1
|
Stiedl O, Kuteeva E, Hökfelt T, Ögren SO. Injection of galanin into the dorsal hippocampus impairs emotional memory independent of 5-HT 1A receptor activation. Behav Brain Res 2021; 405:113178. [PMID: 33607166 DOI: 10.1016/j.bbr.2021.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
There is evidence that interaction between the neuropeptide galanin and the 5-HT1A receptor represents an integrative mechanism in the regulation of serotonergic neurotransmission. Thus, in rats intracerebroventricular (i.c.v.) galanin did not impair retention in the passive avoidance (PA) test 24 h after training, but attenuated the retention deficit caused by subcutaneous (s.c.) administration of the 5-HT1A receptor agonist 8-OH-DPAT. This impairment has been linked to postsynaptic 5-HT1A receptor activation. To confirm these results in mice, galanin was infused i.c.v. (1 nmol/mouse) in C57BL/6/Bkl mice 30 min prior to training followed by s.c. injection (0.3 mg/kg) of 8-OH-DPAT or saline 15 min before PA training. In line with previous results, i.c.v. galanin significantly attenuated the PA impairment caused by 5-HT1A receptor activation in mice. To study if the galanin 5-HT1A receptor interaction involved the dorsal hippocampus, galanin (1 nmol/mouse) was directly infused into this brain region alone or in combination with s.c. 8-OH-DPAT. However, unlike i.c.v. galanin, galanin infusion into the dorsal hippocampus alone impaired PA retention and failed to attenuate the 8-OH-DPAT-mediated PA impairment. These results indicate that the ability of i.c.v. galanin to modify 5-HT1A receptor activation is not directly mediated via receptor interactions in the dorsal hippocampus. Instead, the galanin-mediated PA impairment suggests an important inhibitory role of galanin receptors in the dorsal hippocampus for acquisition (encoding) and/or consolidation of emotional memory. In addition, the interaction between galanin and 5-HT1A receptors probably involves a wide serotonergic network that is important for the integration of emotional and cognitive behaviors.
Collapse
Affiliation(s)
- Oliver Stiedl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Health, Safety & Environment, VU University, Amsterdam, the Netherlands.
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Atlas Antibodies, Bromma, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
3
|
Abstract
Since the neuropeptide galanin’s discovery in 1983, information has accumulated that implicates it in a wide range of functions, including pain sensation, stress responses, appetite regulation, and learning and memory. This article reviews the evidence for specific functions of galanin in cognitive processes. Consistencies as well as gaps in the literature are organized around basic questions of methodology and theory. This review shows that although regularities are evident in the observed behavioral effects of galanin across several methods for measuring learning and memory, generalization from these findings is tempered with concerns about confounds and a restricted range of testing conditions. Furthermore, it is revealed that many noncognitive behavioral constructs that are relevant for assessing potential roles for galanin in cognition have not been thoroughly examined. The review concludes by laying out how future theory and experimental work can overcome these concerns and confidently define the nature of the association of galanin with particular cognitive constructs.
Collapse
|
4
|
Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky ST, Ginsberg SD, Ikonomovic MD, Scheff SW, Binder LI. Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience 2015; 309:51-67. [PMID: 25772787 PMCID: PMC4567973 DOI: 10.1016/j.neuroscience.2015.03.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
Neuroplasticity involves molecular and structural changes in central nervous system (CNS) throughout life. The concept of neural organization allows for remodeling as a compensatory mechanism to the early pathobiology of Alzheimer's disease (AD) in an attempt to maintain brain function and cognition during the onset of dementia. The hippocampus, a crucial component of the medial temporal lobe memory circuit, is affected early in AD and displays synaptic and intraneuronal molecular remodeling against a pathological background of extracellular amyloid-beta (Aβ) deposition and intracellular neurofibrillary tangle (NFT) formation in the early stages of AD. Here we discuss human clinical pathological findings supporting the concept that the hippocampus is capable of neural plasticity during mild cognitive impairment (MCI), a prodromal stage of AD and early stage AD.
Collapse
Affiliation(s)
- E J Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States.
| | - L Mahady
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - D Waters
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - S E Counts
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - S E Perez
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - S T DeKosky
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - S D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Physiology & Neuroscience, New York University Langone Medical Center, Orangeburg, NY, United States
| | - M D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - S W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - L I Binder
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
5
|
Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci U S A 2014; 111:E1666-73. [PMID: 24706871 DOI: 10.1073/pnas.1403649111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression.
