1
|
Murphy AE, Buchtel H, Mawla I, Ichesco E, Larkin T, Harte SE, Zhan E, Napadow V, Harris RE. Temporal Summation but Not Expectations of Pain Relief Predict Response to Acupuncture Treatment in Fibromyalgia. THE JOURNAL OF PAIN 2024; 25:104622. [PMID: 38986891 DOI: 10.1016/j.jpain.2024.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Fibromyalgia (FM) is a common chronic pain condition for which acupuncture treatment is increasingly utilized. However, there is no universally accepted measure to predict whether a specific patient will benefit from acupuncture. This is a single-center, single-blind, sham-controlled, randomized, noncrossover, longitudinal trial of 76 subjects with FM, assigned to either electroacupuncture (EA) or a placebo control, mock laser (ML) acupuncture. Outcome measures included clinical pain severity (Brief Pain Inventory [BPI]), degree of nociplastic pain (Fibromyalgia Survey Questionnaire), and pressure pain tolerance (PPtol). Baseline measures of temporal summation of pain and expectations for treatment relief were used as predictors. Individuals in both treatment groups experienced significant reductions in BPI (EA: P < .001, ML: P = .018) and Fibromyalgia Survey Questionnaire (EA: P = .032, ML: P = .002) after treatment; however, neither group showed a significant increase in PPtol. Lower temporal summation at baseline was correlated with greater post-treatment improvement in BPI in the EA group (rho = .389, P = .025) but not in the ML group (rho = -.272, P = .109). Lower-baseline temporal summation was correlated with greater decreases in PPtol following EA (rho = .400, P = .040), whereas the opposite was seen for ML (rho = -.562, P = .001). Treatment expectancy at baseline was not correlated with any outcome after EA or ML treatments. Our results support using a quantitative sensory testing metric, temporal summation of pain, but not expectations, to predict analgesia following acupuncture treatment for pain. PERSPECTIVE: A randomized study of acupuncture in FM found baseline temporal summation, but not expectations of pain relief, to be predictive of treatment response. CLINICAL TRIAL REGISTRATION: Registered under ClinicalTrials.gov identifier NCT02064296.
Collapse
Affiliation(s)
- Anne E Murphy
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan; Department of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Henry Buchtel
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ishtiaq Mawla
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Eric Ichesco
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tony Larkin
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven E Harte
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Erin Zhan
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vitaly Napadow
- Department of Radiology, Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Network, Harvard Medical School, Boston, Massachusetts
| | - Richard E Harris
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor, Michigan; Susan Samueli Integrative Health Institute, School of Medicine, University of California at Irvine, Irvine, California; Department of Anesthesia and Perioperative Care, School of Medicine, University of California at Irvine, Irvine, California
| |
Collapse
|
2
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
3
|
Weber T, Tatzl E, Kashofer K, Holter M, Trajanoski S, Berghold A, Heinemann A, Holzer P, Herbert MK. Fibromyalgia-associated hyperalgesia is related to psychopathological alterations but not to gut microbiome changes. PLoS One 2022; 17:e0274026. [PMID: 36149895 PMCID: PMC9506607 DOI: 10.1371/journal.pone.0274026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fibromyalgia-syndrome (FMS) is a complex disease characterized by chronic widespread pain and additional symptoms including depression, cognitive dysfunction ("fibro-fog") and maldigestion. Our research team examined whether FMS-related pain parameters assessed by quantitative sensory testing (QST) and psychological disturbances are accompanied by alterations of the fecal microbiome. We recruited 25 patients with FMS and 26 age- and sex-matched healthy controls. Medical background, food habits, psychopathology and quality of life were assessed through questionnaires. Stool samples were analyzed by 16S rRNA gene amplification and sequencing. QST was performed according to the protocol of the German Network for Neuropathic Pain. QST showed that both lemniscal and spinothalamic afferent pathways are altered in FMS patients relative to healthy controls and that peripheral as well as central pain sensitization processes are manifest. Psychometric assessment revealed enhanced scores of depression, anxiety and stress. In contrast, neither the composition nor the alpha- and beta-diversity of the fecal microbiome was changed in FMS patients. FMS patients segregate from healthy controls in various parameters of QST and psychopathology, but not in terms of composition and diversity of the fecal microbiome. Despite consideration of several confounding factors, we conclude that the contribution of the gut microbiome to the pathophysiology of FMS is limited.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Eva Tatzl
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Magdalena Holter
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Andrea Berghold
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Michael Karl Herbert
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci 2022; 23:ijms23126705. [PMID: 35743148 PMCID: PMC9223805 DOI: 10.3390/ijms23126705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.
Collapse
|
5
|
Chen YL, Skende E, Wetie AGN, Wang PLQ. Investigation of Human in vivo Metabolism of SEP-227900 Using the Samples from a Randomized First-in-Human Study by LC-UV/HRMS and NMR. Drug Metab Lett 2022; 15:38-50. [PMID: 35236276 DOI: 10.2174/1872312815666220302161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the human in vivo metabolism of SEP-227900 (4H-furo[3, 2-b]pyrrole-carboxylic acid, m.w 151.03), a D-amino-acid oxidase (DAAO) inhibitor by using plasma and urine samples from first-in-human study. METHODS The human plasma and urine samples were from a single dose cohort that consisted of 9 healthy male volunteers each received 80-mg dose of SEP-227900 orally. The pooled pre-dose urine and the pooled 0-24 h urine sample were created across 9 subjects by equal volume. Plasma samples were pooled by equal volume across 9 subjects to obtain 0-12 h plasma for metabolite searching, and also pooled by timepoints across 9 subjects to obtain 0.5-, 5-, and 12-h plasma for semi-quantitation. The plasma was de-proteinized by acetonitrile (1:3 v/v plasma-acetonitrile) then the supernatant was dried down, reconstituted and injected for LC-HRMS/UV analysis. The urine sample was just simply centrifuged before analysis. LC-HRMS/UV was utilized to search predictable and unknown metabolites and estimate their relative abundances. Accurate mass measurement by Orbitrap-MS and MS/MS were used for metabolite identification. Chromatographic separation was achieved on a MACMOD AQ C8 column (250 × 4.6 mm, 5-µm) with a gradient mobile phase (A: 10 mM NH4Ac; B: acetonitrile; flowrate: 0.700 ml/min) for a total run-time of 65 min. The definite position in the molecule for the glucuronidation metabolism was characterized by detected migration phenomenon, methylation with diazomethane (CH2N2), and NMR. RESULTS Unchanged parent drug and four metabolite peaks were detected in humans: M1 was a mono-oxidative metabolite of SEP-227900; M2 was a glucuronide conjugate of SEP-227900; M3 was a glycine conjugate of SEP-227900; and M4 was a glycine conjugate of M1. The specific position of the oxidation in M1 solely based on the mass spectral (MS and MS/MS) data was not identified. However, for the major metabolite M2, the acyl glucuronidation was unambiguously determined through multiple pieces of experimental evidence such as the observation of a migration pattern, mono-methylation by diazomethane, and NMR measurement. This determination is of significance related to the safety evaluation of an investigational new drug development. The glycine conjugate of SEP-227900, i.e. M3 was found to be the most abundant metabolite in human urine (approximately 3-fold higher level as the glucuronide level). All together (mainly glycine-conjugate and glucuronide), it resulted in greater than 80% of the dosed amount in urine excretion (a separate measurement showed 23% of the dosed amount in urine excretion as the glucuronide). CONCLUSION Four metabolites were found in humans: SEP-227900-glycine conjugate, SEP227900-glucuronide, mono-oxidative metabolite and its consequent glycine conjugate. The glucuronide metabolite was identified as the acyl glucuronide. Greater than 80% of the dosed amount of SEP-227900 was excreted in urine mainly in the forms of glycine- and glucuronide- conjugates.
