809418 DOI: 10.1007/s00436-010-2032-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Trypanosoma evansi is a worldwide distributed hemoparasite with a strong economic impact in veterinary activities. Despite widespread knowledge about the etiology of the disease caused by T. evansi, there are few detailed studies about the metabolism of this parasite. The aim of this study was to determine the presence of Acetylcholinesterase (AChE) in T. evansi through a strategy of subcellular localization and confocal microscopy. The localization of the AChE by differential and isopycnic centrifugation strategy showed that this enzyme has a predominant localization in the glycosome, similar to hexokinase, and it is not present in either the cytosol or the plasma membrane. This study shows novel data that help to understand the non-neuronal role of AChE in the Trypanosomatidae family.
Collapse
|
13
|
Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J Biol Chem 2009; 284:7255-63. [PMID: 19122194 PMCID: PMC2652292 DOI: 10.1074/jbc.m806623200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/02/2009] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial respiratory enzymes play a central role in energy production in aerobic organisms. They differentiated from the alpha-proteobacteria-derived ancestors by adding noncatalytic subunits. An exception is Complex II (succinate: ubiquinone reductase), which is composed of four alpha-proteobacteria-derived catalytic subunits (SDH1-SDH4). Complex II often plays a pivotal role in adaptation of parasites in host organisms and would be a potential target for new drugs. We purified Complex II from the parasitic protist Trypanosoma cruzi and obtained the unexpected result that it consists of six hydrophilic (SDH1, SDH2N, SDH2C, and SDH5-SDH7) and six hydrophobic (SDH3, SDH4, and SDH8-SDH11) nucleus-encoded subunits. Orthologous genes for each subunit were identified in Trypanosoma brucei and Leishmania major. Notably, the iron-sulfur subunit was heterodimeric; SDH2N and SDH2C contain the plant-type ferredoxin domain in the N-terminal half and the bacterial ferredoxin domain in the C-terminal half, respectively. Catalytic subunits (SDH1, SDH2N plus SDH2C, SDH3, and SDH4) contain all key residues for binding of dicarboxylates and quinones, but the enzyme showed the lower affinity for both substrates and inhibitors than mammalian enzymes. In addition, the enzyme binds protoheme IX, but SDH3 lacks a ligand histidine. These unusual features are unique in the Trypanosomatida and make their Complex II a target for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Quiñones W, Peña P, Domingo-Sananes M, Cáceres A, Michels PAM, Avilan L, Concepción JL. Leishmania mexicana: Molecular cloning and characterization of enolase. Exp Parasitol 2007; 116:241-51. [PMID: 17382932 DOI: 10.1016/j.exppara.2007.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 12/23/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The gene of Leishmania mexicana enolase was cloned and overexpressed in Escherichia coli as an active enzyme; the protein was biochemically analyzed. This enolase shares with enolases from other trypanosomatids the presence of three atypical residues, each with a reactive side group, near the active site, already described for the enzyme from Trypanosoma brucei. The natural enzyme was purified, using a three-step procedure, from a cytosolic fraction of L. mexicana promastigotes. The kinetic properties of the purified recombinant enzyme were similar to those of the natural enzyme. Both the recombinant and natural enzyme were inhibited by inorganic pyrophosphate. Subcellular localization analysis after differential centrifugation showed that the enzyme activity is only associated with the cytosolic fraction. However, an apparently inactive form of enolase was detected by Western blots in the microsomal fraction. Digitonin treatment of parasites and immunofluorescence studies with permeabilized and non-permeabilized parasites showed that enolase is also associated with membranes and it was found at the external face of the plasma membrane.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Apartado Postal 38, Ipostel-La hechicera, Mérida, Venezuela
| | | | | | | | | | | | | |
Collapse
|
15
|
Mathur D, Garg LC. Functional phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv: Rapid purification with high yield and purity. Protein Expr Purif 2007; 52:373-8. [PMID: 17126561 DOI: 10.1016/j.pep.2006.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/10/2006] [Accepted: 10/10/2006] [Indexed: 11/19/2022]
Abstract
Phosphoglucose isomerase (PGI) EC 5.3.1.9, is a housekeeping enzyme that catalyzes the reversible isomerization of d-glucopyranose-6-phosphate and d-fructofuranose-6-phosphate. We have previously reported expression and multistep purification of recombinant PGI from Mycobacterium tuberculosis using conventional methods. We now describe an improved and simplified single step approach for purification of functionally active mycobacterial rPGI. The gene encoding PGI from M. tuberculosis H37Rv was cloned in bacterial expression vector pET22b(+). Expression of recombinant PGI with six-histidine-tag protein was observed both in the soluble fraction and inclusion bodies. Approximately 116mg of recombinant enzyme was purified to near homogeneity with approximately 80% yield from the soluble fraction of 1L culture at shake flask level using one step Ni-NTA affinity chromatography. The specific activity of the purified six-histidine-tagged recombinant PGI (rPGI-His(6)) was approximately 800U/mg of protein. The apparent K(m) value of the active recombinant protein followed Michaelis-Menten kinetics and was 0.27+/-0.03mM. K(i) for the competitive inhibitor 6-phosphogluconate was 0.75mM. The enzyme had pH optima in the range of pH 7.6-9.0 and was stable up to 55 degrees C. rPGI-His(6) exhibited enzyme activity almost equal to that of enzyme without histidine tag.