Collapse
|
6
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
7
|
|
8
|
Counts SE, Perez SE, Ginsberg SD, Mufson EJ. Neuroprotective role for galanin in Alzheimer's disease. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:143-62. [PMID: 21299067 DOI: 10.1007/978-3-0346-0228-0_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Galanin (GAL) and GAL receptors (GALR) are overexpressed in degenerating brain regions associated with cognitive decline in Alzheimer's disease (AD). The functional consequences of GAL plasticity in AD are unclear. GAL inhibits cholinergic transmission in the hippocampus and impairs spatial memory in rodent models, suggesting that GAL overexpression exacerbates cognitive impairment in AD. By contrast, gene expression profiling of individual cholinergic basal forebrain (CBF) neurons aspirated from AD tissue revealed that GAL hyperinnervation positively regulates mRNAs that promote CBF neuronal function and survival. GAL also exerts neuroprotective effects in rodent models of neurotoxicity. These data support the growing concept that GAL overexpression preserves CBF neuron function, which may in turn delay the onset of symptoms of AD. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands in the treatment of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
9
|
Picciotto MR, Brabant C, Einstein EB, Kamens HM, Neugebauer NM. Effects of galanin on monoaminergic systems and HPA axis: Potential mechanisms underlying the effects of galanin on addiction- and stress-related behaviors. Brain Res 2009; 1314:206-18. [PMID: 19699187 DOI: 10.1016/j.brainres.2009.08.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/06/2009] [Accepted: 08/09/2009] [Indexed: 12/20/2022]
Abstract
Like a number of neuropeptides, galanin can alter neural activity in brain areas that are important for both stress-related behaviors and responses to drugs of abuse. Accordingly, drugs that target galanin receptors can alter behavioral responses to drugs of abuse and can modulate stress-related behaviors. Stress and drug-related behaviors are interrelated: stress can promote drug-seeking, and drug exposure and withdrawal can increase activity in brain circuits involved in the stress response. We review here what is known about the ability of galanin and galanin receptors to alter neuronal activity, and we discuss potential mechanisms that may underlie the effects of galanin on behaviors involved in responses to stress and addictive drugs. Understanding the mechanisms underlying galanin's effects on neuronal function in brain regions related to stress and addiction may be useful in developing novel therapeutics for the treatment of stress- and addiction-related disorders.
Collapse
Affiliation(s)
- Marina R Picciotto
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
10
|
Kinney JW, Sanchez-Alavez M, Barr AM, Criado JR, Crawley JN, Behrens MM, Henriksen SJ, Bartfai T. Impairment of memory consolidation by galanin correlates with in vivo inhibition of both LTP and CREB phosphorylation. Neurobiol Learn Mem 2009; 92:429-38. [PMID: 19531380 DOI: 10.1016/j.nlm.2009.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/19/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Changes in the state of CREB phosphorylation and in LTP in the hippocampus have been associated with learning and memory. Here we show that galanin, the neuropeptide released in the hippocampal formation from cholinergic and noradrenergic fibers, that has been shown to produce impairments in memory consolidation in the Morris water maze task inhibits both LTP and CREB phosphorylation in the rat hippocampus in vivo. While there are many transmitters regulating CREB phosphorylation none has been shown to suppress behaviorally-induced hippocampal CREB phosphorylation as potently as galanin. The in vivo inhibition of dentate gyrus-LTP and of CREB phosphorylation by the agonist occupancy of GalR1 and GalR2-type galanin receptors provides strong in vivo cellular and molecular correlates to galanin-induced learning deficits and designates galanin as a major regulator of the memory consolidation process.
Collapse
Affiliation(s)
- Jefferson W Kinney
- Department of Psychology, University of Nevada, Las Vegas, NV 89154-5030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
McCown TJ. Adeno-associated virus vector-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity. Neurotherapeutics 2009; 6:307-11. [PMID: 19332324 PMCID: PMC3552295 DOI: 10.1016/j.nurt.2009.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/13/2009] [Indexed: 11/16/2022] Open
Abstract
Theoretically, gene therapy techniques offer an attractive alternative treatment option for intractable, focal epilepsies. Although logical gene therapy targets include excitatory and inhibitory receptors, variable viral vector tropism interjects an uncertainty as to the direction of change, seizure suppression, or seizure sensitization. To circumvent this therapeutic liability, adeno-associated virus (AAV) vectors have been constructed where the gene product is constitutively secreted from the transduced cell. Using AAV vectors, the fibronectin secretory signal sequence (FIB) was placed in front of the coding sequence for green fluorescent protein or the active portion of the neuroactive peptide galanin (GAL). Subsequent studies showed that these vectors supported expression and constitutive secretion of these gene products from transfected cells in vitro. More importantly, upon transduction in vivo, AAV-FIB-GAL vectors significantly attenuated focal seizure sensitivity, and this seizure attenuation could be controlled in vivo by using a tetracycline-regulated promoter. The expression and constitutive secretion of green fluorescent protein, or the expression of GAL alone, exerted no effect on focal seizure sensitivity. Moreover, unilateral infusion of the AAV-FIB-GAL vectors into the hippocampus prevented kainic acid-induced hilar cell death. With regard to limbic seizures, bilateral infusion of AAV-FIB-GAL vectors into the piriform cortex prevented both behavioral and localized electrographic seizure activity after the peripheral administration of kainic acid. Also, when rats were electrically kindled to class V seizure activity, subsequent infusion of AAV-FIB-GAL proved capable of significantly elevating the seizure initiation threshold. Thus, these studies clearly demonstrate the anti-seizure effectiveness of AAV vector-mediated expression and constitutive secretion of galanin.