Collapse
Affiliation(s)
- Yu-Luan Chen
- Bioanalytical Sciences, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA
| | - Estela Skende
- Bioanalytical Sciences, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA
| | | | - Peter Li-Quan Wang
- WuXi AppTec (Xenobiotic Laboratory), 6 Cedarbrook Drive, Cranbury, NJ 08512
| |
Collapse
|
6
|
An K, Cui Y, Zhong X, Li K, Zhang J, Liu H, Wen Z. Immortalized Bone Mesenchymal Stromal Cells With Inducible Galanin Expression Produce Controllable Pain Relief in Neuropathic Rats. Cell Transplant 2022; 31:9636897221103861. [PMID: 35726855 PMCID: PMC9218486 DOI: 10.1177/09636897221103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Management of chronic pain is one of the most difficult problems in modern practice. Grafted human telomerase reverse transcriptase–immortalized bone marrow mesenchymal stromal cells (hTERT-BMSCs) with inducible galanin (GAL) expression have been considered to be a potentially safe and controllable approach for the alleviation of chronic pain. Therefore, in this study, we aimed to assess the feasibility of hTERT-BMSCs/Tet-on/GAL cells secreting GAL under the transcriptional control of doxycycline (Dox) for controllable pain relief. After transplanted into the subarachnoid space of neuropathic rats induced by spared nerve injury of sciatic nerve, their analgesic actions were investigated by behavioral tests. The results showed that the pain-related behaviors, mechanical allodynia, and thermal hyperalgesia were significantly alleviated during 1 to 7 weeks after grafts of hTERT-BMSCs/Tet-on/GAL cells without motor incoordination. Importantly, these effects could be reversed by GAL receptor antagonist M35 and regulated by Dox induction as compared with control. Moreover, the GAL level in cerebrospinal fluid and spinal GAL receptor 1 (GalR1) expression were correlated with Dox administration, but not GAL receptor 2 (GalR2). Meanwhile, spinal protein kinase Mζ (PKMζ) expression was also inhibited significantly. Taken together, these data suggest that inducible release of GAL from transplanted cells was able to produce controllable pain relief in neuropathic rats via inhibiting the PKMζ activation and activating its GalR1 rather than GalR2. This provides a promising step toward a novel stem cell–based strategy for pain therapy.
Collapse
Affiliation(s)
- Ke An
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingpeng Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaolong Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, Guangzhou First people's Hospital, Guangzhou, China
| | - Kunhe Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huiping Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhishuang Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Merkel MFR, Hellsten Y, Magnusson SP, Kjaer M. Tendon blood flow, angiogenesis, and tendinopathy pathogenesis. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Flemming Ravn Merkel
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Stig Peter Magnusson
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| |
Collapse
|
8
|
Lohrer H, Klein J, Nauck T, Schönberg T. Microdialysis for chronic exertional compartment syndrome: a pilot study. BMC Sports Sci Med Rehabil 2021; 13:21. [PMID: 33673874 PMCID: PMC7934517 DOI: 10.1186/s13102-021-00245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Background Diagnosing chronic exertional compartment syndrome (CECS) is still a challenge. An increase in intramuscular pressure during and following exercise is accepted as the diagnostic standard. However, neither the methods used nor the interpretation of the obtained results are sufficiently standardized. Methods In the present pilot study, the metabolic state of CECS patients was investigated using microdialysis. We hypothesized that there was no difference in intramuscular concentrations of glucose, lactate, glutamate, and glycerol before and after exercise (H10) or between patients suffering from CECS and healthy control subjects (H20). This study was designed as an explorative case-control study (level of evidence III). Twelve patients suffering from CECS of the lower leg and six matched asymptomatic control subjects underwent microdialysis in the anterior (n = 7) or deep posterior compartment (n = 11) of the leg. Following ultrasound-guided insertion of the microdialysis catheters, 10-minute fractions of the dialysates were collected first during rest and then following fatigue- or pain-induced discontinuation of exercise. Dialysates were analysed for lactate, glucose, glutamate, and glycerol concentrations 6 × 10 min before and 6 × 10 min after exercise. Results Exercise-induced increases in lactate, glutamate, and glycerol concentrations were detected in both CECS patients and control subjects (all p < 0.001). No differences between CECS patients and control subjects were found by comparing the intramuscular glucose, lactate, glutamate, and glycerol concentrations at rest and following exercise (all p > 0.05). Conclusions We found exercise-induced increases in the lactate, glutamate, and glycerol levels in skeletal muscle. However, the metabolic changes did not differentiate CECS patients from healthy subjects. Trial registration The registration trial number is DRKS00021589 on DRKS. ‘Retrospectively registered’. Date of registration: April 4, 2020.
Collapse
Affiliation(s)
- Heinz Lohrer
- ESN - European SportsCare Network, Borsigstrasse 2, 65205, Wiesbaden, Germany. .,Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.
| | - Jochen Klein
- Institute for Pharmacology and Clinical Pharmacy, Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Tanja Nauck
- ESN - European SportsCare Network, Borsigstrasse 2, 65205, Wiesbaden, Germany
| | | |
Collapse
|
9
|
Hayashi T, Watanabe C, Katsuyama S, Agatsuma Y, Scuteri D, Bagetta G, Sakurada T, Sakurada S. Contribution of Histamine to Nociceptive Behaviors Induced by Intrathecally Administered Cholecystokinin-8. Front Pharmacol 2020; 11:590918. [PMID: 33250769 PMCID: PMC7673449 DOI: 10.3389/fphar.2020.590918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
The involvement of spinal release of histamine in the nociceptive behaviors induced by cholecystokinin-8 (CCK-8) was investigated in mice. Intrathecal (i.t.) injection of CCK-8 elicited the nociceptive behaviors consisting of biting and licking. The nociceptive behaviors induced by i.t. treatment with CCK-8 showed two bell-shaped patterns. The histamine H3 receptor antagonist significantly promoted the nociceptive behaviors induced by CCK-8 at doses of 1–100 fmol and 100 pmol. The nociceptive behaviors elicited by CCK-8 was inhibited by i.t. administration of the CCK-B receptor antagonist in a dose-dependent manner, but not by the CCK-A receptor antagonist. The nociceptive behaviors induced by CCK-8 were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deleted gene mice. In histamine H1 receptor-deleted gene mice, the nociceptive behaviors induced at both 10 amol and 10 pmol of CCK-8 were not affected. The tachykinin neurokinin-1 (NK1) receptor antagonists inhibited CCK-8 (10 pmol)-induced nociceptive behaviors in a dose-dependent manner. CCK-8 (10 amol)-induced nociceptive behaviors was not antagonized by co-administration with the tachykinin NK1 receptor antagonists. The nociceptive behaviors elicited by CCK-8 were inhibited by i.t. administration of the antagonist for the N-methyl-D-aspartate (NMDA) receptor in a dose-dependent manner. Our results suggest that the nociceptive behaviors induced by i.t. administration of CCK-8 (10 pmol) are mediated through the spinal release of histamine and are elicited via activation of the tachykinin NK1 and NMDA receptors, whereas the nociceptive behaviors induced by i.t. administration of CCK-8 (10 amol) are mediated through the spinal release of histamine and elicited via NMDA receptor activation.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Soh Katsuyama
- Center for Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasuyuki Agatsuma
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Tsukasa Sakurada
- Center for Supporting Pharmaceutical Education, Faculty of Pharmaceutical sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
10
|
Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR. Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 2020; 11:2602-2614. [PMID: 32697906 DOI: 10.1021/acschemneuro.0c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies in mouse, and to a lesser extent in rat, have revealed the neuroanatomical distribution of vesicular glutamate transporters (VGLUTs) and begun exposing the critical role of VGLUT2 and VGLUT3 in pain transmission. In the present study in rat, we used specific riboprobes to characterize the transcript expression of all three VGLUTs in lumbar dorsal root ganglia (DRGs) and in the thoracolumbar, lumbar, and sacral spinal cord. We show for the first time in rat a very discrete VGLUT3 expression in DRGs and in deep layers of the dorsal horn. We confirm the abundant expression of VGLUT2, in both DRGs and the spinal cord, including presumable motorneurons in the latter. As expected, VGLUT1 was present in many DRG neuron profiles, and in the spinal cord it was mostly localized to neurons in the dorsal nucleus of Clarke. In rats with a 10 day long hindpaw inflammation, increased spinal expression of VGLUT2 transcript was detected by qRT-PCR, and intrathecal administration of the nonselective VGLUT inhibitor Chicago Sky Blue 6B resulted in reduced mechanical and thermal allodynia for up to 24 h. In conclusion, our results provide a collective characterization of VGLUTs in rat DRGs and the spinal cord, demonstrate increased spinal expression of VGLUT2 during chronic peripheral inflammation, and support the use of spinal VGLUT blockade as a strategy for attenuating inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Carly J. McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Harry Trigosso-Venario
- Hospital Universitario Austral, Austral University, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Rebecca P. Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| |
Collapse
|
11
|
Cisani F, Roggeri A, Olivero G, Garrone B, Tongiani S, Di Giorgio FP, Pittaluga A. Acute Low Dose of Trazodone Recovers Glutamate Release Efficiency and mGlu2/3 Autoreceptor Impairments in the Spinal Cord of Rats Suffering From Chronic Sciatic Ligation. Front Pharmacol 2020; 11:1108. [PMID: 32765286 PMCID: PMC7379891 DOI: 10.3389/fphar.2020.01108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated whether chronic sciatic ligation modifies the glutamate release in spinal cord nerve endings (synaptosomes) as well as the expression and the function of presynaptic release-regulating mGlu2/3 autoreceptors and 5-HT2A heteroreceptors in these particles. Synaptosomes were from the spinal cord of animals suffering from the sciatic ligation that developed on day 6 post-surgery a significant decrease of the force inducing paw-withdrawal in the lesioned paw. The exocytosis of glutamate (quantified as release of preloaded [3H]D-aspartate, [3H]D-Asp) elicited by a mild depolarizing stimulus (15 mM KCl) was significantly increased in synaptosomes from injured rats when compared to controls (uninjured rats). The mGlu2/3 agonist LY379268 (1000 pM) significantly inhibited the 15 mM KCl-evoked [3H]D-Asp overflow from control synaptosomes, but not in terminals isolated from injured animals. Differently, a low concentration (10 nM) of (±) DOI, unable to modify the 15 mM KCl-evoked [3H]D-Asp overflow in control spinal cord synaptosomes, significantly reduced the glutamate exocytosis in nerve endings isolated from the injured rats. Acute oral trazodone (TZD, 0.3 mg/kg on day 7 post-surgery) efficiently recovered glutamate exocytosis as well as the efficiency of LY379268 in inhibiting this event in spinal cord synaptosomes from injured animals. The sciatic ligation significantly reduced the expression of mGlu2/3, but not of 5-HT2A, receptor proteins in spinal cord synaptosomal lysates. Acute TZD recovered this parameter. Our results support the use of 5-HT2A antagonists for restoring altered spinal cord glutamate plasticity in rats suffering from sciatic ligation.