Collapse
Affiliation(s)
- Divya Mathur
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
16
|
Razmjou E, Haghighi A, Rezaian M, Kobayashi S, Nozaki T. Genetic diversity of glucose phosphate isomerase from Entamoeba histolytica. Parasitol Int 2006; 55:307-11. [PMID: 16979933 DOI: 10.1016/j.parint.2006.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/30/2006] [Accepted: 08/03/2006] [Indexed: 11/26/2022]
Abstract
To investigate the molecular basis of zymodeme analysis in the enteric protozoan parasite Entamoeba histolytica, genes encoding glucose phosphate isomerase (GPI) were isolated from four representative E. histolytica strains belonging to zymodeme II, IIalpha-, XIV, or XIX. Two alleles were obtained from each strain; six alleles with eight polymorphic nucleotide positions were identified among the four strains. Two of these eight polymorphic nucleotides resulted in non-conserved amino acid substitutions. Three GPI isoenzymes with distinct predicted isoelectric points were identified, which agrees well with the observed electrophoretic patterns of GPI from these strains. Amino acid comparisons of GPI from E. histolytica and other organisms revealed that all amino acid residues implicated for substrate binding and catalysis were conserved. Biochemical characterization of recombinant E. histolytica GPI confirmed that it possessed kinetic parameters similar to GPI from other organisms. The electrophoretic mobility of three GPI isoenzymes was examined by starch gel electrophoresis. Thus, we have established the molecular basis of the classical isoenzymes patterns that have been used for grouping E. histolytica isolates and for differentiation of E. histolytica from non-pathogenic Entamoeba dispar.
Collapse
Affiliation(s)
- Elham Razmjou
- Department of Medical Parasitology and Mycology, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
17
|
Pacheco MA, Concepción JL, Rangel JDR, Ruiz MC, Michelangeli F, Domínguez-Bello MG. Stomach lysozymes of the three-toed sloth (Bradypus variegatus), an arboreal folivore from the Neotropics. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:808-819. [PMID: 16959513 DOI: 10.1016/j.cbpa.2006.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 07/14/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
Lysozymes are antimicrobial defences that act as digestive enzymes when expressed in the stomach of herbivores with pre-gastric fermentation. We studied this enzyme in the complex stomach of the three-toed sloth (Bradypus variegatus), a folivore with pre-gastric fermentation. Lysozymes were identified by SDS-PAGE and immunoblotting in all portions: diverticulum, pouch, glandular and muscular prepyloric area with 14.3 kDa of molecular mass. Purified lysozymes from all areas but the diverticulum were characterized by MALDI-TOF, optimal pH, optimal ionic strength, and specific activity. The differences observed suggested at least three isoforms. The optimal pHs were similar to the pH of the stomach portion where the enzymes were isolated. The lysozyme from the pouch (fermentation chamber) exhibited higher specific activity and concentration than the others. The specific activity of the enzyme from the acid muscular prepyloric portion was comparable to that reported in the cow abomasums; however, its concentration was lower than that observed in cow. This distinctive pattern of secretion/specific activity and overall low concentration suggests different roles for the lysozymes in this herbivore compared to Artiodactyla. We postulate that sloth stomach lysozymes may still be antimicrobial defences by protecting the microbial flora of the fermentation chamber against foreign bacteria.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado postal 21827, Caracas, 1020A, Venezuela; Centro de Cálculo Científico de la Universidad de Los Andes, Parque Tecnológico, Mérida 5101, Venezuela.