Collapse
Affiliation(s)
- Thomas J McCown
- UNC Gene Therapy Center, Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
12
|
Ito M. Functional roles of neuropeptides in cerebellar circuits. Neuroscience 2009; 162:666-72. [PMID: 19361475 DOI: 10.1016/j.neuroscience.2009.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 01/09/2009] [Indexed: 11/16/2022]
Abstract
Whereas the cerebellum contains 22 different types of neuropeptides as presently known, their expression is generally weak and diffusely dispersed in cerebellar tissues, which often makes their functional significance doubtful. Nevertheless, our knowledge about certain neuropeptides has advanced to the extent that we can figure out their unique functional roles in cerebellar circuits. Throughout the cerebellum, CRF is contained in climbing fibers and its spontaneous release is required for the induction of cerebellar long-term depression (LTD), a cellular mechanism of motor learning. Corticotropin-releasing factor (CRF) is also expressed in the paraventricular nucleus-pituitary system and amygdala-lower brainstem system, both of which are involved in coping responses to stress. In view that motor learning requires stressful efforts for correcting errors in repeated trials, CRF in climbing fibers may imply that the olivocerebellar system is part of a large CRF-operated functional system that acts to cope with various stressors. Orexin, on the other hand, is contained in beaded fibers, which, originating from the hypothalamus, project to various brainstem nuclei and also to the cerebellum, exclusively the flocculus. Currently available evidence suggests that, in fight-or-flight situations, orexinergic neurons switch the state of cardiovascular control systems including the flocculus to secure blood supply to working muscles. Considerable knowledge has also been accumulated about angiotensin II, galanin, and cerebellin, but there is still a gap in defining their unique functional roles in cerebellar circuits.
Collapse
Affiliation(s)
- M Ito
- RIKEN, Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
13
|
Abstract
Galanin (GAL) and GAL receptors (GALRs) are overexpressed in degenerating brain regions associated with cognitive decline in Alzheimer's disease (AD). The functional consequences of GAL plasticity in AD are unclear. GAL inhibits cholinergic transmission in the hippocampus and impairs spatial memory in rodent models, suggesting GAL overexpression exacerbates cognitive impairment in AD. By contrast, gene expression profiling of individual cholinergic basal forebrain (CBF) neurons aspirated from AD tissue revealed that GAL hyperinnervation positively regulates mRNAs that promote CBF neuronal function and survival. GAL also exerts neuroprotective effects in rodent models of neurotoxicity. These data support the growing concept that GAL overexpression preserves CBF neuron function which in turn may slow the onset of AD symptoms. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands for the treatment of AD.
Collapse
Affiliation(s)
- S. E. Counts
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| | - S. E. Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| | - E. J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street Suite 300, Chicago, Ilinois 60612 USA
| |
Collapse
|
14
|
The role of galanin receptors in anticonvulsant effects of low-frequency stimulation in perforant path–kindled rats. Neuroscience 2007; 150:396-403. [DOI: 10.1016/j.neuroscience.2007.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/20/2007] [Accepted: 09/11/2007] [Indexed: 11/24/2022]
|
15
|
McColl CD, Jacoby AS, Shine J, Iismaa TP, Bekkers JM. Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology 2006; 50:209-18. [PMID: 16243364 DOI: 10.1016/j.neuropharm.2005.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 07/16/2005] [Accepted: 09/02/2005] [Indexed: 11/19/2022]
Abstract
Galanin is a widely-distributed neuropeptide that acts as an endogenous anticonvulsant. We have recently generated a galanin receptor type 1 knockout mouse (Galr1(-/-)) that develops spontaneous seizures. Our aim here was to characterize the seizures by making electroencephalogram (EEG) recordings from this animal, and also to elucidate the cellular basis of its epileptic phenotype by studying the neurophysiology of CA1 pyramidal neurons in acute hippocampal slices. EEGs showed that major seizures had a partial onset with secondary generalization, and that paroxysms of spike-and-slow waves occurred and were associated with hypoactivity. The interictal EEG was also abnormal, with a marked excess of spike-and-slow waves. Slice experiments showed that resting potential, input resistance, intrinsic excitability, paired-pulse facilitation of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs), stimulus--response plots for EPSCs, and several properties of spontaneous miniature EPSCs and IPSCs were all unchanged in the mutant mouse compared with wildtype. However, the frequency of miniature IPSCs was significantly reduced in the mutants. These results suggest that impaired synaptic inhibition in the hippocampus may contribute to the local onset of seizures in the Galr1(-/-) mouse.
