1
|
Casas-Alvarado A, Martínez-Burnes J, Hernández-Ávalos I, Mora-Medina P, Miranda-Cortés A, Domínguez-Oliva A, Mota-Rojas D. Assessment of the nociceptive response to the use of cannabidiol alone and in combination with meloxicam through infrared pupillometry in female dogs undergoing elective ovariohysterectomy. Front Vet Sci 2024; 11:1380022. [PMID: 39027908 PMCID: PMC11256235 DOI: 10.3389/fvets.2024.1380022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024] Open
Abstract
The negative effects of pain are a constant concern in the surgical management of animals, leading to the search for new drugs or more effective analgesic protocols to control this negative emotion. This study aimed to evaluate the nociceptive response of cannabidiol (CBD) alone and in combination with meloxicam using infrared pupillometry in female dogs undergoing elective ovariohysterectomy (OVH) under isoflurane anesthesia. A total of 60 female dogs of different breeds were included. These dogs were randomly assigned to four study groups according to the treatment: Control Group (G0: n = 15) receiving saline solution; group premedicated with meloxicam at a dose of 0.2 mg Kg-1 IV (GMelox: n = 15). Postoperatively this drug was used at 0.1 mg Kg-1 IV every 24 h; the CBD-treated Group (GCBD: n = 15) at a dose of 2 mg Kg-1 orally in the preoperative. Postoperatively was administrated every 12 h; and the Group premedicated with the combination of meloxicam and CBD (GMelox/CBD: n = 15) Meloxicam at a dose of 0.2 mg Kg-1 IV preoperatively, and 0.1 mg Kg-1 IV during the postoperative. CBD at a dose of 2 mg Kg-1 orally in the preoperative, and every 12 h in the postoperative. Treatments were administered for 48 postoperative hours. After OVH, the pupillary neurologic index, pupillary size, minimum diameter (MIN), percentage change, constriction latency (Lat), constriction velocity, and maximum constriction velocity were recorded as pupillometric variables in both eyes during events (E): Baseline (30 min before drug administration), E30 min, E1h, E2h, E3h, E4h, E8h, E12h, E24h, and E48h. The Short-Form of the Glasgow Composite Measure Pain Scale (GCMPS-SF) was used to assess pain during the same events. Overall, it was observed that the pupillometric variables Size, MIN., and Lat. were significantly higher in G0 compared to the other groups during E30 min, E1h, and E2h (p = 0.03), indicating greater pupil dilation in G0 animals. Additionally, no statistically significant differences were observed in GCMPS-SF between GMelox, GCBD, and GMelox/CBD during the postoperative period (p > 0.05). In contrast, the scores were statistically different compared to G0 (p = 0.00001), where all animals in this group received rescue analgesia at 2 h post-surgery. According to pupillometry and scores on the GCMPS-SF scale, it was observed that monotherapy with cannabidiol provides a similar analgesic effect to meloxicam alone or in combination with cannabidiol to manage acute pain in dogs. Similarly, these findings suggest that infrared pupillometry could be a tool for recognizing acute pain in dogs.
Collapse
Affiliation(s)
- Alejandro Casas-Alvarado
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, FESC, Universidad Nacional Autónoma de México, Cuautitlán, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
2
|
Segelcke D, Reichl S, Neuffer S, Zapp S, Rüther T, Evers D, Zahn PK, Pogatzki-Zahn EM. The role of the spinal cyclooxygenase (COX) for incisional pain in rats at different developmental stages. Eur J Pain 2019; 24:312-324. [PMID: 31566273 DOI: 10.1002/ejp.1487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cyclooxygenase enzymes (COX)-1 and COX-2 are important targets for pain relief after surgery, but the spinal contribution of both isoforms is still unclear, e.g., from a developmental point of view. Here, we studied changes of spinal COX-1 and COX-2 expression and their functional relevance in rats of different ages for pain-related behaviour after incision. METHODS Mechanical paw withdrawal thresholds (PWT) were assessed before and after incision and after intrathecal administration (IT) of SC-560 (COX-1 inhibitor) or NS-398 (COX-2 inhibitor) in rats aged 5, 14 and 28 days (P5, P14, P28). Furthermore, spinal expressions of COX m-RNA and proteins were investigated. RESULTS In P5 rats, only IT-administered NS-398 but not SC-560 significantly reversed the decreased PWT after incision. In P14 rats, none of the substance modified PWT, and in P28 rats, only SC-560 increased PWT. Spinal COX-2 mRNA and protein were increased in P5 but not in P14 and P28 rats after incision. Whereas COX-2 is located in spinal neurons, COX-1 is mainly found in spinal microglia cells. CONCLUSION Our results demonstrate a possible developmental transition from COX-2 to COX-1 activation. Whereas in adult rats spinal COX-1 but not COX-2 is involved in pain-related behaviour after incision, it seems opposite in P5 rats. Interestingly, in P14, neither COX-1 nor COX-2 seems to play a role. This switch may relate to altered neuronal/microglia activation. Our findings indicate specific mechanisms to pain after incision that are age-dependent and may guide further research improving paediatric pain management. SIGNIFICANCE Postoperative pain in pediatric patients after surgery is still poorly controlled; this might contribute to long-lasting alteration in the nociceptive system and prolonged chronic pain. Here we show a possible developmental switch in the COX-dependent pathway for nociceptive spinal transmission that may explain why pain management in young children needs to be related to age-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sylvia Reichl
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Simon Neuffer
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sebastian Zapp
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Theresa Rüther
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Dagmar Evers
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Peter K Zahn
- Department of Anaesthesiology, Intensive Care Medicine, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University, BG-Universitätsklinikum Bergmannsheil gGmbH, Bochum, Germany
| | - Esther M Pogatzki-Zahn
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Ayiomamitis GD, Notas G, Vasilakaki T, Tsavari A, Vederaki S, Theodosopoulos T, Kouroumalis E, Zaravinos A. Understanding the Interplay between COX-2 and hTERT in Colorectal Cancer Using a Multi-Omics Analysis. Cancers (Basel) 2019; 11:cancers11101536. [PMID: 31614548 PMCID: PMC6827032 DOI: 10.3390/cancers11101536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Cyclooxygenase 2 (COX-2) is involved in the initial steps of colorectal cancer (CRC) formation, playing a key role in the catalysis of arachidonic acid to prostaglandin E2 (PGE2). The human telomerase reverse transcriptase (hTERT or TERT) also plays an important role in colorectal cancer growth, conferring sustained cell proliferation and survival. Although hTERT induces COX-2 expression in gastric and cervical cancer, their interaction has not been investigated in the context of CRC. Methods: COX-2, PGE2 levels, and telomerase activity were evaluated by immunohistochemistry, ELISA, and TRAP assay in 49 colorectal cancer samples. PTGS1, PTGS2, PTGES3, TERT mRNA, and protein levels were investigated using RNA-seq and antibody-based protein profiling data from the TCGA and HPA projects. A multi-omics comparison was performed between PTGS2 and TERT, using RNAseq, DNA methylation, copy number variations (CNVs), single nucleotide polymorphisms (SNPs), and insertions/deletions (Indels) data. Results: COX-2 expression was positive in 40/49 CRCs, bearing cytoplasmic and heterogeneous staining, from moderate to high intensity. COX-2 staining was mainly detected in the stroma of the tumor cells and the adjacent normal tissues. PGE2 expression was lower in CRC compared to the adjacent normal tissue, and inversely correlated to telomerase activity in right colon cancers. COX-1 and COX-2 were anticorrelated with TERT. Isoform structural analysis revealed the most prevalent transcripts driving the differential expression of PTGS1, PTGS2, PTGES3, and TERT in CRC. COX-2 expression was significantly higher among B-Raf proto-oncogene, serine/threonine kinase, mutant (BRAFmut) tumors. Kirsten ras oncogene (KRAS) mutations did not affect COX-2 or TERT expression. The promoter regions of COX-2 and TERT were reversely methylated. Conclusions: Our data support that COX-2 is involved in the early stages of colorectal cancer development, initially affecting the tumor’s stromal microenvironment, and, subsequently, the epithelial cells. They also highlight an inverse correlation between COX-2 expression and telomerase activity in CRC, as well as differentially methylated patterns within the promoter regions of COX-2 and TERT.
Collapse
Affiliation(s)
- Georgios D Ayiomamitis
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- 1st Department of Surgery, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - George Notas
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, 71013 Heraklion, Greece.
| | - Thivi Vasilakaki
- Department of Pathology, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Aikaterini Tsavari
- Department of Pathology, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Styliani Vederaki
- 1st Department of Surgery, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Theodosis Theodosopoulos
- 2nd Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
| | - Elias Kouroumalis
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- Department of Gastroenterology and Hepatology, University Hospital of Heraklion, 71013 Heraklion, Greece.
| | - Apostolos Zaravinos
- Department of Life Sciences European University Cyprus, Nicosia 1516, Cyprus.
| |
Collapse
|
4
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
5
|
Petrosino S, Campolo M, Impellizzeri D, Paterniti I, Allarà M, Gugliandolo E, D'Amico R, Siracusa R, Cordaro M, Esposito E, Di Marzo V, Cuzzocrea S. 2-Pentadecyl-2-Oxazoline, the Oxazoline of Pea, Modulates Carrageenan-Induced Acute Inflammation. Front Pharmacol 2017; 8:308. [PMID: 28611664 PMCID: PMC5448350 DOI: 10.3389/fphar.2017.00308] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
N-acylethanolamines (NAEs) involve a family of lipid molecules existent in animal and plant, with N-palmitoylethanolamide (PEA) that arouses great attention owing to its anti-inflammatory, analgesic and neuroprotective activities. Because PEA is produced on demand and exerts pleiotropic effects, the modulation of specific amidases for NAEs (and in particular NAE-hydrolyzing acid amidase NAAA, which is more selective for PEA) could be a condition to preserve its levels. Here we investigate the effect of 2-Pentadecyl-2-oxazoline (PEA-OXA) the oxazoline of PEA, on human recombinant NAAA in vitro and in an established model of Carrageenan (CAR)-induced rat paw inflammation. PEA-OXA dose-dependently significantly inhibited recombinant NAAA and, orally administered to rats (10 mg/kg), limiting histological damage, thermal hyperalgesia and the increase of infiltrating inflammatory cells after CAR injection in the rat right hindpaw, compared to ultramicronized PEA given orally at the same dose (10 mg/kg). These effects were accompanied by elevation of paw PEA levels. Moreover, PEA-OXA markedly reduced neutrophil infiltration and pro-inflammatory cytokine release and prevented CAR-induced IκB-α degradation, nuclear translocation of NF-κB p65, the increase of inducible nitric oxide synthase, cyclooxygenase-2, intercellular adhesion molecule-1, and mast cell activation. Experiments in PPAR-α knockout mice showed that the anti-inflammatory effects of PEA-OXA were not dependent on the presence of PPAR-α receptors. In conclusion, NAAA modulators as PEA-OXA could help to maximize the tissue availability of PEA by increasing its levels and anti-inflammatory effects.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy.,Epitech Group SpASaccolongo, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy.,Epitech Group SpASaccolongo, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of MessinaMessina, Italy
| |
Collapse
|
6
|
Microglial TNFα Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain. eNeuro 2017; 4:eN-NWR-0064-17. [PMID: 28451639 PMCID: PMC5399753 DOI: 10.1523/eneuro.0064-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia–endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.