| | - Juan Luís Concepción
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - José David Rosales Rangel
- Centro de Cálculo Científico de la Universidad de Los Andes, Parque Tecnológico, Mérida 5101, Venezuela; Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Marie Christine Ruiz
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado postal 21827, Caracas, 1020A, Venezuela
| | - Fabián Michelangeli
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apartado postal 21827, Caracas, 1020A, Venezuela
| | - María G Domínguez-Bello
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan Puerto Rico, Puerto Rico 00931
| |
Collapse
|
18
|
Yuan H, Song J, Zhang W, Li X, Li N, Gao X. Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorg Med Chem Lett 2006; 16:1329-34. [PMID: 16337378 DOI: 10.1016/j.bmcl.2005.11.057] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/04/2005] [Accepted: 11/15/2005] [Indexed: 11/18/2022]
Abstract
Antioxidant activity of kappa-carrageenan oligosaccharides (OM) and their chemical modification derivatives was investigated employing various established in vitro systems, such as reducing power, iron ion chelation, and total antioxidant activity using beta-carotene-linoleic acid system. The oversulfated (SD), lowly (LAD), and highly acetylated derivatives (HAD) in reducing power assay, the phosphorylated derivative (PD) in metal chelating assay, and oversulfated and phosphorylated derivatives in total antioxidant activity assay exhibited antioxidant activity higher than that of carrageenan oligosaccharides. The results indicated that the chemical modification of carrageenan oligosaccharides can enhance their antioxidant activity in vitro. The protective effects of the carrageenan oligosaccharides and their chemically modified derivatives against H(2)O(2) and UVA (long-wave ultraviolet radiation) induced oxidative damage on rat thymic lymphocyte were investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Thymic lymphocyte exposure to H(2)O(2) and UVA, a marked reduction in cell survival was observed, which was significantly prevented by carrageenan oligosaccharides and their derivatives (preincubated for 2h) at 66.7-2000 microg/mL. But both the carrageenan oligosaccharides and their different derivatives showed the similar protective effects on intracellular level. Taken together, these results suggest that carrageenan oligosaccharides and their derivatives show relevant antioxidant activity both in vitro and in a cell system.
Collapse
Affiliation(s)
- Huamao Yuan
- Institute of Oceanology, Chinese academy of Sciences, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Mathur D, Ahsan Z, Tiwari M, Garg LC. Biochemical characterization of recombinant phosphoglucose isomerase of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2005; 337:626-32. [PMID: 16212940 DOI: 10.1016/j.bbrc.2005.09.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
Phosphoglucose isomerase (PGI) is a well-characterized ubiquitous enzyme involved in the glycolytic pathway. It catalyzes the reversible isomerization of D-glucopyranose-6-phosphate and D-fructofuranose-6-phosphate and is present in all living cells. However, there is interspecies variation at the level of the primary structure which sometimes produces heterogeneity at the structural and functional levels. In order to evaluate and characterize the mycobacterial PGI, the gene encoding the PGI from Mycobacterium tuberculosis H37Rv was cloned in pET-22b(+) vector and expressed in Escherichia coli. The target DNA was PCR amplified from the bacterial artificial chromosome using specific primers and cloned under the control of T7 promoter. Upon induction with IPTG, the recombinant PGI (rPGI) expressed partly as soluble protein and partly as inclusion bodies. The rPGI from the soluble fraction was purified to near homogeneity by ion-exchange chromatography. Mass spectrum analysis of the purified rPGI revealed its mass to be 61.45 kDa. The purified rPGI was enzymatically active and the specific activity was 600 U/mg protein. The K(m) of rPGI was determined to be 0.318 mM for fructose-6-phosphate and the K(i) was 0.8 mM for 6-phosphogluconate. The rPGI exhibited optimal activity at 37 degrees C and pH 9.0, and did not require mono- or divalent cations for its activity.