Collapse
Affiliation(s)
- Craig D McColl
- Division of Neuroscience, John Curtin School of Medical Research, The Australian National University, Building 54, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
16
|
Pirondi S, Fernandez M, Schmidt R, Hökfelt T, Giardino L, Calzà L. The galanin-R2 agonist AR-M1896 reduces glutamate toxicity in primary neural hippocampal cells. J Neurochem 2005; 95:821-33. [PMID: 16248891 DOI: 10.1111/j.1471-4159.2005.03437.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Galanin is a neuropeptide involved in a variety of biological functions, including having a strong anticonvulsant activity. To assess a possible role of galanin in modulation of glutamatergic synapses and excitotoxicity, we studied effects of a galanin receptor 2(3) agonist (AR-M1896) on several molecular events induced by glutamate administration in primary neural hippocampal cells. Exposure of cells, after 5 days in vitro, to glutamate 0.5 mM for 10 min caused morphological alterations, including disaggregation of beta-tubulin and MAP-2 cytoskeletal protein assembly, loss of neurites and cell shrinkage. When present in culture medium together with glutamate, 1 and 10 nM of AR-M1896 reduced these alterations. Moreover, AR-M1896 counteracted glutamate-induced c-fos mRNA and c-Fos protein up-regulation after 30-150 min, and 24 h, respectively. Massive nuclear alterations (Hoechst 33258 staining), observed 24 h after glutamate exposure, were also antagonized by AR-M1896 (0.1-100 nM) in a dose-dependent manner. These findings indicate that galanin, probably mainly through its type 2 receptor, interferes with events associated with glutamate toxicity.
Collapse
Affiliation(s)
- Stefania Pirondi
- Department of Veterinary Morphophysiology and Animal Production, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T. Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3',5'-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience 2005; 133:591-604. [PMID: 15885916 DOI: 10.1016/j.neuroscience.2005.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/16/2005] [Accepted: 02/20/2005] [Indexed: 11/25/2022]
Abstract
The neuropeptide galanin was shown to impair cognitive performance and reduce hippocampal CA1 long-term potentiation (LTP) in rodents. However, the contribution of the two main galanin receptors; GalR1 and GalR2, present in the hippocampus to these effects is not known. In the present study, we determined the protein expression levels of GalR1 and GalR2 in the mouse dentate gyrus (DG) and used galanin (2-11), a recently introduced GalR2 agonist, and GalR1 knockout mice to examine the contribution of GalR1 and GalR2 to the modulation of LTP and 3',5'-cyclic AMP response element-binding protein (CREB)-dependent signaling cascades. In the DG, 57+/-5% of the galanin binding sites were GalR2, and the remaining population corresponded to GalR1. In hippocampal slices, galanin (2-11) fully blocked the induction of DG LTP, whereas galanin (1-29), a high affinity agonist for both GalR1 and GalR2, strongly but not fully attenuated the late phase of LTP by 80+/-1.5%. Application of galanin (1-29) or galanin (2-11) after LTP induction caused a transient reduction in the maintenance phase of LTP, with the larger effect displayed by superfusion of galanin (2-11). The induction and maintenance of DG LTP was not altered in the GalR1 knockout mice. Superfusion of galanin (1-29) or galanin (2-11) blocked the LTP induction to the same degree indicating a role for GalR2 in the induction phase of DG LTP. Furthermore, we analyzed the effects of GalR1 and/or GalR2 activation on DG LTP-induced CREB phosphorylation, associated with the late transcriptional effects of LTP. In the lateral part of the granule cell layer, high-frequency trains stimulation caused a significant increase in the level of CREB phosphorylation, which was significantly reduced by application of either galanin (1-29) or galanin (2-11), indicating that both GalR1 and/or GalR2 can mediate some of their effects on LTP through inhibition of CREB-related signaling cascades.