Collapse
|
7
|
Abstract
Pain research is based broadly on physiological disciplines and its development follows the methodological progress of the era, from classical psychophysiology to electrophysiological investigations at peripheral and central nociceptive systems, single cells and ion channels to modern imaging of nociceptive processing. Physiological pain research in Germany has long been part of an interdisciplinary research network extending beyond all political boundaries, and this situation has continued since molecular techniques started to dominate all biomedical research. Current scientific questions, such as intracellular nociceptive signal mechanisms, interactions with other physiological systems including the immune system, or the genetic basis of epidemic and chronic pain diseases can only be solved interdisciplinary and with international collaboration.
Collapse
Affiliation(s)
- K Messlinger
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Deutschland.
| | - H O Handwerker
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Deutschland
| |
Collapse
|
8
|
Pardutz A, Szatmári E, Vecsei L, Schoenen J. Nitroglycerin-Induced nNOS Increase in Rat Trigeminal Nucleus Caudalis is Inhibited by Systemic Administration of Lysine Acetylsalicylate but not of Sumatriptan. Cephalalgia 2016; 24:439-45. [PMID: 15154853 DOI: 10.1111/j.1468-2982.2004.00699.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Systemic administration of nitroglycerin (NTG), a nitric oxide (NO) donor, in migraineurs triggers after several hours an attack of which the precise mechanisms are unknown. We found previously in rats that nitroglycerin (10 mg/kg s.c.) is able to increase significantly after 4 h the number of neuronal nitric oxide synthase (nNOS)-immunoreactive neurones in the cervical part of trigeminal nucleus caudalis. In the present experiments, we demonstrate that the 5-HT1B/D agonist sumatriptan (0.6 mg/kg s.c.) does not alter this phenomenon when given before NTG. By contrast, pretreatment with lysine acetylsalicylate (50 mg/kg i.m.) attenuates the NTG-induced nNOS expression in the superficial laminae of trigeminal nucleus caudalis. These findings suggest that effect of NTG on nNOS at a high dosage may involve the cycloxygenase pathway and that activation of the peripheral 5-HT1B/D receptors is not able to modify this effect. These data could help to better understand the role of NO in the pathogenesis of headaches and the action of antimigraine drugs.
Collapse
Affiliation(s)
- A Pardutz
- Research Centre of Cellular & Molecular Neurobiology, Headache Research Unit, Universtiy og Liège, Liè, Belgium
| | | | | | | |
Collapse
|
9
|
Analgesic Effects of Danggui-Shaoyao-San on Various "Phenotypes" of Nociception and Inflammation in a Formalin Pain Model. Mol Neurobiol 2015; 53:6835-6848. [PMID: 26660325 DOI: 10.1007/s12035-015-9606-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
Abstract
Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine, which has long been used for pain treatment and has been demonstrated to possess anti-oxidative, cognitive enhancement, and anti-depressant effects. In the present study, the effects of aqueous extracts of DSS on spontaneous pain behaviors and long-term hyperalgesia were examined to investigate the anti-nociceptive effects and underlying mechanisms. Single pretreatment of DSS dose-dependently reduced spontaneous flinches/licking time in the second, rather than the first, phase after subcutaneous injection of 5 % formalin into one hindpaw, in doses of 2.4 and 9.6 g/kg. DSS also dose-dependently inhibited FOS and cyclooxygenase-2 (COX-2) expression in both superficial and deep layers within the spinal dorsal horn. Further, DSS reduced hypoalgesia in the injected paw from 1 to 3 days and produced anti-hyperalgesic actions in both the injected paw after 3 days and non-injected paw. These data suggest involvement of enhancement of descending pain inhibition by suppression of 5-HTT levels in the spinal dorsal horn and reduction of peripheral long-term inflammation, including paw edema and ulcers. These findings suggest that DSS may be a useful therapeutic agent for short- and long-term inflammation induced pain, through both anti-inflammatory and suppression of central sensitization mechanisms.
Collapse
|
10
|
Schmitz K, de Bruin N, Bishay P, Männich J, Häussler A, Altmann C, Ferreirós N, Lötsch J, Ultsch A, Parnham MJ, Geisslinger G, Tegeder I. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med 2015; 6:1398-422. [PMID: 25269445 PMCID: PMC4237468 DOI: 10.15252/emmm.201404168] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Philipp Bishay
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Julia Männich
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christine Altmann
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg, Marburg, Germany
| | - Michael J Parnham
- Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe-University Hospital, Frankfurt am Main, Germany Fraunhofer Institute of Molecular Biology and Applied Ecology Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| |
Collapse
|
11
|
Down-regulation of PPARα in the spinal cord contributes to augmented peripheral inflammation and inflammatory hyperalgesia in diet-induced obese rats. Neuroscience 2014; 278:165-78. [PMID: 25135355 DOI: 10.1016/j.neuroscience.2014.07.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023]
Abstract
Obesity is associated with augmented peripheral inflammation and pain sensitivity in response to inflammatory stimulation, but the underlying mechanisms remain unclear. Emerging evidence has shown that activation of peroxisome proliferator-activated receptor-α (PPARα) in the central nervous system controls peripheral inflammation and pain. We hypothesized that obesity might down-regulate PPARα in the spinal cord, leading to enhanced peripheral inflammation and inflammatory hyperalgesia. Sprague-Dawley rats fed a high-fat diet (HF) for 12weeks developed metabolic disorder and displayed significantly decreased spinal PPARα expression and activity. Interestingly, intracerebroventricular (ICV) infusion of the PPARα activator palmitoylethanolamide (PEA) in HF-fed rats for 2weeks normalized spinal PPARα expression and activity without altering metabolic parameters. HF-fed rats were more sensitive to stimulation of the inflamed paw, and exhibited more severe paw edema following carrageenan injection, whereas HF-fed rats receiving ICV PEA had similar pain sensitivity and paw edema to LF-fed rats. No difference in the expression of inflammatory mediators or nuclear factor (NF)-κB activity was observed at baseline among groups. Carrageenan induced decreased PPARα expression and activity, increased spinal cord inflammatory mediator expression and NF-κB activity in both LF-and HF-fed rats. However, the increase was more pronounced in HF-fed rats and corrected by PEA. Intrathecal injection of small interfering RNA (siRNA) against PPARα in HF-fed rats completely abolished PEA effects on peripheral pain sensitivity and paw edema. These findings suggest that diet-induced obesity causes down-regulation of spinal PPARα, which facilitates the susceptibility to peripheral inflammatory challenge by increasing inflammatory response in the spinal cord, contributing to augmented peripheral inflammation and inflammatory hyperalgesia in obesity.
Collapse
|
12
|
Khan S, Shehzad O, Chun J, Choi RJ, Park S, Islam MN, Choi JS, Kim YS. Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:478-486. [PMID: 24495472 DOI: 10.1016/j.jep.2014.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia capillaris has widespread traditional and pharmacological applications such as analgesic, anti-inflammatory, anti-pyretic, enhance immunity and anti-tumor activity properties. To evaluate the pharmacological activities of this plant, capillarisin, one of the potent constituent of Artemisia capillaris was studied based on anti-hyperalgesic and anti-allodynic effects with detailed mechanism. It can be assumed that measurement of anti-nociceptive effects of capillarisin is one of the parameter for the evaluation of this herb. Capillarisin has extensive pharmacological properties and has been considered to have promising ant-inflammatory and anti-nociceptive activities. The aim of the current study is to investigate the effect of capillarisin and underlying molecular mechanisms of action in preventing acute and subchronic inflammatory pain. MATERIALS AND METHODS The inflammatory pain was induced after 40 min or 1h of administration of vehicle, 70% EtOH extract of Artemisia capillaris (100mg/kg) or capillarisin (20 and 80 mg/kg) by intraplantar (i.p.l.) injections of CFA and carrageenan in ICR mice, respectively. Mechanical hyperalgesia and allodynia were evaluated in both acute and subchronic models. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1, and ERK-CREB involved in the persistent pain sensations. RESULTS In acute model, mechanical hyperalgesia and allodynia were evaluated after every 2h until 6h of CFA and after 4h of carrageenan injections. Whereas, in subchronic inflammatory pain model, mechanical hyperalgesia and paw edema were measured after 4h of CFA injection and every day after 4h of daily treatment until 5 days with interval of day four in order to assess the tolerance effect of capillarisin. Further analysis was performed in CFA-induced mice exploring various molecular and signaling pathways such as NF-κB, AP-1 and ERK-CREB involved in the persistent of pain sensations. Pre-treatment of capillarisin strongly inhibited NF-κB mediated genes (iNOS, COX-2), involved in pain. The plasma leading nitrite production was significantly reduced by capillarisin. Moreover, i.p. administration of capillarisin markedly suppressed the adenosine 5׳-triphosphate (ATP) in plasma and substance P in CFA-induced paw tissue. CONCLUSIONS The present study indicates that capillarisin possessed promising anti-hyperalgesic and anti-allodynic effects through the inhibition of various inflammatory pain signaling, suggesting that capillarisin constitutes a significant component for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Salman Khan
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Omer Shehzad
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea; Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ran Joo Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Saitbyul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Md Nurul Islam
- Department of Food Science and Nutrition, Pukyong National University, Pusan 608-737, Republic of Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Pusan 608-737, Republic of Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
13
|
Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat 2013; 104-105:58-66. [DOI: 10.1016/j.prostaglandins.2012.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 01/16/2023]
|
14
|
Bishay P, Häussler A, Lim HY, Oertel B, Galve-Roperh I, Ferreirós N, Tegeder I. Anandamide deficiency and heightened neuropathic pain in aged mice. Neuropharmacology 2013; 71:204-15. [PMID: 23597506 DOI: 10.1016/j.neuropharm.2013.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023]
Abstract
Damaging of peripheral nerves may result in chronic neuropathic pain for which the likelihood is increased in the elderly. We assessed in mice if age-dependent alterations of endocannabinoids contributed to the heightened vulnerability to neuropathic pain at old age. We assessed nociception, endocannabinoids and the therapeutic efficacy of R-flurbiprofen in young and aged mice in the spared nerve injury model of neuropathic pain. R-flurbiprofen was used because it is able to reduce neuropathic pain in young mice in part by increasing anandamide. Aged mice developed stronger nociceptive hypersensitivity after sciatic nerve injury than young mice. This was associated with low anandamide levels in the dorsal root ganglia, spinal cord, thalamus and cortex, which further decreased after nerve injury. In aged mice, R-flurbiprofen had only weak antinociceptive efficacy and it failed to restore normal anandamide levels after nerve injury. In terms of the mechanisms, we found that fatty acid amide hydrolase (FAAH) which degrades anandamide, was upregulated after nerve injury at both ages, so that this upregulation likely did not account for the age-dependent differences. However, enzymes contributing to oxidative metabolism of anandamide, namely cyclooxygenase-1 and Cyp2D6, were increased in the brain of aged mice, possibly enhancing the oxidative breakdown of anandamide. This may overwhelm the capacity of R-flurbiprofen to restore anandamide homeostasis and may contribute to the heightened risk for neuropathic pain at old age.