Collapse
Affiliation(s)
- Francesca Cisani
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Beatrice Garrone
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | - Serena Tongiani
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
12
|
Khammissa RAG, Ballyram R, Fourie J, Bouckaert M, Lemmer J, Feller L. Selected pathobiological features and principles of pharmacological pain management. J Int Med Res 2020; 48:300060520903653. [PMID: 32408839 PMCID: PMC7232056 DOI: 10.1177/0300060520903653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Pain induced by inflammation and nerve injury arises from abnormal neural activity of primary afferent nociceptors in response to tissue damage, which causes long-term elevation of the sensitivity and responsiveness of spinal cord neurons. Inflammatory pain typically resolves following resolution of inflammation; however, nerve injury-either peripheral or central-may cause persistent neuropathic pain, which frequently manifests as hyperalgesia or allodynia. Neuralgias, malignant metastatic bone disease, and diabetic neuropathy are some of the conditions associated with severe, often unremitting chronic pain that is both physically and psychologically debilitating or disabling. Therefore, optimal pain management for patients with chronic neuropathic pain requires a multimodal approach that comprises pharmacological and psychological interventions. Non-opioid analgesics (e.g., paracetamol, aspirin, or other non-steroidal anti-inflammatory drugs) are first-line agents used in the treatment of mild-to-moderate acute pain, while opioids of increasing potency are indicated for the treatment of persistent, moderate-to-severe inflammatory pain. N-methyl D-aspartate receptor antagonists, antidepressants, anticonvulsants, or a combination of these should be considered for the treatment of chronic neuropathic pain. This review discusses the various neural signals that mediate acute and chronic pain, as well as the general principles of pain management.
Collapse
Affiliation(s)
- Razia Abdool Gafaar Khammissa
- Department of Periodontology and Oral Medicine, Sefako Makgatho
University, Pretoria, South Africa
- Department of Periodontics and Oral Medicine, University of
Pretoria, Pretoria, South Africa
| | - Raoul Ballyram
- Department of Periodontology and Oral Medicine, Sefako Makgatho
University, Pretoria, South Africa
| | - Jeanine Fourie
- Department of Periodontology and Oral Medicine, Sefako Makgatho
University, Pretoria, South Africa
| | - Michael Bouckaert
- Department of Maxillofacial and Oral Surgery, Sefako Makgatho
University, Pretoria, South Africa
| | - Johan Lemmer
- Department of Periodontology and Oral Medicine, Sefako Makgatho
University, Pretoria, South Africa
| | - Liviu Feller
- Department of Periodontology and Oral Medicine, Sefako Makgatho
University, Pretoria, South Africa
| |
Collapse
|
13
|
Zhang ZL, Yu G, Peng J, Wang HB, Li YL, Liang XN, Su RB, Gong ZH. Wnt1/β-catenin signaling upregulates spinal VGLUT2 expression to control neuropathic pain in mice. Neuropharmacology 2020; 164:107869. [DOI: 10.1016/j.neuropharm.2019.107869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
|
14
|
Skiöldebrand E, Ley C, Björklund U, Lindahl A, Hansson E. Serotonin-evoked cytosolic Ca 2+ release and opioid receptor expression are upregulated in articular cartilage chondrocytes from osteoarthritic joints in horses. Vet Anim Sci 2019; 8:100078. [PMID: 32734095 PMCID: PMC7386637 DOI: 10.1016/j.vas.2019.100078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis is a pain-associated progressive disease and pain mediators, such as opioid receptors, expressed in articular cartilage could represent novel therapeutic targets. Acute and chronic stages of OA indicate different metabolic abilities of the chondrocytes depending on inflammatory state. This study aimed to investigate the response of healthy and osteoarthritic chondrocytes and their expression and release of pain mediators in response to acute inflammation. Interleukin-1 beta (IL-1β) and lipopolysaccharide (LPS) were used to induce an acute inflammatory response in cultured equine chondrocytes harvested from healthy joints (HC) and osteoarthritic joints (OAC), the latter representing acute exacerbation of a chronic inflammatory state. Intracellular Ca2+ release was determined after exposure to serotonin (5-hydroxytryptamine (5-HT), glutamate or ATP. Protein expression levels of F- and G-actin, representing actin rearrangement, and opioid receptors were investigated. Glutamate concentrations in culture media were measured. Cartilage was immunohistochemically stained for µ (MOR), κ (KOR), and δ (DOR) opioid receptors. Upon exposure to acute inflammatory stimuli, OAC showed increased intracellular Ca2+ release after 5-HT stimulation and increased expression of MOR and KOR. When cells were stimulated by inflammatory mediators, glutamate release was increased in both HC and OAC. Immunostaining for MOR was strong in OA cartilage, whereas KOR was less strongly expressed. DOR was not expressed by cultured HC and OAC and immunostaining of OA cartilage equivocal. We show that chondrocytes in different inflammatory stages react differently to the neurotransmitter 5-HT with respect to intracellular Ca2+ release and expression of peripheral pain mediators. Our findings suggest that opioids and neurotransmitters are important in the progression of equine OA. The inflammatory stage of OA (acute versus chronic) should be taken into consideration when therapeutic strategies are being developed.
Collapse
Affiliation(s)
- Eva Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Ley
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
15
|
O'Brien AT, Deitos A, Triñanes Pego Y, Fregni F, Carrillo-de-la-Peña MT. Defective Endogenous Pain Modulation in Fibromyalgia: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation Paradigms. THE JOURNAL OF PAIN 2018; 19:819-836. [DOI: 10.1016/j.jpain.2018.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
|
16
|
Electroacupuncture at Hua Tuo Jia Ji Acupoints Reduced Neuropathic Pain and Increased GABA A Receptors in Rat Spinal Cord. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8041820. [PMID: 30069227 PMCID: PMC6057337 DOI: 10.1155/2018/8041820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Chronic constriction injury- (CCI-) induced neuropathic pain is the most similar model to hyperalgesia in clinical observation. Neuropathic pain is a neuronal dysfunction in the somatosensory system that may lead to spontaneous pain. In this study, electroacupuncture (EA) was applied at bilateral L4 and L6 of Hua Tuo Jia Ji points (EX-B2) for relieving neuropathic pain in rats. Eighteen Sprague-Dawley rats were randomly assigned to three groups: sham, 2-Hz EA, and 15-Hz EA groups. Following von Frey and cold plate tests, both the 2- and the 15-Hz EA groups had significantly lower mechanical and thermal hyperalgesia than the sham group. Western blot analysis results showed that γ-aminobutyric acid A (GABAA), adenosine A1 receptor (A1R), transient receptor potential cation channel subfamily V member 1 (TRPV1), TRPV4, and metabotropic glutamate receptor 3 (mGluR3) were similar in the dorsal root ganglion of all three groups. Furthermore, levels of GABAA receptors were higher in the spinal cord of rats in the 2- and 15-Hz EA groups compared with the sham control group. This was not observed for A1R, TRPV1, TRPV4, or mGluR3 receptors. In addition, all the aforementioned receptors were unchanged in the somatosensory cortex of the study rats, suggesting a central spinal effect. The study results provide evidence to support the clinical use of EA for specifically alleviating neuropathic pain.