Collapse
Affiliation(s)
- Divya Mathur
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
20
|
Acosta H, Dubourdieu M, Quiñones W, Cáceres A, Bringaud F, Concepción JL. Pyruvate phosphate dikinase and pyrophosphate metabolism in the glycosome of Trypanosoma cruzi epimastigotes. Comp Biochem Physiol B Biochem Mol Biol 2005; 138:347-56. [PMID: 15325334 DOI: 10.1016/j.cbpc.2004.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/20/2004] [Accepted: 04/23/2004] [Indexed: 11/26/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) was recently reported in trypanosomatids, but its metabolic function is not yet known. The present work deals with the cellular localization and the function of the Trypanosoma cruzi enzyme. First, we show by digitonin titration and cell fractionation that the enzyme was essentially present in the glycosome matrix of the epimastigote form. Second, we address the issue of the direction of the reaction inside the glycosome for one part, our bibliographic survey evidenced a quite exergonic DeltaGo' (at least -5.2 kcal/mol at neutral pH and physiologic ionic strength); for another part, no pyrophosphatase (PPase) could be detected in fractions corresponding to the glycosomes; therefore, glycosomal PPDK likely works in the direction of pyruvate production. Third, we address the issue of the origin of the glycosomal pyrophosphate (PPi): several synthetic pathways known to produce PPi are already considered to be glycosomal. This work also indicates the presence of an NADP(+)-dependent beta-oxidation of palmitoyl-CoA in the glycosome. Several pyruvate-consuming activities, in particular alanine dehydrogenase (ADH) and pyruvate carboxylase (PC), were detected in the glycosomal fraction. PPDK appears therefore as a central enzyme in the metabolism of the glycosome of T. cruzi by providing a link between glycolysis, fatty acid oxidation and biosynthetic PPi-producing pathways. Indeed, PPDK seems to replace pyrophosphatase in its classical thermodynamic role of displacing the equilibrium of PPi-producing reactions, as well as in its role of eliminating the toxic PPi.
Collapse
Affiliation(s)
- Héctor Acosta
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Quiñones W, Urbina JA, Dubourdieu M, Luis Concepción J. The glycosome membrane of Trypanosoma cruzi epimastigotes: protein and lipid composition. Exp Parasitol 2004; 106:135-49. [PMID: 15172221 DOI: 10.1016/j.exppara.2004.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 11/26/2003] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
Highly purified glycosomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and isopycnic ultracentrifugation. Glycosomal membranes, produced by carbonate treatment of purified glycosomes, exhibited about eight main protein bands and eight minor ones. Essentially the same protein pattern was observed in the detergent-rich fraction of a Triton X-114 fractionation of whole glycosomes, indicating that most of the membrane-bound polypeptides were highly hydrophobic. The orientation of these proteins was studied by in situ labelling followed by limited pronase hydrolysis of intact glycosomes. Three glycosome membrane proteins were characterized as peripheral by comparing the protein bands patterns of membrane fractions obtained by different treatments. Noteworthy membrane polypeptides were: (1) a peripheral 75k Da membrane protein, oriented towards the cytosol, which was the most abundant glycosomal membrane protein in exponentially growing epimastigotes but was essentially absent in stationary phase cells; (2) a pair of integral membrane proteins with molecular masses in the range of 85-100 kDa, which were only present in stationary phase cells; (3) a heme-containing 36k Da protein, strongly associated to the membrane, present in both growth phases; (4) a very immunogenic 41k Da integral membrane polypeptide, oriented towards the cytosol. The lipid composition of the glycosomal membranes was also investigated. The distribution of phospholipid species in glycosomes and glycosomal membranes was very similar to that of whole cells, with phosphatidyl-ethanolamine, phosphatidyl-choline, and phosphatidyl-serine as main components and smaller proportions of sphingomyelin and with phosphatidyl-inositol. On the other hand, glycosomes were enriched in endogenous sterols (ergosterol, 24-ethyl-5,7,22-cholesta-trien-3beta-ol), and precursors, when compared with whole cells, a finding consistent with the proposal that these organelles are involved in the de novo biosynthesis of sterols in trypanosomatids.