Collapse
Affiliation(s)
- Philipp Bishay
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Chapman RJ, Lall VK, Maxeiner S, Willecke K, Deuchars J, King AE. Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice. Brain Struct Funct 2012; 218:751-65. [PMID: 22638825 PMCID: PMC3637643 DOI: 10.1007/s00429-012-0426-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
Abstract
Connexin (Cx) proteins localized to neuronal and glial syncytia provide the ultrastructural components for intercellular communication via gap junctions. In this study, a Cx45 reporter mouse model in which the Cx45 coding sequence is substituted for enhanced green fluorescent protein (eGFP) was used to characterize Cx45 expressing neurones within adult mouse spinal cord. eGFP-immunoreactive (eGFP-IR) cells were localized at all rostro-caudal levels to laminae I-III of the dorsal horn (DH), areas associated with nociception. The neuronal rather than glial phenotype of these cells in DH was confirmed by co-localisation of eGFP-IR with the neuronal marker NeuN. Further immunohistochemical studies revealed that eGFP-IR interneurones co-express the calcium-binding protein calbindin, and to a lesser extent calretinin. In contrast, eGFP-IR profiles did not co-localize with either parvalbumin or GAD-67, both of which are linked to inhibitory interneurones. Staining with the primary afferent markers isolectin-B4 (IB4) and calcitonin gene-related peptide revealed that eGFP-IR somata within laminae I-III receive close appositions from the former, presumed non-peptidergic nociceptive afferents of peripheral origin. The presence of 5-HT terminals in close apposition to eGFP-IR interneuronal somata suggests modulation via descending pathways. These data demonstrate a highly localized expression of Cx45 in a population of interneurones within the mouse superficial dorsal horn. The implications of these data in the context of the putative role of Cx45 and gap junctions in spinal somatosensory processing and pain are discussed.
Collapse
Affiliation(s)
- R J Chapman
- Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
16
|
Spinal astrocytes contribute to the circadian oscillation of glutamine synthase, cyclooxygenase-1 and clock genes in the lumbar spinal cord of mice. Neurochem Int 2012; 60:817-26. [PMID: 22446583 DOI: 10.1016/j.neuint.2012.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 11/22/2022]
Abstract
Spinal astrocytes have key roles in the regulation of pain transmission. However, the relationship between astrocytes and the circadian system in the spinal cord remains poorly defined. In the current study, the circadian variations in the expression of several clock genes in the lumbar spinal cord of mice were examined by using real-time PCR. The expression of Period1, Period2 and Cryptochrome1 showed significant circadian oscillations, each gene peaking in the early evening. The expression of Bmal1 mRNA also exhibited a circadian pattern, peaking from around midnight to early morning. The mRNA levels of Cryptochrome2 were slightly, but not significantly altered. Molecules related to pain transmission were also investigated. The mRNA expression of glutamine synthase (GS), and cyclooxygenases (COXs), known to be involved in various spinal sensory functions, showed rhythmicity with a peak in the early evening, although the expression of the neurokinin-1 receptor, subunits of the N-methyl-d-aspartate receptor, and glutamate transporters did not change. In addition, we found that protein levels of GS and COX-1 were also high at midnight compared with midday. Furthermore, we examined the effect of intrathecal fluorocitrate (100pmol), an inhibitor of astrocytic metabolism, on the expression of oscillating genes in lumbar spinal cord. Fluorocitrate significantly suppressed astrocyte function. Furthermore, the circadian oscillation of clock gene expression and GS and COX-1 expression were suppressed. Together, these results suggest that a significant circadian rhythmicity of the expression of clock genes is present in the spinal cord and that the components of the circadian clock timed by astrocytes might contribute to spinal functions, including nociceptive processes.
Collapse
|
17
|
Popp L, Häussler A, Olliges A, Nüsing R, Narumiya S, Geisslinger G, Tegeder I. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain 2012; 13:691-703. [DOI: 10.1016/j.ejpain.2008.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 08/08/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022]
|
18
|
Ayoub SS, Wood EG, Hassan SU, Bolton C. Cyclooxygenase expression and prostaglandin levels in central nervous system tissues during the course of chronic relapsing experimental autoimmune encephalomyelitis (EAE). Inflamm Res 2011; 60:919-28. [PMID: 21667309 DOI: 10.1007/s00011-011-0352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) and its animal counterpart experimental autoimmune encephalomyelitis (EAE) have a major inflammatory component that drives and orchestrates both diseases. One particular group of mediators are the prostaglandins (PGs), which we have previously shown, through quantitation and pharmacological intervention, to be closely involved in the pathology of MS and EAE. The aim of the current study was to determine the expression of the PG-generating cyclooxygenase (COX) enzymes and the profile of PGE(2) and PGD(2), in selected central nervous system (CNS) tissues, with the development of the chronic relapsing (CR) form of EAE. In particular, the work investigates the possible relationship between the expression of COX isoenzymes and PG levels during the neurological phases of CR EAE. METHODS CR EAE was induced in Biozzi mice with inoculum containing lyophilised, syngeneic spinal cord emulsified in complete Freund's adjuvant. The cerebral cortex, cerebellum and spinal cord were dissected from mice during the acute, remission and relapse stages of disease with a minimum of five animals per treatment. The expression of COX-1, COX-1b variant and COX-2, in pooled samples, was determined by Western blotting. PGE(2) and PGD(2) levels in extracted samples were measured using commercial enzyme immunoassay kits. RESULTS COX-2 expression in spinal cords during acute disease remained unaltered and was in contrast to an enhancement of the enzyme, together with COX-1 and COX-1b, in all other sampled areas. PGE(2) and PGD(2) levels remained unchanged during the acute phase and the subsequent remission of symptoms. COX-1 and COX-1b expression was elevated in tissues during the relapse stage of CR EAE and concentrations of the prostanoids were markedly increased. CONCLUSIONS The study examines the implications of COX isoenzyme expression over the course of CR EAE and discusses the reported relationship between PGE(2) and PGD(2) in the instigation and resolution of CNS inflammation. Consideration is also given to the treatment of CR EAE and suggests that drugs designed to limit the inflammatory effects of the PGs should be administered prior to or during the relapse phase of the disease.