Collapse
|
17
|
Abstract
Supplemental Digital Content is Available in the Text. Endocannabinoid signalling within brainstem centres that control top-down pain control changes significantly in early life in both rodents and humans. Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.
Collapse
|
18
|
Involvement of serotonergic, noradrenergic and gabaergic systems in the antinociceptive effect of a ketamine-magnesium sulfate combination in acute pain. ACTA VET-BEOGRAD 2018. [DOI: 10.2478/acve-2018-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Ketamine and magnesium can interact in additive, supra-additive and antagonistic manners in analgesia or anesthesia. Ketamine is a non-competitive NMDA receptor antagonist. Magnesium is an endogenous non-competitive NMDA antagonist that causes anion channel blockade in a dose-dependent manner. It has been established that ketamine and magnesium interact synergistically in the tail-immersion test in rats.
To determine the role of serotonergic, GABAergic and noradrenergic systems in analgesia induced by the ketamine-magnesium sulfate combination.
Experiments were performed on male Wistar albino rats (200-250 g). Antinociception was evaluated by the tail-immersion test.
Methysergide (0.5 and 1 mg/kg, sc) administered alone did not affect nociception in rats. Methysergide (0.5 and 1 mg/kg, sc) antagonized the antinociceptive effect of the ketamine (5 mg/kg)-magnesium sulfate (5mg/kg) combination. Bicuculline (0.5 and 1 mg/kg, sc) given alone did not change the threshold to thermal stimuli in rats. Bicuculline (0.5 and 1 mg/kg, sc) antagonized the antinociceptive effect of the ketamine (5 mg/kg)-magnesium sulfate (5 mg/kg) combination. Yohimbine (0.5, 1 and 3 mg/kg, sc) applied alone did not change nociception. Yohimbine at a dose of 0.5 mg/kg did not influence the effect of ketamine (5 mg/kg)-magnesium sulfate (5 mg/kg), while yohimbine at doses of 1 and 3 mg/kg antagonized the antinociceptive effect of this combination.
Serotonergic, noradrenergic and GABAergic systems participate, at least in part, in the antinociceptive effect of the ketamine-magnesium sulfate combination in acute pain in rats.
Collapse
|
19
|
Chopek JW, MacDonell CW, Shepard PC, Gardiner KR, Gardiner PF. Altered transcription of glutamatergic and glycinergic receptors in spinal cord dorsal horn following spinal cord transection is minimally affected by passive exercise of the hindlimbs. Eur J Neurosci 2018; 47:277-283. [PMID: 29356168 DOI: 10.1111/ejn.13823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Gene expression is altered following a spinal transection (STx) in both motor and sensory systems. Exercise has been shown to influence gene expression in both systems post-STx. Gene expression alterations have also been shown in the dorsal root ganglia and nociceptive laminae of the spinal cord following either an incomplete spinal cord injury (SCI) or a contusive SCI. However, the effect of STx and exercise on gene expression in spinal cord laminae I-III has not fully been examined. Therefore, the purpose of this study was to determine whether gene expression in laminae I-III is altered following STx and determine whether superimposed passive exercise of the hindlimbs would influence gene expression post-STx in laminae I-III. Laser capture microdissection was used to selectively harvest laminae I-III of lumbar spinal cord sections, and quantitative RT-PCR was used to examine relative expression of 23 selected genes in samples collected from control, STx and STx plus exercise rats. We demonstrate that post-STx, gene expression for metabotropic glutamate receptors 1, 5 and 8 were up-regulated, whereas ionotropic glutamatergic receptor (Glur2) and glycinergic subunit GLRA1 expression was down-regulated. Daily exercise attenuated the down-regulation of Glur2 gene expression in laminae I-III. Our results demonstrate that in a STx model, gene expression is altered in laminae I-III and that although passive exercise influences gene expression in both the motor and sensory systems, it had a minimal effect on gene expression in laminae I-III post-STx.
Collapse
Affiliation(s)
- Jeremy W Chopek
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christopher W MacDonell
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patricia C Shepard
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kalan R Gardiner
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
20
|
Wang RR, Wang Y, Guan SM, Li Z, Kokane S, Cao FL, Sun W, Li CL, He T, Yang Y, Lin Q, Chen J. Synaptic Homeostasis and Allostasis in the Dentate Gyrus Caused by Inflammatory and Neuropathic Pain Conditions. Front Synaptic Neurosci 2018; 10:1. [PMID: 29445338 PMCID: PMC5797731 DOI: 10.3389/fnsyn.2018.00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
It has been generally accepted that pain can cause imbalance between excitation and inhibition (homeostasis) at the synaptic level. However, it remains poorly understood how this imbalance (allostasis) develops in the CNS under different pain conditions. Here, we analyzed the changes in both excitatory and inhibitory synaptic transmission and modulation of the dentate gyrus (DG) under two pain conditions with different etiology and duration. First, it was revealed that the functions of the input-output (I/O) curves for evoked excitatory postsynaptic currents (eEPSCs) following the perforant path (PP) stimulation were gained under both acute inflammatory and chronic neuropathic pain conditions relative to the controls. However, the functions of I/O curves for the PP-evoked inhibitory postsynaptic currents (eIPSCs) differed between the two conditions, namely it was greatly gained under inflammatory condition, but was reduced under neuropathic condition in reverse. Second, both the frequency and amplitude of miniature IPSCs (mIPSCs) were increased under inflammatory condition, however a decrease in frequency of mIPSCs was observed under neuropathic condition. Finally, the spike discharge of the DG granule cells in response to current injection was significantly increased by neuropathic pain condition, however, no different change was found between inflammatory pain condition and the control. These results provide another line of evidence showing homeostatic and allostatic modulation of excitatory synaptic transmission by inhibitory controls under different pathological pain conditions, hence implicating use of different therapeutic approaches to maintain the homeostasis between excitation and inhibition while treating different conditions of pathological pain.
Collapse
Affiliation(s)
- Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Saurabh Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Fa-Le Cao
- Department of Neurology, The 88th Hospital of People’s Liberation Army, Tai’an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Qing Lin
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
21
|
Liu A, Wang X, Wang H, Lv G, Li Y, Li H. Δ-opioid receptor inhibition prevents remifentanil-induced post-operative hyperalgesia via regulating GluR1 trafficking and AMPA receptor function. Exp Ther Med 2017; 15:2140-2147. [PMID: 29434817 DOI: 10.3892/etm.2017.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/13/2017] [Indexed: 01/11/2023] Open
Abstract
The interaction of remifentanil with glutamate systems has an important role in remifentanil-induced thermal and mechanical hyperalgesia. A previous study by our group suggested that the trafficking and function of glutamate receptor 1 (GluR1) subunits contributes to remifentanil-induced hyperalgesia by regulating the phosphorylation of GluR1 in dorsal horn neurons. The present study demonstrated that δ opioid receptor (DOR) inhibition prevented thermal and mechanical hyperalgesia, which was induced by remifentanil infusion via attenuating GluR1 subunit trafficking and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function in dorsal horn neurons. Sprague Dawley rats received a plantar incision and remifentanil infusion to induce a model of postoperative hyperalgesia. Thermal and mechanical pain was tested at 8 different time-points. Expression of AMPAR subunits GluR1 and DOR, as well as the phosphorylation status of GluR1 were evaluated by western blot analysis. Furthermore, the function of AMPAR in the spinal dorsal horn was measured by whole-cell patch-clamp recording. Remifentanil-induced thermal and mechanical hyperalgesia appeared after the 60-min infusions, reaching a peak level on day 2 and persisting for 5 days. Remifentanil infusion led to upregulation of membrane expression of the AMPAR subunit GluR1 and DOR (P=0.003 and 0.001, respectively) no change in total GluR1 and DOR expression levels (P=0.244 and 0.531, respectively). Selective DOR inhibitor naltrindole caused a reduction of remifentanil-induced hyperalgesia, which was accompanied by downregulation of membrane levels of GluR1 in the spinal cord (P=0.0013). In addition, DOR inhibition led to downregulation of GluR1 phosphorylated at Ser845. Furthermore, the AMPAR-mediated miniature excitatory post-synaptic current was increased in frequency and in amplitude in dorsal horn neurons (P=0.002 and 0.0011, respectively), which was decreased by incubation with naltrindole. Combined behavioral, western blot and electrophysiological evidence indicated that remifentanil-induced hyperalgesia was mediated by DOR activation, followed by phosphorylation-dependent GluR1 trafficking and AMPAR function enhancement in the spinal cord. DOR appears to be required for remifentanil and incision-induced hyperalgesia development and to be a potential biochemical target for treating opioid-induced postoperative hyperalgesia.