Collapse
Affiliation(s)
- Wilfredo Quiñones
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Apartado 38, Mérida, Venezuela
| | | | | | | |
Collapse
|
23
|
Hansen T, Wendorff D, Schönheit P. Bifunctional Phosphoglucose/Phosphomannose Isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum Constitute a Novel Enzyme Family within the Phosphoglucose Isomerase Superfamily. J Biol Chem 2004; 279:2262-72. [PMID: 14551194 DOI: 10.1074/jbc.m309849200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic crenarchaeon Aeropyrum pernix contains phosphoglucose isomerase (PGI) activity. However, obvious homologs with significant identity to known PGIs could not be identified in the sequenced genome of this organism. The PGI activity from A. pernix was purified and characterized. Kinetic analysis revealed that, unlike all known PGIs, the enzyme catalyzed reversible isomerization not only of glucose 6-phosphate but also of epimeric mannose 6-phosphate at similar catalytic efficiency, thus defining the protein as bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). The gene pgi/pmi encoding PGI/PMI (open reading frame APE0768) was identified by matrix-assisted laser desorption ionization time-of-flight analyses; the gene was overexpressed in Escherichia coli as functional PGI/PMI. Putative PGI/PMI homologs were identified in several (hyper)thermophilic archaea and two bacteria. The homolog from Thermoplasma acidophilum (Ta1419) was overexpressed in E. coli, and the recombinant enzyme was characterized as bifunctional PGI/PMI. PGI/PMIs showed low sequence identity to the PGI superfamily and formed a distinct phylogenetic cluster. However, secondary structure predictions and the presence of several conserved amino acids potentially involved in catalysis indicate some structural and functional similarity to the PGI superfamily. Thus, we propose that bifunctional PGI/PMI constitutes a novel protein family within the PGI superfamily.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | |
Collapse
|
24
|
Concepción JL, Adjé CA, Quiñones W, Chevalier N, Dubourdieu M, Michels PA. The expression and intracellular distribution of phosphoglycerate kinase isoenzymes in Trypanosoma cruzi. Mol Biochem Parasitol 2001; 118:111-21. [PMID: 11704279 DOI: 10.1016/s0166-6851(01)00381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we report the subcellular distribution of phosphoglycerate kinase (PGK) in epimastigotes of Trypanosoma cruzi. Approximately 80% of the PGK activity was found in the cytosol, 20% in the glycosomes. Western blot analysis suggested that two isoenzymes of 56 and 48 kDa, respectively, are responsible for the glycosomal PGK activity, whereas the cytosolic activity should be attributed to a single PGK of 48 kDa. In analogy to the situation previously reported for PGK in Trypanosoma brucei, these isoenzymes were called PGKA, C and B, respectively. However, in T. cruzi, PGKA seems not to be a minor enzyme like its counterpart in T. brucei. Whereas PGKC behaved as a soluble glycosomal matrix protein, PGKA appeared to be present at the inner surface of the organelle's membrane. After alkaline carbonate treatment, the enzyme remained associated with the particulate fraction of the organelles. Upon solubilization of glycosomes with Triton X-114, PGKA was recovered from the detergent phase, indicating its (partial) hydrophobic character and therefore, a possible hydrophobic interaction with the membrane. The PGKA gene was cloned and sequenced, but the predicted amino-acid sequence did not reveal an obvious clue as to the mechanism by which the enzyme is attached to the glycosomal membrane.
Collapse
Affiliation(s)
- J L Concepción
- Unidad de Bioquimica de Parasitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Phosphoglucose isomerase (PGI, EC 5.3.1.9) is polymorphic in many populations. Frequently, it has been shown that naturally occurring allozymes exhibit strong deviations form Hardy-Weinberg expectations, suggesting fitness relevant mutations. To investigate the nature of this allozymic variation, PGI was purified from Daphnia magna to high purity yielding a specific activity of 135.2 U/mg. The kinetic parameters of the allozymes were characterized depending upon ionic strength, pH and viscosity. The half-saturation constants of the allozymes were all equal, while the specific activity of the PGI from heterozygotes was consistently higher than the PGI of the homozygotes, independent of pH, ionic strength and viscosity of the solution.
Collapse
Affiliation(s)
- H Boriss
- Max-Planck-Institut für Limnologie, Postfach 165, 24302 Plön, Germany.
| |
Collapse
|
26
|
Concepcion JL, Acosta H, Quiñones W, Dubourdieu M. A alpha-glycerophosphate dehydrogenase is present in Trypanosoma cruzi glycosomes. Mem Inst Oswaldo Cruz 2001; 96:697-701. [PMID: 11500774 DOI: 10.1590/s0074-02762001000500021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.
Collapse
Affiliation(s)
- J L Concepcion
- Unidad de Bioquímica de Parásitos, Centro de Ingenería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | | | | |
Collapse
|