Collapse
Affiliation(s)
- Samir S Ayoub
- Centre for Biochemical Pharmacology, William Harvey Research Institute, St. Bartholomew's and London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | |
Collapse
|
19
|
Tegeder I, Scheving R, Wittig I, Geisslinger G. SNO-ing at the nociceptive synapse? Pharmacol Rev 2011; 63:366-89. [PMID: 21436345 DOI: 10.1124/pr.110.004200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide is generally considered a pronociceptive retrograde transmitter that, by activation of soluble guanylyl cyclase-mediated cGMP production and activation of cGMP-dependent protein kinase, drives nociceptive hypersensitivity. The duality of its functions, however, is increasingly recognized. This review summarizes nitric-oxide-mediated direct S-nitrosylation of target proteins that may modify nociceptive signaling, including glutamate receptors and G-protein-coupled receptors, transient receptor potential channels, voltage-gated channels, proinflammatory enzymes, transcription factors, and redoxins. S-Nitrosylation events require close proximity of nitric oxide production and target proteins and a permissive redox state in the vicinity. Despite the diversity of potential targets and effects, three major schemes arise that may affect nociceptive signaling: 1) S-Nitrosylation-mediated changes of ion channel gating properties, 2) modulation of membrane fusion and fission, and thereby receptor and channel membrane insertion, and 3) modulation of ubiquitination, and thereby protein degradation or transcriptional activity. In addition, S-Nitrosylation may alter the production of nitric oxide itself.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, Haus 74; 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
20
|
Richter F, Natura G, Löser S, Schmidt K, Viisanen H, Schaible HG. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. ACTA ACUST UNITED AC 2010; 62:3806-14. [DOI: 10.1002/art.27715] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
de Zavalía N, Fernandez DC, Sande PH, Keller Sarmiento MI, Golombek DA, Rosenstein RE, Silberman DM. Circadian variations of prostaglandin E2 and F2 α release in the golden hamster retina. J Neurochem 2010; 112:972-9. [DOI: 10.1111/j.1471-4159.2009.06517.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Bardoni R, Ghirri A, Zonta M, Betelli C, Vitale G, Ruggieri V, Sandrini M, Carmignoto G. Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol 2010; 588:831-46. [PMID: 20083514 DOI: 10.1113/jphysiol.2009.180570] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By releasing neuroactive agents, including proinflammatory cytokines, prostaglandins and neurotrophins, microglia and astrocytes are proposed to be involved in nociceptive transmission, especially in conditions of persistent, pathological pain. The specific action on dorsal horn neurons of agents released from astrocytes, such as glutamate, has been, however, poorly investigated. By using patch-clamp and confocal microscope calcium imaging techniques in rat spinal cord slices, we monitored the activity of dorsal horn lamina II neurons following astrocyte activation. Results obtained revealed that stimuli that triggered Ca(2+) elevations in astrocytes, such as the purinergic receptor agonist BzATP and low extracellular Ca(2+), induce in lamina II neurons slow inward currents (SICs). Similarly to SICs triggered by astrocytic glutamate in neurons from other central nervous system regions, these currents (i) are insensitive to tetrodotoxin (TTX), (ii) are blocked by the NMDA receptor (NMDAR) antagonist d-AP5, (iii) lack an AMPA component, and (iv) have slow rise and decay times. Ca(2+) imaging also revealed that astrocytic glutamate evokes NMDAR-mediated episodes of synchronous activity in groups of substantia gelatinosa neurons. Importantly, in a model of peripheral inflammation, the development of thermal hyperalgesia and mechanical allodynia was accompanied by a significant increase of spontaneous SICs in dorsal horn neurons. The NMDAR-mediated astrocyte-to-neuron signalling thus represents a novel pathway that may contribute to the control of central sensitization in pathological pain.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Adachi S, Fujioka H, Kakehashi C, Matsuwaki T, Nishihara M, Akema T. Possible involvement of microglia containing cyclooxygenase-1 in the accumulation of gonadotrophin-releasing hormone in the preoptic area in female rats. J Neuroendocrinol 2009; 21:1029-37. [PMID: 19845835 DOI: 10.1111/j.1365-2826.2009.01928.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandins (PGs), especially PGE(2), are involved in the hypothalamic control of gonadotrophin-releasing hormone (GnRH) release, acting at least in part on the terminal of GnRH axons in the median eminence. The present study aimed: (i) to clarify the role of PG(s) in regulating GnRH cell function at the level of the perikarya in the preoptic area; (ii) to determine the cyclooxygenase (COX) isozyme responsible for producing PG(s) that regulates GnRH perikarya; and (iii) to identify cell types that contain the responsible COX isozyme in female rats. A surge of luteinising hormone (LH) secretion was induced by oestrogen and progesterone in ovariectomised rats. Treatment of the rat before the LH surge with indomethacin, a nonselective COX inhibitor, or NS-398, a selective COX-2 inhibitor, did not interfere with the surge. However, treatment with indomethacin or flurbiprofen, a selective COX-1 inhibitor, significantly reduced the number of GnRH-immunoreactive cells in the preoptic area at the time of peak LH secretion during the surge. NS-398 did not affect the GnRH immunoreactivity. Double-labelled immunofluorescent histochemistry revealed COX-1 immunoreactivity in the vicinity of, but not within, GnRH containing neurones in the preoptic area. COX-2 immunoreactivity was not found in the same area. The COX-1 immunoreactivity was almost entirely localised in microglia in the preoptic area, but not in neurones or astrocytes. These results suggest that microglia in the preoptic area containing COX-1 are responsible for producing PG(s), which, in turn, facilitates the accumulation of GnRH during the gonadotrophin surge in female rats.
Collapse
Affiliation(s)
- S Adachi
- Department of Physiology, St Marianna University School of Medicine, Miyamae-ku, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Telleria-Diaz A, Schmidt M, Kreusch S, Neubert AK, Schache F, Vazquez E, Vanegas H, Schaible HG, Ebersberger A. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids. Pain 2009; 148:26-35. [PMID: 19879047 DOI: 10.1016/j.pain.2009.08.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 01/28/2023]
Abstract
Both cyclooxygenase-1 and -2 are expressed in the spinal cord, and the spinal COX product prostaglandin E(2) (PGE(2)) contributes to the generation of central sensitization upon peripheral inflammation. Vice versa spinal COX inhibition is considered an important mechanism of antihyperalgesic pain treatment. Recently, however, COX-2 was shown to be also involved in the metabolism of endocannabinoids. Because endocannabinoids can have analgesic actions it is conceivable that inhibition of spinal COX produces analgesia not only by inhibition of PG synthesis but also by inhibition of endocannabinoid breakdown. In the present study, we recorded from spinal cord neurons with input from the inflamed knee joint and we measured the spinal release of PGE(2) and the endocannabinoid 2-arachidonoyl glycerol (2-AG) in vivo, using the same stimulation procedures. COX inhibitors were applied spinally. Selective COX-1, selective COX-2 and non-selective COX inhibitors attenuated the generation of spinal hyperexcitability when applied before and during development of inflammation but, when inflammation and spinal hyperexcitability were established, only selective COX-2 inhibitors reversed spinal hyperexcitability. During established inflammation all COX inhibitors reduced release of spinal PGE(2) almost equally but only the COX-2 inhibitor prevented breakdown of 2-AG. The reversal of spinal hyperexcitability by COX-2 inhibitors was prevented or partially reversed by AM-251, an antagonist at the cannabinoid-1 receptor. We conclude that inhibition of spinal COX-2 not only reduces PG production but also endocannabinoid breakdown and provide evidence that reversal of inflammation-evoked spinal hyperexcitability by COX-2 inhibitors is more related to endocannabinoidergic mechanisms than to inhibition of spinal PG synthesis.
Collapse
Affiliation(s)
- Alejandro Telleria-Diaz
- Department of Physiology, University Hospital of Jena, Teichgraben 8, D-07740 Jena, Germany Department of Biochemistry, University Hospital of Jena, Nonnenplan 2, D-07740 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ronchetti D, Borghi V, Gaitan G, Herrero JF, Impagnatiello F. NCX 2057, a novel NO-releasing derivative of ferulic acid, suppresses inflammatory and nociceptive responses in in vitro and in vivo models. Br J Pharmacol 2009; 158:569-79. [PMID: 19594750 DOI: 10.1111/j.1476-5381.2009.00324.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE We previously reported that NCX 2057, a compound comprising a nitric oxide (NO)-releasing moiety and the natural antioxidant, ferulic acid (FA), inhibits pro-inflammatory mediators through NO-mediated gene regulation. Here, we have assessed the activities of NCX 2057 in models of inflammatory and neuropathic pain, and characterized its effects on cyclooxygenase (COX)-1 and COX-2. EXPERIMENTAL APPROACH Anti-nociceptive and anti-inflammatory activities of NCX 2057 were measured in vitro and in vivo in models of inflammatory (carrageenan) and neuropathic (chronic constriction injury; CCI) pain. Effects of NCX 2057 were measured on COX-1 and COX-2 activities in RAW 264.7 macrophages. KEY RESULTS NCX 2057 dose-dependently inhibited single motor unit responses to noxious mechanical stimulation (ID(50)= 100 micromol kg(-1)) and wind-up responses in rats with paw inflammation induced by carrageenan. Moreover, NCX 2057 inhibited allodynic responses following CCI of the sciatic nerve [ipsilateral Paw Withdrawal Threshold (g): vehicle: 41.4 +/- 3.3; NCX 2057: 76.3 +/- 4.8 FA: 37.9 +/- 15.5 at 175 micromol kg(-1)]. NCX 2057 reversed carrageenan-induced hyperalgesic responses in mice and inhibited prostaglandin E(2) formation in paw exudates. Finally, NCX 2057 competitively inhibited COX-1 and COX-2 activities in whole RAW macophages (IC(50)= 14.7 +/- 7.4 and 21.6 +/- 7.5 microM, respectively). None of these properties were exhibited by equivalent treatments with FA or standard NO donor compounds. CONCLUSIONS AND IMPLICATIONS These studies indicate that NCX 2057 is effective in chronic inflammatory and neuropathic pain models, probably because of its particular combination of anti-COX, antioxidant and NO-releasing properties.
Collapse
|
26
|
Li SQ, Xing YL, Chen WN, Yue SL, Li L, Li WB. Activation of NMDA receptor is associated with up-regulation of COX-2 expression in the spinal dorsal horn during nociceptive inputs in rats. Neurochem Res 2009; 34:1451-63. [PMID: 19337831 DOI: 10.1007/s11064-009-9932-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/04/2009] [Indexed: 11/29/2022]
Abstract
Cyclooxygenases-2 (COX-2) in the spinal dorsal horn is up-regulated and plays an important role in pain and hyperalgesia induced by nociceptive stimulation. The mechanisms involved in the up-regulation of spinal COX-2 during nociceptive stimulation are yet not well understood. Because the important role of NMDA and its receptor in transmission of nociceptive information in the spinal cord, activation of the spinal NMDA receptor might contribute to the up-regulation of spinal COX-2 expression. The present study was undertaken to demonstrate the above hypothesis by observing changes of COX-2 expression in the spinal dorsal horn in rats subjected to formalin test and intrathecal administration of NMDA, a selective NMDA receptor agonist, in conditions with or without presence of MK-801, an antagonist of NMDA receptor, using methods of Western blotting, reverse transcription polymerase chain reaction and immunohistochemistry. The results showed that intrathecal injection of MK-801, a noncompetitive antagonist of NMDA receptor, significantly suppressed the up-regulation of the COX-2 expression and characteristic pain behavior responses evoked in formalin test. Whereas, intrathecal injection of NMDA significantly up-regulated the expression of COX-2 in the spinal dorsal horn in a time course corresponding to that of nociceptive behavioral responses elicited by the intrathecal NMDA administration. In addition, the up-regulation of the COX-2 expression induced by the intrathecal NMDA was dose-dependent and blocked by prior administration of MK-801. These findings proved that activation of NMDA receptor is associated with the up-regulation of COX-2 expression in the spinal dorsal horn during nociceptive stimulation in rats.
Collapse
Affiliation(s)
- Shu-Qin Li
- Department of Pathophysiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, 050017, Shijiazhuang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Paiotti APR, Artigiani Neto R, Forones NM, Oshima CTF, Miszputen SJ, Franco M. Immunoexpression of cyclooxygenase-1 and -2 in ulcerative colitis. ACTA ACUST UNITED AC 2008; 40:911-8. [PMID: 17653443 DOI: 10.1590/s0100-879x2006005000128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 05/11/2007] [Indexed: 01/05/2023]
Abstract
Ulcerative colitis (UC) is a disease of the colon and rectum characterized by a nonspecific chronic inflammation mediated by the concerted response of cellular and humoral events. Prostaglandins are synthesized by cyclooxygenase (COX)-1 and -2 and exhibit both pro- and anti-inflammatory activity. To evaluate COX-1 and COX-2 immunoexpression in 42 cases of UC and to correlate it with clinicopathological parameters, COX-1 and COX-2 expression was investigated by the immunohistochemistry method. Only patients with all pertinent clinical and evolutive data as well as with adequate biopsy material were included in the study. Fifteen samples of colorectal adenocarcinoma and 14 of large bowel with no histological changes were used for positive and negative controls, respectively. UC patients showed COX-1 immunoreactivity in epithelial cells in 29% of the cases and in inflammatory cells in 43%. COX-2 positivity in epithelial and inflammatory cells was found in 69% of the samples. The comparison between UC and the control groups revealed that the UC group had significantly more positive cases for COX-1 and COX-2 in inflammatory cells. Immunohistochemistry allowed the identification of COX-1 and COX-2 expression in epithelial and inflammatory cells in UC biopsies. No significant difference between COX-1 and COX-2 immunoreactivity in epithelial and inflammatory cells was observed regarding the clinicopathological parameters. COX-2 presented low expression in normal colon and high expression in colorectal adenocarcinoma. COX-2 might play a role in the pathophysiologic processes of inflammatory bowel disease and the development of neoplasia. Treatment with selective COX-2 inhibitors might be an additional option for therapy.