Collapse
Affiliation(s)
- Aifen Liu
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| | - Xiaopeng Wang
- Department of Anesthesiology, Shanxi Academy of Medical Science, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Hui Wang
- Department of General Surgery, Tianjin Public Security Hospital, Tianjin 300042, P.R. China
| | - Guoyi Lv
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongmei Li
- Department of Anesthesiology, The Second Hospital Affiliated to Tianjin Medical University, Tianjin 300042, P.R. China
| |
Collapse
|
22
|
Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci 2017; 18:ijms18112483. [PMID: 29160850 PMCID: PMC5713449 DOI: 10.3390/ijms18112483] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022] Open
Abstract
Tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors are used to treat chronic pain, such as neuropathic pain. Why antidepressants are effective for treatment of neuropathic pain and the precise mechanisms underlying their effects, however, remain unclear. The inhibitory effects of these antidepressants for neuropathic pain manifest more quickly than their antidepressive effects, suggesting different modes of action. Recent studies of animal models of neuropathic pain revealed that noradrenaline is extremely important for the inhibition of neuropathic pain. First, increasing noradrenaline in the spinal cord by reuptake inhibition directly inhibits neuropathic pain through α2-adrenergic receptors. Second, increasing noradrenaline acts on the locus coeruleus and improves the function of an impaired descending noradrenergic inhibitory system. Serotonin and dopamine may reinforce the noradrenergic effects to inhibit neuropathic pain. The mechanisms of neuropathic pain inhibition by antidepressants based mainly on experimental findings from animal models of neuropathic pain are discussed in this review.
Collapse
|
23
|
Abstract
Clinicians have commonly differentiated chronic back pain into two broad subsets: namely, non-inflammatory (or mechanical) back pain and inflammatory back pain. As the terminology suggests, the latter category, in which ankylosing spondylitis (AS) is prominent, presupposes a close link between pain and inflammation. Advances in research into the genetics and immunology of AS have improved our understanding of the inflammatory processes involved in this disease, and have led to the development of potent anti-inflammatory biologic therapeutic agents. However, evidence from clinical trials and from biomarker and imaging studies in patients with AS indicate that pain and inflammation are not always correlated. Thus, the assumption that pain in AS is a reliable surrogate marker for inflammation might be an over-simplification. This Review provides an overview of current concepts relating to neuro-immune interactions in AS and summarizes research that reveals an increasingly complex interplay between the activation of the immune system and pain pathways in the nervous system. The different types of pain experienced by patients with AS, insights from brain imaging studies, neurological mechanisms of pain, sex bias in pain and how the immune system can modify pain in patients with AS are also discussed.
Collapse
|
24
|
Madden K, Bruera E. Very-Low-Dose Methadone To Treat Refractory Neuropathic Pain in Children with Cancer. J Palliat Med 2017; 20:1280-1283. [PMID: 28609177 DOI: 10.1089/jpm.2017.0098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Compared with nociceptive pain, neuropathic pain is a challenging diagnosis to make and successfully treat in children with cancer. OBJECTIVE The objective of this case report was to see whether very-low-dose methadone (VLDM) (defined as <50% of accepted starting analgesic dose of methadone for children) would be an effective strategy to treat refractory neuropathic pain due to vincristine in two children with acute lymphoblastic leukemia. METHODS This case report is based on the clinical experience and parent-reported outcomes of two children with refractory neuropathic pain who received VLDM. RESULTS Based on parent/caregiver-reported outcome scores over a one-year period, both children's refractory neuropathic pain syndrome was successfully treated with the addition of VLDM to their pre-existing regimen of gabapentin. Neither child suffered any adverse effects from methadone. CONCLUSIONS VLDM shows promise as an effective, safe, and inexpensive way to treat refractory neuropathic pain in children with cancer.
Collapse
Affiliation(s)
- Kevin Madden
- M.D. Anderson Cancer Center, University of Texas , Houston, Texas
| | - Eduardo Bruera
- M.D. Anderson Cancer Center, University of Texas , Houston, Texas
| |
Collapse
|
25
|
Bannister K, Kucharczyk M, Dickenson AH. Hopes for the Future of Pain Control. Pain Ther 2017; 6:117-128. [PMID: 28536900 PMCID: PMC5693804 DOI: 10.1007/s40122-017-0073-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Here we aim to present an accessible review of the pharmacological targets for pain management, and succinctly discuss the newest trends in pain therapy. A key task for current pain pharmacotherapy is the identification of receptors and channels orchestrating nociception. Notwithstanding peripheral alterations in the receptors and channels following pathophysiological events, the modulatory mechanisms in the central nervous system are also fundamental to the regulation of pain perception. Bridging preclinical and clinical studies of peripheral and central components of pain modulation, we present the different types of pain and relate these to pharmacological interventions. We firstly highlight the roles of several peripheral nociceptors, such as NGF, CGRP, sodium channels, and TRP-family channels that may become novel targets for therapies. In the central nervous system, the roles of calcium channels and gabapentinoids as well as NMDA receptors in generating excitability are covered including ideas on central sensitization. We then turn to central modulatory systems and discuss opioids and monoamines. We aim to explain the importance of central sensitization and the dialogue of the spinal circuits with the brain descending modulatory controls before discussing a mechanism-based effectiveness of antidepressants in pain therapy and their potential to modulate the descending controls. Emphasizing the roles of conditioned pain modulation and its animal's equivalent, diffuse noxious inhibitory controls, we discuss these unique descending modulations as a potential tool for understanding mechanisms in patients suffering from pain. Mechanism-based therapy is the key to picking the correct treatments and recent clinical studies using sensory symptoms of patients as surrogates for underlying mechanisms can be used to subgroup patients and reveal actions of drugs that may be lost when studying heterogenous groups of patients. Key advances in the understanding of basic pain principles will impact our thinking about therapy targets. The complexity of pain syndromes will require tailored pharmacological drugs, often in combination or through drugs with more than one action, and often psychotherapy, to fully control pain.
Collapse
Affiliation(s)
- Kirsty Bannister
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Mateusz Kucharczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
26
|
hTERT-Immortalized Bone Mesenchymal Stromal Cells Expressing Rat Galanin via a Single Tetracycline-Inducible Lentivirus System. Stem Cells Int 2017; 2017:6082684. [PMID: 28584529 PMCID: PMC5444038 DOI: 10.1155/2017/6082684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023] Open
Abstract
The use of human telomerase reverse transcriptase-immortalized bone marrow mesenchymal stromal cells (hTERT-BMSCs) as vehicles to deliver antinociceptive galanin (GAL) molecules into pain-processing centers represents a novel cell therapy strategy for pain management. Here, an hTERT-BMSCs/Tet-on/GAL cell line was constructed using a single Tet-on-inducible lentivirus system, and subsequent experiments demonstrated that the secretion of rat GAL from hTERT-BMSCs/Tet-on/GAL was switched on and off under the control of an inducer in a dose-dependent manner. The construction of this cell line is the first promising step in the regulation of GAL secretion from hTERT-immortalized BMSCs, and the potential application of this system may provide a stem cell-based research platform for pain.