Collapse
Affiliation(s)
- A P R Paiotti
- Departamento de Patologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
28
|
The effects of intrathecal cyclooxygenase-1, cyclooxygenase-2, or nonselective inhibitors on pain behavior and spinal Fos-like immunoreactivity. Anesth Analg 2008; 106:972-7, table of contents. [PMID: 18292448 DOI: 10.1213/ane.0b013e318163f602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prostaglandins are synthesized by cyclooxygenase (COX) and are thought to play an important role in nociceptive transmission in the spinal cord. Fos expression is an indicator of spinal neuron activation. We examined the role of intrathecal selective and nonspecific COX inhibitors on spinal C-Fos expression. METHODS To evaluate the relative contribution of COX-1 and COX-2 in nociceptive transmission in the spinal cord, we assessed the effects of the selective COX-1 inhibitor SC 560, the selective COX-2 inhibitor celecoxib, and the nonselective COX inhibitor ketorolac on formalin-evoked behavior and spinal c-Fos-like immunoreactivity (FLI). Rats received each of the drugs (30, 60, or 90 microg) intrathecally before the subcutaneous administration of formalin (5%, 50 microL) to the plantar surface of a hindpaw. The control group received vehicle intrathecally before the administration of formalin. RESULTS Phase 1 flinching behavior decreased in rats given celecoxib or ketorolac 90 mug. Phase 2 flinching behavior decreased in rats given all doses of ketorolac or celecoxib 90 microg (P < 0.05). The FLI was significantly reduced in rats given celecoxib or ketorolac 90 microg for laminae I-II (P < 0.05). By contrast, for laminae V-VI, only the ketorolac 60 or 90 microg treatment group demonstrated a larger decrease in FLI (P < 0.05). The FLI expression in laminae V-VI had a significant correlation with phase 2 flinching behavior (P < 0.05). CONCLUSIONS A dual inhibitor of COX-1 and COX-2 suppressed both responses of formalin-evoked behaviors and FLI expression of whole laminae in the lumbar spinal cord. FLI expression of laminae I-II alone may not be a good indicator of the ability to produce anti-hypersensitivity; however, the FLI of laminae V-VI correlates with phase 2 responses.
Collapse
|
29
|
Chen ML, Cheng C, Lv QS, Guo ZQ, Gao Y, Gao SF, Li X, Niu SQ, Shi SX, Shen AG. Altered gene expression of NIDD in dorsal root ganglia and spinal cord of rats with neuropathic or inflammatory pain. J Mol Histol 2007; 39:125-33. [PMID: 17899403 DOI: 10.1007/s10735-007-9144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Nitric oxide and nitric oxide synthases are key players in synaptic plasticity events in spinal cord (SC), which underlies the chronic pain states. To date, little is known about the molecular mechanisms regulating the activity of nitric oxide synthases in nociceptive systems. The present study was aimed at the determination of the gene expression of nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD), a recently identified protein regulating nNOS enzyme activity, in rat SC and dorsal root ganglia (DRG) and studying its regulation in states of nociceptive hypersensitivity in a rat model of neuropathic or inflammatory pain. It was found that NIDD mRNA was predominantly expressed in nociceptive primary neurons and in neurons of the spinal dorsal horn (DH) and the number of NIDD-positive neurons in the corresponding DRG or SC increased significantly following induction of chronic hyperalgesia. Meanwhile, remarkable changes of nNOS were detected under such pain conditions. Our data suggest a potential role for NIDD in the maintenance of thermal pain hypersensitivity possibly via regulating the nNOS activity.
Collapse
Affiliation(s)
- Meng-Ling Chen
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maihöfner C, Ringler R, Herrndobler F, Koppert W. Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci 2007; 26:1344-56. [PMID: 17767511 DOI: 10.1111/j.1460-9568.2007.05733.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the most distressing symptoms of many neuropathic pain syndromes is the enhanced pain sensation to tactile or thermal stimulation (hyperalgesia). In the present study we used functional magnetic resonance imaging (fMRI) and explored brain activation patterns during acute impact pain and mechanical hyperalgesia in the human ultraviolet (UV)-B model. To investigate pharmacological modulation, we examined potential differential fMRI correlates of analgesic and antihyperalgesic effects of two intravenous cyclooxygenase inhibitors, i.e. parecoxib and acetylsalicylic acid (ASA). Fourteen healthy volunteers participated in this double-blinded, randomized and placebo-controlled crossover study. Tactile stimuli and mechanical impact hyperalgesia were tested at the site of a UV-B irradiation and acute mechanical pain was tested at a site distant from the irradiated skin. These measurements were conducted before and 30 min after a 5-min intravenous infusion of either saline (placebo), parecoxib 40 mg or ASA 1000 mg. Acute mechanical pain and mechanical hyperalgesia led to widespread activations of brain areas known to comprise the human pain matrix. Analgesic effects were found in primary (S1) and secondary (S2) somatosensory cortices, parietal association cortex (PA), insula, anterior parts of the cingulate cortex and prefrontal cortices. These brain areas were also modulated under antihyperalgesic conditions. However, we observed a greater drug-induced modulation of mainly PA and inferior frontal cortex during mechanical hyperalgesia; during acute mechanical pain there was a greater modulation of mainly bilateral S2. Therefore, the results of the present study suggest that there is a difference in the brain areas modulated by analgesia and antihyperalgesia.
Collapse
Affiliation(s)
- Christian Maihöfner
- Department of Neurology, Schwabachanlage 6, D91054 Erlangen, University Hospital Erlangen, Germany.
| | | | | | | |
Collapse
|
31
|
D'Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Raso GM, Cuzzocrea S, Lo Verme J, Piomelli D, Meli R, Calignano A. Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-alpha agonist, modulates carrageenan-induced paw edema in mice. J Pharmacol Exp Ther 2007; 322:1137-43. [PMID: 17565008 DOI: 10.1124/jpet.107.123265] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-alpha is a nuclear transcription factor. Although the presence of this receptor in different areas of central nervous system (CNS) has been reported, its role remains unclear. Palmitoylethanolamide (PEA), a member of the fatty-acid ethanolamide family, acts peripherally as an endogenous PPAR-alpha ligand, exerting analgesic and anti-inflammatory effects. High levels of PEA in the CNS have been found, but the specific function of this lipid remains to be clarified. Using carrageenan-induced paw edema in mice, we show that i.c.v. administration of PEA may control peripheral inflammation through central PPAR-alpha activation. A single i.c.v. administration of 0.01 to 1 microg of PEA, 30 min before carrageenan injection, reduced edema formation in the mouse carrageenan test. This effect was mimicked by 0.01 to 1 microg of GW7647 [2-[[4-[2-[[(cyclohexylamino)carbonyl](4-cyclohexylbutyl)amino]ethyl]phenyl]thio]-2-methylpropanoic acid], a synthetic PPAR-alpha agonist. Moreover, central PEA administration significantly reduced the expression of the proinflammatory enzymes cyclooxygenase-2 and inducible nitric-oxide synthase, and it significantly restored carrageenan-induced PPAR-alpha reduction in the spinal cord. To investigate the mechanism by which i.c.v. PEA attenuated the development of carrageenan-induced paw edema, we evaluated inhibitor kappaB-alpha (I kappa B-alpha) degradation and nuclear factor-kappaB (NF-kappaB) p65 activation in the cytosolic or nuclear extracts from spinal cord tissue. PEA prevented IkB-alpha degradation and NF-kappaB nuclear translocation, confirming the involvement of this transcriptional factor in the control of peripheral inflammation. The obligatory role of PPAR-alpha in mediating the effects of PEA was confirmed by the lack of the compounds anti-inflammatory effects in mutant mice lacking PPAR-alpha. In conclusion, our data show for the first time that PPAR-alpha activation in the CNS can control peripheral inflammation.
Collapse
Affiliation(s)
- Giuseppe D'Agostino
- Department of Experimental Pharmacology, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamada S, Kawate T, Sakamoto H, Aoki K, Hamada Y, Atsumi S. Cyclo-oxygenase-2-immunoreactive neurons in the lumbar dorsal horn in a chicken acute inflammation model. Anat Sci Int 2006; 81:164-72. [PMID: 16955667 DOI: 10.1111/j.1447-073x.2006.00144.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute and chronic peripheral inflammation is known to induce the expression of cyclo-oxygenase (COX)-2 in spinal cord neurons and increase the synthesis and release of prostaglandins (PG). Although these PG are presumed to cause inflammatory pain or hyperalgesia, the relationship between PG-producing cells in the dorsal horn and substance P (SP)-containing, pain-transmittimg nerve fibers remains unknown. In the present study we investigated immunohistochemically changes in the number of COX-2-containing neurons using the avidin-biotinylated peroxidase complex method in dorsal horn superficial laminae in chicken lumbosacral enlargement (L4, L5) under inflammatory conditions induced by unilateral intraplantar injection of complete Freund's adjuvant. After 12-24 h, a significant increase in the number of small COX-2-containing neurons was observed in lamina II on the injected side compared with the contralateral side. Furthermore, using fluorescent double-labeling for COX-2 and SP, an increase in the number of small COX-2-containing neurons in contact with SP-containing elements was observed ipsilaterally (1.4-1.6-fold compared with the contralateral side) in lamina II. Fluorescence triple-labeling of COX-2, SP and calcitonin gene-related peptide (CGRP) confirmed that the majority of these SP-containing elements coexisted with CGRP, indicating that these elements originated from primary afferent neurons. Using electron microscopy, two types of SP-containing axon terminals were found to form synapses with COX-2-containing neurons in lamina II. These results indicate that the number of COX-2-containing neurons increases concomitantly with an increase in the number of contacts of these neurons with SP-containing primary afferent fibers and suggest that this phenomenon is associated with PG production and the persistence of inflammatory pain.
Collapse
Affiliation(s)
- Sayaka Yamada
- Department of Orthopedic Surgery, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Zhang FY, Wan Y, Zhang ZK, Light AR, Fu KY. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. THE JOURNAL OF PAIN 2006; 8:110-7. [PMID: 16949875 DOI: 10.1016/j.jpain.2006.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/16/2022]
Abstract
UNLABELLED Activated glia are a source of substances known to enhance pain, including centrally synthesized prostaglandins. We have previously shown that microglia are activated in the spinal cord following peripheral formalin injection. In the present study, we investigated cyclooxygenase (COX-1 and COX-2) expression in the spinal cord using immunohistochemistry and Western blots in the formalin pain model, to further understand how spinal glia modulate pain processing. We show that both COX-1 and COX-2 are constitutively expressed in the spinal cord. Hind paw formalin injection increased COX-1 expression, beginning at 1 day after injection and lasting at least 2 weeks, the duration of experiments. The COX-2 expression changed considerably less, with a significant increase of COX-2 protein level only observed at 2 h after injection. Double labeling studies showed that COX-1 was expressed in microglia and COX-2 was expressed in neurons. These data indicate that both COX-1 and COX-2 are increased in the spinal cord following formalin injection, but the time course and cellular sources are different, suggesting that both COX-1 (longer time points) and COX-2 (very short time points) may be involved in spinal modulation in the formalin pain model. Our study also suggests that spinal microglial activation may play a role in long-term hyperalgesia through the increased expression of COX-1. PERSPECTIVE This article reports that COX-1 expression by microglia is increased in the spinal cord after peripheral formalin injection into the rat hind paw. This result could potentially help clinicians understand how COX-1 may be involved in pain processing and the role microglial activation plays in pain mechanisms.
Collapse
Affiliation(s)
- Fei-Yu Zhang
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Hofacker A, Coste O, Nguyen HV, Marian C, Scholich K, Geisslinger G. Downregulation of cytosolic prostaglandin E2 synthase results in decreased nociceptive behavior in rats. J Neurosci 2006; 25:9005-9. [PMID: 16192391 PMCID: PMC6725604 DOI: 10.1523/jneurosci.2190-05.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nociception-evoked prostaglandin E2 (PGE2) release in the spinal cord contributes considerably to the development of hyperalgesia and allodynia. Biosynthesis of PGE2 involves the conversion of arachidonic acid to PGH2 by cyclooxygenases (COXs), followed by an isomerization of PGH2 to PGE2 by PGE2 synthases (PGESs). The roles of COX-1, COX-2, and the inducible microsomal PGES-1 have been studied in models of pain and inflammation. In contrast, in nociceptive processes, very little is known about the role of cytosolic PGES (cPGES), which has been described as being functionally coupled to COX-1. Here we show by in situ hybridization and immunohistological analysis that COX-1 and cPGES are constitutively expressed in neuronal and non-neuronal cells of the dorsal and ventral horns in the spinal cord of adult rats. The protein levels of both enzymes were not regulated by nociceptive stimuli; however, reduction of cPGES in rat spinal cord with intrathecal application of cPGES antisense oligonucleotides reduced the nociceptive behavior in zymosan-evoked thermal hyperalgesia and in the formalin assay. The data indicate that cPGES plays an important role in mediating early responses during spinal nociceptive processing.
Collapse
Affiliation(s)
- Annette Hofacker
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung, Entwicklung, und Sicherheit, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, 60590 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Fornai M, Blandizzi C, Antonioli L, Colucci R, Bernardini N, Segnani C, De Ponti F, Del Tacca M. Differential role of cyclooxygenase 1 and 2 isoforms in the modulation of colonic neuromuscular function in experimental inflammation. J Pharmacol Exp Ther 2006; 317:938-45. [PMID: 16474005 DOI: 10.1124/jpet.105.098350] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study examines the role played by cyclooxygenase (COX) isoforms (COX-1 and -2) in the regulation of colonic neuromuscular function in normal rats and after induction of colitis by 2,4-dinitrobenzenesulfonic acid (DNBS). The expression of COX-1 and COX-2 in the colonic neuromuscular layer was assessed by reverse transcription-polymerase chain reaction and immunohistochemistry. The effects of COX inhibitors on in vitro motility were evaluated by studying electrically induced and carbachol-induced contractions of the longitudinal muscle. Both COX isoforms were constitutively expressed in normal colon; COX-2 was up-regulated in the presence of colitis. In normal and inflamed colon, both COX isoforms were mainly localized in neurons of myenteric ganglia. In the normal colon, indomethacin (COX-1/COX-2 inhibitor), SC-560 [5-(4-chloro-phenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] (COX-1 inhibitor), or DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulfonyl)phenyl-2(5H)-furanone] (COX-2 inhibitor) enhanced atropine-sensitive electrically evoked contractions. The most prominent effects were observed with indomethacin or SC-560 plus DFU. In the inflamed colon, SC-560 lost its effect, whereas indomethacin and DFU maintained their enhancing actions. These results were more evident after blockade of noncholinergic pathways. In rats with colitis, in vivo treatment with superoxide dismutase or S-methylisothiourea (inhibitor of inducible nitric-oxide synthase) restored the enhancing motor effect of SC-560. COX inhibitors had no effect on carbachol-induced contractions in normal or DNBS-treated rats. In conclusion, in the normal colon, both COX isoforms act at the neuronal level to modulate the contractile activity driven by excitatory cholinergic pathways. In the presence of inflammation, COX-1 activity is hampered by oxidative stress, and COX-2 seems to play a predominant role in maintaining an inhibitory control of colonic neuromuscular function.
Collapse
Affiliation(s)
- Matteo Fornai
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Grill M, Peskar BA, Schuligoi R, Amann R. Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 2006; 50:165-73. [PMID: 16182321 DOI: 10.1016/j.neuropharm.2005.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 07/01/2005] [Accepted: 08/08/2005] [Indexed: 01/03/2023]
Abstract
Although prostaglandin (PG)D2 is one of the main metabolites of the cyclooxygenase (COX) pathway of arachidonate metabolism in the brain, relatively little is known about the regulation of PGD2 biosynthesis in the spinal cord during systemic inflammation. Therefore, the present study was aimed at investigating the effect of endotoxin treatment on spinal PGD2 biosynthesis in BALB/c mice. Spinal inflammatory response to systemic endotoxin was verified by determination of spinal TNFalpha and IL-1beta mRNA. COX-1, COX-2, membrane-bound prostaglandin E synthase-1 (mPGES-1), and lipocalin-type prostaglandin D synthase (L-PGDS) mRNA and protein were determined by RT-PCR and western blot, respectively. The concentrations of immunoreactive PGD2 and PGE2 were measured in superfusion media of spinal cord samples in-vitro. Endotoxin treatment (1 mg/kg; 24 h before) enhanced the expression of COX-2, mPGES-1, and L-PGDS mRNA and protein in spinal cord, while there was no significant effect on COX-1 mRNA and protein. In superfusion media of spinal cord samples obtained from endotoxin treated mice, the concentrations of immunoreactive PGE2 and PGD2 were higher than in the control group suggesting enhanced spinal PG biosynthesis after endotoxin treatment. Addition of the selective COX-2 inhibitor lumiracoxib (100 nM) to the superfusion medium did not significantly affect PGE2 or PGD2 release in spinal cord obtained from non-treated mice. In spinal cord of endotoxin-treated mice, lumiracoxib (100 nM) attenuated PGE2 and PGD2 release to values similar to those observed in tissue obtained from non-endotoxin-treated mice. These results show enhanced expression of spinal L-PGDS and increased spinal PGD2 biosynthesis during systemic inflammation whereby enhanced biosynthesis seems to be dependent primarily on COX-2 activity.
Collapse
Affiliation(s)
- Magdalena Grill
- Medical University Graz, Institute of Experimental and Clinical Pharmacology, Universitatsplatz 4, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
37
|
Matsumura S, Abe T, Mabuchi T, Katano T, Takagi K, Okuda-Ashitaka E, Tatsumi S, Nakai Y, Hidaka H, Suzuki M, Sasaki Y, Minami T, Ito S. Rho-kinase mediates spinal nitric oxide formation by prostaglandin E2 via EP3 subtype. Biochem Biophys Res Commun 2005; 338:550-7. [PMID: 16188227 DOI: 10.1016/j.bbrc.2005.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/12/2005] [Indexed: 02/02/2023]
Abstract
Prostaglandin E2 (PGE2), the principal pro-inflammatory prostanoid, is known to play versatile roles in pain transmission via four PGE receptor subtypes, EP1-EP4. We recently demonstrated that continuous production of nitric oxide (NO) by neuronal NO synthase (nNOS) following phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS) and NMDA receptor NR2B subunits is essential for neuropathic pain. These phosphorylation and nNOS activity visualized by NADPH-diaphorase histochemistry were blocked by indomethacin, a PG synthesis inhibitor. To clarify the interaction between cyclooxygenase and nNOS pathways in the spinal cord, we examined the effect of EP subtype-selective agonists on NO production. NO formation was stimulated in the spinal superficial layer by EP1, EP3, and EP4 agonists. While the EP1- and the EP4-stimulated NO formation was markedly blocked by MK-801, an NMDA receptor antagonist, the EP3-stimulated one was completely inhibited by H-1152, a Rho-kinase inhibitor. Phosphorylation of MARCKS and NADPH-diaphorase activity stimulated by the EP3 agonist were also blocked by H-1152. These results suggest that PGE2 stimulates NO formation by Rho-kinase via EP3, a mechanism(s) different from EP1 and EP4.