Collapse
|
27
|
Mizoguchi H, Watanabe C, Hayashi T, Iwata Y, Watanabe H, Katsuyama S, Hamamura K, Sakurada T, Ohtsu H, Yanai K, Sakurada S. The involvement of spinal release of histamine on nociceptive behaviors induced by intrathecally administered spermine. Eur J Pharmacol 2017; 800:9-15. [PMID: 28131781 DOI: 10.1016/j.ejphar.2017.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
The involvement of spinal release of histamine on nociceptive behaviors induced by spermine was examined in mice. Intrathecal spermine produced dose-dependent nociceptive behaviors, consisting of scratching, biting and licking. The nociceptive behaviors induced by spermine at 0.02 amol and 10 pmol were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deficient mice. In histamine H1 receptor-deficient mice, the nociceptive behaviors induced by spermine were completely abolished after treatment with 0.02 amol of spermine and significantly suppressed after treatment with 10 pmol of spermine. The i.t. pretreatment with takykinin NK1 receptor antagonists eliminated the nociceptive behaviors induced by 0.02 amol of spermine, but did not affect the nociceptive behaviors induced by 10 pmol of spermine. On the other hand, the nociceptive behaviors induced by spermine at both 0.02 amol and 10 pmol were suppressed by i.t. pretreatment with antagonists for the NMDA receptor polyamine-binding site. The present results suggest that the nociceptive behaviors induced by i.t. administration of spermine are mediated through the spinal release of histamine and are elicited via activation of NMDA receptors.
Collapse
Affiliation(s)
- Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takafumi Hayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yoko Iwata
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Husargatan 3, Uppsala 751 24, Sweden
| | - Soh Katsuyama
- Center for Experiential Pharmacy Practice, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kengo Hamamura
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Tsukasa Sakurada
- First Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hiroshi Ohtsu
- Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-01-2 Aobayama, Aoba-ku, Sendai, 980-8579, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
28
|
Antinociceptive effect of co-administered NMDA and histamine H4 receptor antagonists in a rat model of acute pain. Pharmacol Rep 2017; 69:222-228. [DOI: 10.1016/j.pharep.2016.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023]
|
29
|
Midazolam as an active placebo in 3 fentanyl-validated nociceptive pain models. Pain 2017; 158:1264-1271. [PMID: 28338566 DOI: 10.1097/j.pain.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of inactive placebos in early translational trials of potentially analgesic compounds is discouraged because of the side-effect profiles of centrally acting analgesics. Therefore, benzodiazepines are used, although their use has not been validated in this context. Whether benzodiazepines confound the results of acute pain tests is unknown. Midazolam (0.06 mg/kg) as an active placebo was investigated in 3 nociceptive models that included contact heat, electrical pain, and pressure pain thresholds in 24 healthy volunteers. Fentanyl (1 μg/kg) served as an internal validator in this randomized, placebo (saline) controlled, 3-way cross-over trial. The primary outcome parameter (contact heat pain) was analyzed using a one-way, repeated measures analysis of variance and Tukey's post test. Midazolam did not reduce pain ([numeric rating scale], 0-100) in a statistically significant manner compared with placebo for the contact heat (mean difference -1.7, 95% confidence interval -10.6 to 7.3; P = 0.89) or electrical pain (4.3, -5.1 to 13.7; P = 0.51) test, nor did it raise the pressure pain thresholds (-28 kPa, -122; 64 kPa, P = 0.73). The width of the confidence intervals suggested that there were no clinically meaningful analgesic effects compared with the placebo. In contrast, the analgesic efficacy of fentanyl was effectively demonstrated in all 3 models (P < 0.01 vs midazolam and placebo). The findings of this study show that midazolam can be used as an active placebo in analgesic drug trials. Furthermore, the proposed models were simple to implement and very effective in detecting analgesia. The test battery can be used in translational trials for new compounds and comes with an active placebo and an optional active comparator.
Collapse
|
30
|
Veres G, Fejes-Szabó A, Zádori D, Nagy-Grócz G, László AM, Bajtai A, Mándity I, Szentirmai M, Bohár Z, Laborc K, Szatmári I, Fülöp F, Vécsei L, Párdutz Á. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: a behavioral, immunohistochemical and pharmacokinetic study. J Neural Transm (Vienna) 2016; 124:99-112. [PMID: 27629500 DOI: 10.1007/s00702-016-1615-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Kynurenic acid (KYNA) has well-established protective properties against glutamatergic neurotransmission, which plays an essential role in the activation and sensitization process during some primary headache disorders. The goal of this study was to compare the effects of two KYNA analogs, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-1) and N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-2), in the orofacial formalin test of trigeminal pain. Following pretreatment with KA-1 or KA-2, rats were injected with subcutaneous formalin solution in the right whisker pad. Thereafter, the rubbing activity and c-Fos immunoreactivity changes in the spinal trigeminal nucleus pars caudalis (TNC) were investigated. To obtain pharmacokinetic data, KA-1, KA-2 and KYNA concentrations were measured following KA-1 or KA-2 injection. Behavioral tests demonstrated that KA-2 induced larger amelioration of formalin-evoked alterations as compared with KA-1 and the assessment of c-Fos immunoreactivity in the TNC yielded similar results. Although KA-1 treatment resulted in approximately four times larger area under the curve values in the serum relative to KA-2, the latter resulted in a higher KYNA elevation than in the case of KA-1. With regard to TNC, the concentration of KA-1 was under the limit of detection, while that of KA-2 was quite small and there was no major difference in the approximately tenfold KYNA elevations. These findings indicate that the differences between the beneficial effects of KA-1 and KA-2 may be explained by the markedly higher peripheral KYNA levels following KA-2 pretreatment. Targeting the peripheral component of trigeminal pain processing would provide an option for drug design which might prove beneficial in headache conditions.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Anna M László
- Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent Istvan University, Budapest, Hungary
| | - Attila Bajtai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Klaudia Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| |
Collapse
|
31
|
Wang Z, Yuan Y, Xie K, Tang X, Zhang L, Ao J, Li N, Zhang Y, Guo S, Wang G. PICK1 Regulates the Expression and Trafficking of AMPA Receptors in Remifentanil-Induced Hyperalgesia. Anesth Analg 2016; 123:771-81. [DOI: 10.1213/ane.0000000000001442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Iura A, Takahashi A, Hakata S, Mashimo T, Fujino Y. Reductions in tonic GABAergic current in substantia gelatinosa neurons and GABAAreceptor δ subunit expression after chronic constriction injury of the sciatic nerve in mice. Eur J Pain 2016; 20:1678-1688. [DOI: 10.1002/ejp.891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- A. Iura
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - A. Takahashi
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - S. Hakata
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| | - T. Mashimo
- Toyonaka Municipal Hospital; Osaka Japan
| | - Y. Fujino
- Department of Anesthesiology and Intensive Care Medicine; Graduate School of Medicine; Osaka University; Japan
| |
Collapse
|
33
|
Zeng J, Cui LY, Feng Y, Ding MX. Electroacupuncture relieves neuropathic pain via upregulation of glutamate transporters in the spinal cord of rats. Neurosci Lett 2016; 620:38-42. [DOI: 10.1016/j.neulet.2016.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
34
|
Cataldo G, Rajput S, Gupta K, Simone DA. Sensitization of nociceptive spinal neurons contributes to pain in a transgenic model of sickle cell disease. Pain 2015; 156:722-730. [PMID: 25630029 DOI: 10.1097/j.pain.0000000000000104] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic pain is a major characteristic feature of sickle cell disease (SCD). The refractory nature of pain and the development of chronic pain syndromes in many patients with SCD suggest that central neural mechanisms contribute to pain in this disease. We used HbSS-BERK sickle mice, which show chronic features of pain similar to those observed in SCD, and determined whether sensitization of nociceptive neurons in the spinal cord contributes to pain and hyperalgesia in SCD. Electrophysiological recordings of action potential activity were obtained from single identified dorsal horn neurons of the spinal cord in anesthetized mice. Compared with control HbAA-BERK mice, nociceptive dorsal horn neurons in sickle mice exhibited enhanced excitability as evidenced by enlarged receptive fields, increased rate of spontaneous activity, lower mechanical thresholds, enhanced responses to mechanical stimuli, and prolonged afterdischarges following mechanical stimulation. These changes were accompanied by increased phosphorylation of mitogen-activated protein kinases (MAPKs) in the spinal cord that are known to contribute to neuronal hyperexcitability, including c-Jun N-terminal kinase (JNK), p44/p42 extracellular signaling-regulated kinase (ERK), and p38. These findings demonstrate that central sensitization contributes to pain in SCD.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
35
|
Honarmand A, Safavi M, Nemati K, Oghab P. The efficacy of different doses of Midazolam added to Lidocaine for upper extremity Bier block on the sensory and motor block characteristics and postoperative pain. J Res Pharm Pract 2015; 4:160-6. [PMID: 26312256 PMCID: PMC4548436 DOI: 10.4103/2279-042x.162359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: This study was designed to evaluate the effect of different doses of midazolam on anesthesia and analgesia quality when added to lidocaine during the intravenous regional anesthesia (IVRA). Methods: One hundred and forty patients underwent hand surgery were randomly allocated into four groups to receive 3 mg/kg lidocaine 2% diluted with saline to a total volume of 40 mL in the control Group L-C (n = 35), 30 μg/kg midazolam plus 3 mg/kg lidocaine 2% diluted with saline to a total volume of 40 mL in the midazolam Group L-M1 (n = 35), 40 μg/kg midazolam plus 3 mg/kg 2% lidocaine diluted with saline to a total volume of 40 mL in the midazolam Group L-M2 (n = 35), and 50 μg/kg midazolam plus 3 mg/kg lidocaine 2% diluted with saline to a total volume of 40 mL in the midazolam Group L-M3 (n = 35). Sensory and motor block and recovery times, tourniquet pain, intra-operative analgesic requirement, and visual analog scale (VAS) scores were recorded. Findings: Onset time of sensory and motor block in L-M3 Group was shorter than the L-M2 and L-M1 and L-C Groups (P < 0.001). Furthermore, prolonged sensory (P = 0.005) and motor recovery time (P = 0.001) in L-M3 were longer than the other groups. Intra-operative VAS score and intra-operative fentanyl consumption in L-M3 were lower than the other groups (P < 0.001). The numbers of patients needed to pethidine in Group L-M3 were significantly less compared with the other groups (P = 0.035). VAS scores were significantly lower in Group L-M3 in different time intervals in the postoperative period compared with the other groups (P < 0.001). Conclusion: Addition of 50 μg/kg midazolam for IVRA (Group L-M3) enhanced intra-operative analgesia and improved anesthesia quality better than other groups receiving lower midazolam doses as well as a control group.