Collapse
Affiliation(s)
- Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther 2005; 107:139-54. [PMID: 15993252 DOI: 10.1016/j.pharmthera.2005.02.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2005] [Indexed: 02/02/2023]
Abstract
Despite the diverse chemical structure of aspirin-like drugs, the antinociceptive effect of NSAIDs is mainly due to their common property of inhibiting cyclooxygenases involved in the formation of prostaglandins. Prostaglandins are potent hyperalgesic mediators which modulate multiple sites along the nociceptive pathway and enhance both transduction (peripheral sensitizing effect) and transmission (central sensitizing effect) of nociceptive information. Inhibition of the formation of prostaglandins at peripheral and central sites by NSAIDs thus leads to the normalisation of the increased pain threshold associated with inflammation. The contribution of peripheral and central mechanisms to the overall antinociceptive action of NSAIDs depends on several factors including the location of the targets of drug action, the site of drug delivery and the uptake and distribution to the site of action. The present work reviews the data on the regulation and location of cyclooxygenases at central and peripheral sites of the nociceptive pathway and focuses on the role of COX in the generation and maintenance of pain hypersensitivity. Experimental and clinical evidences are used to evaluate the significance of the peripheral and central antihyperalgesic effects of NSAIDs.
Collapse
Affiliation(s)
- Maria Burian
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann-Wolfgang-Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | |
Collapse
|
39
|
Abstract
Currently, combination chemotherapy represents the standard of care treatment for patients with metastatic colorectal cancer in the United States. Despite recent improvements with the addition of biologic agents, novel treatment approaches are needed to further benefit patients. Cyclooxygenase (COX)-2 inhibition represents one such possibility. COX-2 is highly expressed in colorectal tumor neovasculature and nodal and liver metastases, and expression of COX-2 correlates with tumor stage and patient survival in selected series. COX-2 may be related to colorectal cancer development and propagation through multiple mechanisms, including stimulation of growth, migration, and invasiveness, resistance to apoptosis, and enhancement of angiogenesis. Epidemiologic data suggest nonsteroidal anti-inflammatory drugs (NSAIDs) might prevent development of colorectal cancers, and preclinical data suggest selective COX-2 inhibitors might be additive or synergistic with specific chemotherapeutic agents used in the treatment of colorectal cancer. Despite the lack of published phase I data and the limited, preliminary results of phase II studies, combinations of celecoxib and standard colorectal cancer chemotherapy have entered randomized trials. It is too early to definitively state whether COX-2 inhibition represents a major breakthrough in the treatment of colorectal cancer. Pending the results of ongoing and planned phase III studies, use of COX-2 inhibitors as single agents or incorporation of COX-2 inhibition into combined modality therapy of colorectal cancer should be limited to the setting of clinical trials.
Collapse
Affiliation(s)
- Rachel Sanborn
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
40
|
Tao F, Tao YX, Zhao C, Doré S, Liaw WJ, Raja SN, Johns RA. Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 2004; 128:421-30. [PMID: 15350652 DOI: 10.1016/j.neuroscience.2004.06.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
The present study investigated the role of neuronal nitric oxide synthase (nNOS) in carrageenan-induced inflammatory pain by combining genomic and pharmacological strategies. Intrathecal injection of the nNOS inhibitor 7-nitroindazole dose-dependently inhibited carrageenan-induced thermal hyperalgesia in both early and late phases in wild-type mice. However in nNOS knockout mice, carrageenan-induced thermal hyperalgesia remained intact in the early phase but was reduced in the late phase. Spinal Ca2+ -dependent nitric oxide synthase (NOS) activity in nNOS knockout mice was significantly lower than that in wild-type mice. Following carrageenan injection, although the spinal Ca2+ -dependent NOS activity in both wild-type and knockout mice increased, the enzyme activity in nNOS knockout mice reached a level similar to that in wild-type mice. On the other hand, no significant difference in spinal Ca2+ -independent NOS activity was noted between wild-type and nNOS knockout mice before and after carrageenan injection. Furthermore, intrathecal administration of the endothelial NOS (eNOS) inhibitor L-N5-(1-iminoethyl)-ornithinein nNOS knockout mice inhibited the thermal hyperalgesia in both early and late phases, though this inhibitor had no effect in wild-type mice. Meanwhile, Western blot showed that eNOS expression in the spinal cord of nNOS knockout mice was up-regulated compared with wild-type mice; immunohistochemical staining showed that the spinal eNOS was mainly distributed in superficial laminae of the dorsal horn. Finally, double staining with confocal analysis showed that the enhanced spinal eNOS was expressed in astrocytes, but not in neurons. Our current results indicate that nNOS plays different roles in the two phases of carrageenan-induced inflammatory pain. In this model, enhanced spinal eNOS appears to compensate for the role of nNOS in nNOS knockout mice.
Collapse
Affiliation(s)
- F Tao
- Department of Anesthesiology, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Blalock 1415, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Hsueh SF, Lu CY, Chao CS, Tan PH, Huang YW, Hsieh SW, Hsiao HT, Chung NC, Lin SH, Huang PL, Lyu PC, Yang LC. Nonsteroidal anti-inflammatory drugs increase expression of inducible COX-2 isoform of cyclooxygenase in spinal cord of rats with adjuvant induced inflammation. ACTA ACUST UNITED AC 2004; 125:113-9. [PMID: 15193428 DOI: 10.1016/j.molbrainres.2004.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 11/22/2022]
Abstract
Several lines of evidence have accumulated that release of excitatory amino acids, nitric oxide and prostaglandin E2 (PGE2) play a critical role in the development of peripheral tactile and thermal hypersensitivity in chronic inflammatory pain models. Synthesis of PGE2 is controlled by cyclooxygenase (COX), either the COX-1 or COX-2 isoform. COX-2 plays a central role in the inflammatory reactions. The relationship between central sensitization of a complete Freund's adjuvant (CFA) induced inflammation and expressions of COX-2 were assessed in a rat model of CFA injection induced inflammation. Moreover, the time course of analgesia and spinal COX-2 expression following intrathecal (IT) injection with a nonspecific COX inhibitor (ketorolac) and COX-2 inhibitor (celecoxib) were determined using Western blot and immunohistochemistry. COX-2 protein was slightly increased in the lumbosacral spinal cord at 24 h following subcutaneous injection of CFA in the plantar surface of the left hindpaw (p > 0.05). COX-1 was not detected in normal and CFA injection rats. Surprisingly, IT ketorolac or celecoxib significantly increased spinal COX-2 levels at 1 h post-IT injection (p < 0.05) both in inflamed and non-inflamed rats. Then, spinal COX-2 levels declined at 3 and 6 h post-IT injection. These results provide strong in vivo evidence that COX-2 activity but not level may play a central role in the Freund's adjuvant-induced inflammation. However, spinal COX-2 level was upregulated following IT ketorolac and celecoxib injection. These data implies that suppression of PGE2 activity may induce the expression of spinal COX-2 in Freund's adjuvant-induced pain model. Our study concludes that IT administration of COX-2 inhibitor or nonspecific COX inhibitor is associated with significant short-term increase in spinal COX-2 expression.
Collapse
Affiliation(s)
- Sheng-Fen Hsueh
- Department of life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arend A, Masso R, Masso M, Selstam G. Electron microscope immunocytochemical localization of cyclooxygenase-1 and -2 in pseudopregnant rat corpus luteum during luteolysis. Prostaglandins Other Lipid Mediat 2004; 74:1-10. [PMID: 15560112 DOI: 10.1016/j.prostaglandins.2004.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostaglandins converted from arachidonic acid by cyclooxygenases play an important regulatory role in regression of the corpus luteum. To reveal luteal distribution of cyclooxygenase isoforms during luteolysis, an electron microscope immunocytochemical study was performed. Cyclooxygenase-1 and -2 were found both in luteal steroid-producing and interstitial cells on days 13, 15 and 18 of the adult pseudopregnant rat. Cyclooxygenase-2 immunolabelling was predominantly seen in non-luteal cells. The two enzymes were localized in similar fashion to the plasma membrane, rough and smooth endoplasmic reticulum, lipid bodies and mitochondria, but differently in the nuclear compartment. Cyclooxygenase-1 labelling was found only in the perinuclear region, while cyclooxygenase-2 was localized to the nuclear envelope, region of condensed heterochromatin as well as at the perimeter of the heterochromatin. Nuclear residence may indicate additional roles for cyclooxygenase-2 in regulating gene expression. Identification of both enzymes on lipid bodies suggests that these inclusions may be involved in luteal prostanoid production.
Collapse
Affiliation(s)
- Andres Arend
- Department of Anatomy, University of Tartu, Biomedicum, Ravila 19, Tartu 50411, Estonia.
| | | | | | | |
Collapse
|
43
|
Harvey RJ, Depner UB, Wässle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schütz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Müller U. GlyR 3: An Essential Target for Spinal PGE2-Mediated Inflammatory Pain Sensitization. Science 2004; 304:884-7. [PMID: 15131310 DOI: 10.1126/science.1094925] [Citation(s) in RCA: 467] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prostaglandin E2 (PGE2) is a crucial mediator of inflammatory pain sensitization. Here, we demonstrate that inhibition of a specific glycine receptor subtype (GlyR alpha3) by PGE2-induced receptor phosphorylation underlies central inflammatory pain sensitization. We show that GlyR alpha3 is distinctly expressed in superficial layers of the spinal cord dorsal horn. Mice deficient in GlyR alpha3 not only lack the inhibition of glycinergic neurotransmission by PGE2 seen in wild-type mice but also show a reduction in pain sensitization induced by spinal PGE2 injection or peripheral inflammation. Thus, GlyR alpha3 may provide a previously unrecognized molecular target in pain therapy.
Collapse
Affiliation(s)
- Robert J Harvey
- Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koppert W, Wehrfritz A, Körber N, Sittl R, Albrecht S, Schüttler J, Schmelz M. The cyclooxygenase isozyme inhibitors parecoxib and paracetamol reduce central hyperalgesia in humans. Pain 2004; 108:148-53. [PMID: 15109518 DOI: 10.1016/j.pain.2003.12.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/10/2003] [Accepted: 12/15/2003] [Indexed: 11/15/2022]
Abstract
Non-steroidal antiinflammatory drugs (NSAIDs) are known to induce analgesia mainly via inhibition of cyclooxygenase (COX). Although the inhibition of COX in the periphery is commonly accepted as the primary mechanism, experimental and clinical data suggest a potential role for spinal COX-inhibition to produce antinociception and reduce hypersensitivity. We used an experimental model of electrically evoked pain and hyperalgesia in human skin to determine the time course of central analgesic and antihyperalgesic effects of intravenous parecoxib and paracetamol (acetaminophen). Fourteen subjects were enrolled in this randomized, double blind, and placebo controlled cross-over study. In three sessions, separated by 2-week wash-out periods, the subjects received intravenous infusions of 40 mg parecoxib, 1000 mg paracetamol, or placebo. The magnitude of pain and areas of pinprick-hyperalgesia and touch evoked allodynia were repeatedly assessed before, and for 150 min after the infusion. While pain ratings were not affected, parecoxib as well as paracetamol significantly reduced the areas of secondary hyperalgesia to pinprick and touch. In conclusion, our results provide clear experimental evidence for the existence of central antihyperalgesia induced by intravenous infusion of two COX inhibitors, parecoxib and paracetamol. Since the electrical current directly stimulated the axons, peripheral effects of the COX inhibitors on nociceptive nerve endings cannot account for the reduction of hyperalgesia. Thus, besides its well-known effects on inflamed peripheral tissues, inhibition of central COX provides an important mechanism of NSAID-mediated antihyperalgesia in humans.
Collapse
Affiliation(s)
- Wolfgang Koppert
- Department of Anesthesiology, University Hospital Erlangen, Krankenhausstrasse 12, D-91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dreyer J, Hirlinger D, Müller-Esterl W, Oess S, Kuner R. Spinal upregulation of the nitric oxide synthase-interacting protein NOSIP in a rat model of inflammatory pain. Neurosci Lett 2003; 350:13-6. [PMID: 12962906 DOI: 10.1016/s0304-3940(03)00771-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide and nitric oxide synthases are key players in synaptic plasticity events in the spinal cord, which underly the development of chronic pain states. To date, little is known about the molecular mechanisms regulating the activity of nitric oxide synthases in nociceptive systems. The present study was aimed at the immunohistochemical determination of the expression of a nitric oxide synthase-interacting protein (NOSIP) in the rat spinal cord and dorsal root ganglia and studying its regulation in states of nociceptive hypersensitivity in a rat model of post-inflammatory pain. NOSIP is predominantly expressed in nociceptive primary neurons and in neurons of the spinal dorsal horn and the number of NOSIP-positive spinal neurons increases significantly following induction of unilateral intraplantar injection of complete Freund's adjuvant. Thus, NOSIP may modulate nitric oxide homeostasis in physiological and pathological pain conditions.
Collapse
Affiliation(s)
- Jacqueline Dreyer
- Department of Molecular Pharmacology, Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Maihöfner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundörfer B, Heuss D. Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci 2003; 18:1527-34. [PMID: 14511332 DOI: 10.1046/j.1460-9568.2003.02879.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostaglandins (PGs) are critical mediators of physiologic processes and inflammation. They are produced by two different isoforms of the cyclooxygenase (COX) enzyme, namely COX-1 and COX-2. In particular COX-2 was demonstrated to be crucial for PG-synthesis in inflammation. Recently, inhibition of COX-2 was shown to prevent the loss of motor neurons in a model of amyotrophic lateral sclerosis (ALS). Furthermore, spinal COX-2 expression was shown to be increased in transgenic mice that produce an ALS-like syndrome. Therefore, we investigated the expression of COX-1 and COX-2 in the spinal cord of seven human sporadic ALS patients by means of immunohistochemistry. Specimens from seven patients without any neurological disease served as controls. COX-2 expression was dramatically increased in the spinal cord of patients with ALS. Its protein was found in motor neurons, interneurons and glial cells. Statistical analysis showed a significantly higher expression of COX-2 in ALS for both neurons and glia. In contrast, COX-1 expression was predominantly confined to microglia and no apparent difference was detected between controls and ALS. In addition, we studied the concentration of prostaglandin E2 (PG E2) as a marker for COX activity in the cerebrospinal fluid of nine patients diagnosed for ALS and compared the results with those from nine patients without motor neuron disease. PG E2 levels were markedly increased in ALS cases (45.8 +/- 35.1 pg/mL) compared to the non-ALS specimens (15.8 +/- 3.7 pg/mL). The results of our study corroborate a potential role for COX-2 in the pathogenesis of motor neuron death in ALS. Selective COX-2 inhibition might therefore offer a new possibility in the treatment of human ALS. However, to determine the exact role of COX-2 in human ALS will require further research.
Collapse
Affiliation(s)
- Christian Maihöfner
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Zhu X, Conklin D, Eisenach JC. Cyclooxygenase-1 in the spinal cord plays an important role in postoperative pain. Pain 2003; 104:15-23. [PMID: 12855310 DOI: 10.1016/s0304-3959(02)00465-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) activity in the spinal cord plays a key role in sensitization to sensory stimuli during acute inflammation. In contrast, intrathecal administration of COX-2 specific inhibitors has minimal analgesic effects in an incisional model of postoperative pain. We investigated the role of COX isoforms in this model by examining the expression of COX-1 and the effect of intrathecal COX inhibitors. A 1cm longitudinal incision was made through skin, fascia and muscles of the plantar aspect of the left paw in male rats, and withdrawal threshold to von Frey filaments measured. Rats were perfused at 1, 2, 3, 5, and 7 days after incision, and COX-1 immunohistochemistry was performed on L3 to S2 spinal cord and gracile nucleus sections. Other rats received intrathecally the COX-1 preferring inhibitor, ketorolac, the specific COX-1 inhibitor, SC-560, the COX-2 inhibitor, NS-398 or vehicle 1 day after surgery. Withdrawal threshold was measured at intervals up to 5 days later. COX-1 immunoreactivity increased in glia in the ipsilateral L4-L6 spinal dorsal horn and ipsilateral gracile nucleus after incision. Mechanical allodynia peaked on postoperative day 1, and COX-1 immunoreactivity increased on day 1, peaked on day 2, and declined thereafter. Ketorolac and SC-560 dose-dependently increased withdrawal threshold in this model, but NS-398 had no effect. These results suggest that COX-1 plays an important role in spinal cord pain processing and sensitization after surgery. Increased COX-1 activity could precede the up-regulation of COX-1 protein, and spinally administered specific COX-1 inhibitors may be useful to treat postoperative pain.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Program of Neuroscience, Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
48
|
Abstract
Traumatic CNS injury is one of the most important health issues in our society and is a risk to all athletes, both in competitive and recreational sports. Our understanding of the pathophysiology has improved tremendously in the last 20 years. This progress has led to the identification of several possible treatments for improving outcome following spinal cord injury and traumatic brain injury. As no panacea exists, improvements in experimental models have empowered researchers in their search for novel therapeutic strategies.
Collapse
Affiliation(s)
- David O Okonkwo
- Department of Neuroscience, University of Virginia, PO Box 800212, Charlottesville, VA 22908-0212, USA.
| | | |
Collapse
|
49
|
Charalambous MP, Maihöfner C, Bhambra U, Lightfoot T, Gooderham NJ. Upregulation of cyclooxygenase-2 is accompanied by increased expression of nuclear factor-kappa B and I kappa B kinase-alpha in human colorectal cancer epithelial cells. Br J Cancer 2003; 88:1598-604. [PMID: 12771929 PMCID: PMC2377108 DOI: 10.1038/sj.bjc.6600927] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is selectively overexpressed in colorectal tumours. The mechanism of COX-2 induction is not fully understood, but requires de novo messenger RNA and protein synthesis, indicating regulation at the transcriptional level. Sequence analysis of the 5'-flanking region of the COX-2 gene shows two nuclear factor-kappa B (NF-kappa B) sites. Inhibition of this protein in model cell culture systems attenuates COX-2 expression and implies that NF-kappa B plays an important role in COX-2 induction. We measured COX-2, NF-kappa B and I kappa B kinase alpha (IKK alpha) protein expression in matched colonic biopsy samples comprising both nontumour and adjacent tumour tissue from 32 colorectal cancer patients using immunohistochemistry. There was none or very little expression of COX-2, NF-kappa B and IKK alpha in non-neoplastic colon epithelial cells, while the expression of all three of these proteins was significantly increased (P<0.05, Wilcoxon's signed rank test) in adjacent cancerous cells. Moreover, all three proteins were found to be coexpressed in the neoplastic epithelium, with the expression of COX-2 and NF-kappa B highly correlated (Pearson's correlation, P<0.005). There was no apparent correlation between enhanced COX-2, NF-kappa B or IKK alpha expression and tumour Dukes' stages. Our results are compatible with the hypothesis that IKK alpha and NF-kappa B are involved in COX-2 induction in these tumours and the lack of association between COX-2 expression and severity of disease as measured by Dukes' stage is consistent with the proposal that COX-2 expression is an early postinitiation event.
Collapse
Affiliation(s)
- M P Charalambous
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | - C Maihöfner
- Department of Neurology, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - U Bhambra
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | - T Lightfoot
- JBUEC, Department of Biology, University of York, York, Y01 5DD, UK
| | - N J Gooderham
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
- Molecular Toxicology, Faculty of Medicine, Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK. E-mail:
| | | |
Collapse
|
50
|
Mabuchi T, Matsumura S, Okuda-Ashitaka E, Kitano T, Kojima H, Nagano T, Minami T, Ito S. Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production. Eur J Neurosci 2003; 17:1384-92. [PMID: 12713641 DOI: 10.1046/j.1460-9568.2003.02575.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the spinal level, the involvement of nociceptin/orphanin FQ (N/OFQ) in pain transmission is controversial. JTC-801, a selective nonpeptidergic N/OFQ antagonist, is a good tool to examine the involvement of endogenous N/OFQ in pathophysiological conditions. In the present study, we studied the effect of JTC-801 on neuropathic pain induced by L5 spinal nerve transection in mice. Thermal hyperalgesia was evident on day 3 postsurgery and maintained during the 10-day experimental period. Oral administration of JTC-801 relieved the thermal hyperalgesia in neuropathic mice in a dose-dependent manner. Following L5 nerve transection, the increase in nitric oxide synthase (NOS) activity was observed in the superficial layer of dorsal horn and around the central canal in the spinal cord by NADPH diaphorase histochemistry. Using the novel fluorescent nitric oxide (NO) detection dye diaminofluorescein-FM, we confirmed that NO production increased in the spinal slice prepared from neuropathic mice and that the increase was more prominent in the ipsilateral side to the nerve transection than in the contralateral side. These increases in NOS activity and NO production in neuropathic mice were blocked by pretreatment of oral JTC-801. Although intraperitoneal injection of the nonselective NOS inhibitor NG.-nitro-L-arginine methyl ester transiently, but significantly, attenuated neuropathic hyperalgesia, inducible NOS-deficient mice showed neuropathic pain after L5 spinal nerve transection. These results suggest that N/OFQ is involved in the maintenance of neuropathic pain and that the analgesic effect of JTC-801 on neuropathic pain is mediated by inhibition of NO production by neuronal NOS.
Collapse
Affiliation(s)
- Tamaki Mabuchi
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|