Collapse
Affiliation(s)
- Azim Honarmand
- Department of Anesthesia, Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Safavi
- Department of Anesthesia, Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Koorosh Nemati
- Department of Anesthesia, Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Padideh Oghab
- Department of Anesthesia, Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Testani E, Le Pera D, Del Percio C, Miliucci R, Brancucci A, Pazzaglia C, De Armas L, Babiloni C, Rossini PM, Valeriani M. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input. Eur J Neurosci 2015; 42:2407-14. [DOI: 10.1111/ejn.13035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Elisa Testani
- Department of Neurosciences; Catholic University; Rome Italy
| | - Domenica Le Pera
- Department of Neurology; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
| | | | - Roberto Miliucci
- Neurology Unit; Ospedale Pediatrico Bambino Gesú; IRCCS; Piazza Sant'Onofrio 4 Rome 00165 Italy
| | - Alfredo Brancucci
- Department of Psychological Sciences, Humanities and the Territory; ‘G. d'Annunzio’ University of Chieti and Pescara; Chieti Italy
| | - Costanza Pazzaglia
- Department of Neurology; Don Carlo Gnocchi Onlus Foundation; Milan Italy
| | - Liala De Armas
- Department of Neurology; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
| | - Claudio Babiloni
- EEG Lab; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
- Department of Physiology and Pharmacology; University of Rome ‘La Sapienza’; Rome Italy
| | | | - Massimiliano Valeriani
- Neurology Unit; Ospedale Pediatrico Bambino Gesú; IRCCS; Piazza Sant'Onofrio 4 Rome 00165 Italy
- Center for Sensory-Motor Interaction; Aalborg University; Aalborg Denmark
| |
Collapse
|
37
|
Nazemi S, Manaheji H, Noorbakhsh SM, Zaringhalam J, Sadeghi M, Mohammad-Zadeh M, Haghparast A. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats. Clin Exp Pharmacol Physiol 2015; 42:772-9. [DOI: 10.1111/1440-1681.12414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Samad Nazemi
- Department of Physiology; Sabzevar University of Medical Sciences; Sabzevar Iran
- Department of Neurophysiology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Homa Manaheji
- Department of Neurophysiology; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | | | - Jalal Zaringhalam
- Department of Neurophysiology; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mehdi Sadeghi
- Department of Physiology; Bushehr University of Medical Sciences; Bushehr Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
38
|
Altered nociception in mice with genetically induced hypoglutamatergic tone. Neuroscience 2015; 293:80-91. [PMID: 25743253 DOI: 10.1016/j.neuroscience.2015.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
Extensive pharmacological evidence supports the idea that glutamate plays a key role in both acute and chronic pain. In the present study, we investigated the implication of the excitatory amino acid in physiological nociception by using mutant mice deficient in phosphate-activated glutaminase type 1 (GLS1), the enzyme that synthesizes glutamate in central glutamatergic neurons. Because homozygous GLS1-/- mutants die shortly after birth, assays for assessing mechanical, thermal and chemical (formalin) nociception were performed on heterozygous GLS1+/- mutants, which present a clear-cut decrease in glutamate synthesis in central neurons. As compared to paired wild-type mice, adult male GLS1+/- mutants showed decreased responsiveness to mechanical (von Frey filament and tail-pressure, but not tail-clip, tests) and thermal (Hargreaves' plantar, tail-immersion and hot-plate tests) nociceptive stimuli. Genotype-related differences were also found in the formalin test for which GLS1+/- mice exhibited marked decreases in the nociceptive responses (hindlimb lift, lick and flinch) during both phase 1 (0-5 min) and phase 2 (16-45 min) after formalin injection. On the other hand, acute treatment with memantine (1mg/kg i.p.), an uncompetitive antagonist at NMDA glutamate receptors, reduced nociception responses in wild-type but not GLS1+/- mice. Conversely, antinociceptive response to acute administration of a low dose (1mg/kg s.c.) of morphine was significantly larger in GLS1+/- mutants versus wild-type mice. Our findings indicate that genetically driven hypoactivity of central glutamatergic neurotransmission renders mice hyposensitive to nociceptive stimulations, and promotes morphine antinociception, further emphasizing the critical role of glutamate in physiological nociception and its opioid-mediated control.
Collapse
|
39
|
Nerve demyelination increases metabotropic glutamate receptor subtype 5 expression in peripheral painful mononeuropathy. Int J Mol Sci 2015; 16:4642-65. [PMID: 25739080 PMCID: PMC4394440 DOI: 10.3390/ijms16034642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/24/2023] Open
Abstract
Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities.
Collapse
|
40
|
Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain. Sci Rep 2015; 5:8380. [PMID: 25670024 PMCID: PMC4323637 DOI: 10.1038/srep08380] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/19/2015] [Indexed: 01/20/2023] Open
Abstract
Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone. Exogenous glutamate can disrupt normal bone turnover and may be responsible for cancer-induced bone pain (CIBP). CIBP is a significant co-morbidity that affects quality of life for many advanced-stage breast cancer patients. Current treatment options are commonly accompanied by serious side-effects that negatively impact patient care. Identifying small molecule inhibitors of glutamate release from aggressive breast cancer cells advances a novel, mechanistic approach to targeting CIBP that could advance treatment for several pathological conditions. Using high-throughput screening, we investigated the ability of approximately 30,000 compounds from the Canadian Compound Collection to reduce glutamate release from MDA-MB-231 breast cancer cells. This line is known to secrete high levels of glutamate and has been demonstrated to induce CIBP by this mechanism. Positive chemical hits were based on the potency of each molecule relative to a known pharmacological inhibitor of glutamate release, sulfasalazine. Efficacy was confirmed and drug-like molecules were identified as potent inhibitors of glutamate secretion from MDA-MB-231, MCF-7 and Mat-Ly-Lu cells.
Collapse
|
41
|
D-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:905906. [PMID: 25629055 PMCID: PMC4299315 DOI: 10.1155/2015/905906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
Abstract
D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo (-/-)) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo (-/-) mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo (-/-) mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4-L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.
Collapse
|
42
|
Nilsson M, Lassen D, Andresen T, Nielsen AK, Arendt-Nielsen L, Drewes AM. Intradermal glutamate and capsaicin injections: intra- and interindividual variability of provoked hyperalgesia and allodynia. Clin Exp Pharmacol Physiol 2015; 41:423-9. [PMID: 24684312 DOI: 10.1111/1440-1681.12229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
Intradermal injections of glutamate and capsaicin are attractive to use in human experimental pain models because hyperalgesia and allodynia mimic isolated aspects of clinical pain disorders. The aim of the present study was to investigate the reproducibility of these models. Twenty healthy male volunteers (mean age 24 years; range 18-38 years) received intradermal injections of glutamate and capsaicin in the volar forearm. Magnitudes of secondary pinprick hyperalgesia and brush-evoked allodynia were investigated using von Frey filaments (gauges 10, 15, 60 and 100 g) and brush strokes. Areas of secondary hyperalgesia and allodynia were quantified immediately after injection and after 15, 30 and 60 min. Two identical experiments separated by at least 7 days were performed. Reproducibility across and within volunteers (inter- and intra-individual variation, respectively) was assessed using intraclass correlation coefficient (ICC) and coefficient of variation (CV). Secondary pinprick hyperalgesia was observed as a marked increase in the visual analogue scale (VAS) response to von Frey gauges 60 and 100 g (P < 0.001) after glutamate injection. For capsaicin, secondary pinprick hyperalgesia was detected with all von Frey gauges (P < 0.001). Glutamate evoked reproducible VAS response to all von Frey gauges (ICC > 0.60) and brush strokes (ICC > 0.83). Capsaicin injection was reproducible for secondary hyperalgesia (ICC > 0.70) and allodynia (ICC > 0.71). Intra-individual variability was generally lower for the VAS response to von Frey and brush compared with areas of secondary hyperalgesia and allodynia. In conclusion, glutamate and capsaicin yield reproducible hyperalgesic and allodynic responses, and the present model is well suited for basic research, as well as for assessing the modulation of central phenomena.
Collapse
Affiliation(s)
- Matias Nilsson
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Inflammatory sensitization of nociceptors depends on activation of NMDA receptors in DRG satellite cells. Proc Natl Acad Sci U S A 2014; 111:18363-8. [PMID: 25489099 DOI: 10.1073/pnas.1420601111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present study evaluated the role of N-methyl-D-aspartate receptors (NMDARs) expressed in the dorsal root ganglia (DRG) in the inflammatory sensitization of peripheral nociceptor terminals to mechanical stimulation. Injection of NMDA into the fifth lumbar (L5)-DRG induced hyperalgesia in the rat hind paw with a profile similar to that of intraplantar injection of prostaglandin E2 (PGE2), which was significantly attenuated by injection of the NMDAR antagonist D(-)-2-amino-5-phosphonopentanoic acid (D-AP-5) in the L5-DRG. Moreover, blockade of DRG AMPA receptors by the antagonist 6,7-dinitroquinoxaline-2,3-dione had no effect in the PGE2-induced hyperalgesia in the paw, showing specific involvement of NMDARs in this modulatory effect and suggesting that activation of NMDAR in the DRG plays an important role in the peripheral inflammatory hyperalgesia. In following experiments we observed attenuation of PGE2-induced hyperalgesia in the paw by the knockdown of NMDAR subunits NR1, NR2B, NR2D, and NR3A with antisense-oligodeoxynucleotide treatment in the DRG. Also, in vitro experiments showed that the NMDA-induced sensitization of cultured DRG neurons depends on satellite cell activation and on those same NMDAR subunits, suggesting their importance for the PGE2-induced hyperalgesia. In addition, fluorescent calcium imaging experiments in cultures of DRG cells showed induction of calcium transients by glutamate or NMDA only in satellite cells, but not in neurons. Together, the present results suggest that the mechanical inflammatory nociceptor sensitization is dependent on glutamate release at the DRG and subsequent NMDAR activation in satellite glial cells, supporting the idea that the peripheral hyperalgesia is an event modulated by a glutamatergic system in the DRG.
Collapse
|
44
|
Guindon J, Lin JS. Inflammatory pain models with capsaicin or glutamate injections: Are they comparable and reproducible? Clin Exp Pharmacol Physiol 2014; 41:947-9. [DOI: 10.1111/1440-1681.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Josée Guindon
- Department of Pharmacology and Neuroscience; Texas Tech University Health Sciences Center; Lubbock TX USA
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems; Lyon Neuroscience Research Center; INSERM U1028-CNRS UMR5292; Claude Bernard University; Lyon France
| |
Collapse
|
45
|
Li YZ, Tang XH, Wang CY, Hu N, Xie KL, Wang HY, Yu YH, Wang GL. Glycogen Synthase Kinase-3β Inhibition Prevents Remifentanil-Induced Postoperative Hyperalgesia via Regulating the Expression and Function of AMPA Receptors. Anesth Analg 2014; 119:978-987. [DOI: 10.1213/ane.0000000000000365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|
47
|
Loss of central inhibition: implications for behavioral hypersensitivity after contusive spinal cord injury in rats. PAIN RESEARCH AND TREATMENT 2014; 2014:178278. [PMID: 25180088 PMCID: PMC4142659 DOI: 10.1155/2014/178278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
Abstract
Behavioral hypersensitivity is common following spinal cord injury (SCI), producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8) 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67) and the glycine receptor α3 (GLRA3), notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.
Collapse
|
48
|
Mehta AK, Bhati Y, Tripathi CD, Sharma KK. Analgesic Effect of Piracetam on Peripheral Neuropathic Pain Induced by Chronic Constriction Injury of Sciatic Nerve in Rats. Neurochem Res 2014; 39:1433-9. [DOI: 10.1007/s11064-014-1329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
|
49
|
Parenti C, Marrazzo A, Aricò G, Parenti R, Pasquinucci L, Ronsisvalle S, Ronsisvalle G, Scoto GM. The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm Res 2014; 63:231-7. [PMID: 24316864 DOI: 10.1007/s00011-013-0692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/17/2013] [Accepted: 11/24/2013] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE AND DESIGN The sigma 1 (σ1) receptor, which is widely distributed in the CNS in areas that are known to be important for pain control, may play a role in persistent pain characterized by the hypersensitivity of nociceptive transmission. Here, we investigated the effect of σ1 blockade in an inflammatory pain model. TREATMENT AND METHODS An intraplantar injection of carrageenan (2 %) was used to induce paw inflammation. The effects of the σ1 antagonist (+)-MR200, given subcutaneously at a dose of 0.1, 0.25, 0.5,1, 1.5, and 2 mg/kg prior to injection of carrageenan, on inflammatory pain and inflammation were assessed. Mechanical allodynia with von Frey filaments, thermal hyperalgesia with the plantar test and edema evaluation with a plethysmometer were measured. Intergroup comparisons were assessed by one- or two-way analysis of variance when appropriate, followed by post-hoc tests (Dunnett's test for one-way or Bonferroni for two-way ANOVA). RESULTS (+)-MR200 dose-dependently prevented allodynia and hyperalgesia induced by carrageenan. Furthermore, it reduced paw edema with a significant inhibition percentage of 37.82 % at 3 h after carrageenan treatment. CONCLUSIONS The blockade of the σ1 receptor with the selective antagonist (+)-MR200 may contribute to the suppression of the typical symptoms of inflammatory pain.
Collapse
Affiliation(s)
- Carmela Parenti
- Pharmacology and Toxicology Section, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Szucs P, Luz LL, Pinho R, Aguiar P, Antal Z, Tiong SYX, Todd AJ, Safronov BV. Axon diversity of lamina I local-circuit neurons in the lumbar spinal cord. J Comp Neurol 2014; 521:2719-41. [PMID: 23386329 PMCID: PMC3738926 DOI: 10.1002/cne.23311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/26/2012] [Accepted: 01/18/2012] [Indexed: 01/21/2023]
Abstract
Spinal lamina I is a key area for relaying and integrating information from nociceptive primary afferents with various other sources of inputs. Although lamina I projection neurons have been intensively studied, much less attention has been given to local-circuit neurons (LCNs), which form the majority of the lamina I neuronal population. In this work the infrared light-emitting diode oblique illumination technique was used to visualize and label LCNs, allowing reconstruction and analysis of their dendritic and extensive axonal trees. We show that the majority of lamina I neurons with locally branching axons fall into the multipolar (with ventrally protruding dendrites) and flattened (dendrites limited to lamina I) somatodendritic categories. Analysis of their axons revealed that the initial myelinated part gives rise to several unmyelinated small-diameter branches that have a high number of densely packed, large varicosities and an extensive rostrocaudal (two or three segments), mediolateral, and dorsoventral (reaching laminae III-IV) distribution. The extent of the axon and the occasional presence of long, solitary branches suggest that LCNs may also form short and long propriospinal connections. We also found that the distribution of axon varicosities and terminal field locations show substantial heterogeneity and that a substantial portion of LCNs is inhibitory. Our observations indicate that LCNs of lamina I form intersegmental as well as interlaminar connections and may govern large numbers of neurons, providing anatomical substrate for rostrocaudal "processing units" in the dorsal horn.
Collapse
Affiliation(s)
- Peter Szucs
- Spinal Neuronal Networks Group, Institute of Molecular and Cell Biology-IBMC, University of Porto, 4150-180 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|