Collapse
MESH Headings
- Animals
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dentate Gyrus/metabolism
- Electric Stimulation/methods
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Excitatory Postsynaptic Potentials/radiation effects
- Fluorescent Antibody Technique/methods
- Galanin/chemistry
- Galanin/pharmacokinetics
- Galanin/pharmacology
- In Vitro Techniques
- Iodine Isotopes/pharmacokinetics
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Long-Term Potentiation/radiation effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide Fragments/pharmacology
- Phosphorylation
- Protein Binding
- Receptor, Galanin, Type 1/deficiency
- Receptor, Galanin, Type 1/physiology
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/physiology
- Time Factors
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Department of Neuropharmacology, The Harold L. Dorris Neurological Research Center, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
18
|
Badie-Mahdavi H, Behrens MM, Rebek J, Bartfai T. Effect of galnon on induction of long-term potentiation in dentate gyrus of C57BL/6 mice. Neuropeptides 2005; 39:249-51. [PMID: 15944018 DOI: 10.1016/j.npep.2004.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The impairment of cognitive performance by galanin administration in rodents indicates a possible modulating effect of this neuropeptide on long-term potentiation (LTP) induction in the hippocampal formation. Galnon is a non-peptide, systemically active galanin receptor agonist which has been tested in feeding, seizure and forced swim task in in vivo rodent experimental models. Similarly to galanin (1-29) (i.c.v.), galnon (i.p.) has exhibited anticonvulsant effects in rats. We have investigated the effect of galnon on the synaptic transmission and plasticity in hippocampal dentate gyrus (DG) of C57Bl/6 mice and compared the galnon effects to the effect of galanin (1-29) and galmic, a non-peptide galanin receptor agonist. Similarly to galanin (1-29) and galmic, superfusion of galnon did not alter the input-output responses in DG. Administration of galnon (1 microM) significantly attenuated the LTP induction by 85.5 +/- 1% by 51 min after high frequency trains stimulation. This result was very similar to the effect of galanin (1-29) and galmic, which caused an 80 +/- 1.5% and 94 +/- 2% reduction in the level of field potentiation, respectively. The PPF responses, however, were not altered due to galnon superfusion which is in contrast to the effect of galanin (1-29) or galmic. In summary, these data indicate that the systemically active, non-peptide galanin receptor agonist, galnon can exert similar effects to galanin (1-29) in attenuation of DG LTP in mice.
Collapse
Affiliation(s)
- H Badie-Mahdavi
- The Scripps Research Institute, Harold L. Dorris Neurological Research Institute, Department of Neuropharmacology, 10550 North Torrey Pines Road, SR307, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
19
|
Zheng K, Kuteeva E, Xia S, Bartfai T, Hökfelt T, Xu ZQD. Age-related impairments of synaptic plasticity in the lateral perforant path input to the dentate gyrus of galanin overexpressing mice. Neuropeptides 2005; 39:259-67. [PMID: 15944020 DOI: 10.1016/j.npep.2005.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 11/17/2022]
Abstract
In the present study, electrophysiological recordings were made from hippocampal slices obtained from mice overexpressing galanin under the promoter for the platelet-derived growth factor-B (GalOE mice). In these mice, a particularly strong galanin expression is seen in the granule cell layer/mossy fibers. Paired-pulse facilitation (PPF) of excitatory postsynaptic field potentials (fEPSPs) at the lateral perforant path (LPP)-dentate gyrus synapses was elicited in the dentate gyrus after stimulation with different interpulse intervals. Slices from young adult wild-type (WT) animals showed significant PPF of the 2nd EPSP evoked with paired-pulse stimuli, while PPF was reduced in slices from young adult GalOE mice, as well as aged WT mice, but were not observed at all in slices from aged GalOE animals. Application of the putative galanin antagonist M35 increased PPF in slices from aged WT mice as well as from adult and aged GalOE mice, but had no effect in slices taken from young adult WT mice. These data indicate that galanin is involved in hippocampal synaptic plasticity, in particular in age-related reduction of synaptic plasticity in the LPP input to the dentate gyrus. Galaninergic mechanisms may therefore represent therapeutic targets for treatment of age-related memory deficits and Alzheimer's disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Neuroscience, Karolinska Institutet, S-171 71, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Xu ZQD, Zheng K, Hökfelt T. Electrophysiological studies on galanin effects in brain--progress during the last six years. Neuropeptides 2005; 39:269-75. [PMID: 15944021 DOI: 10.1016/j.npep.2005.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/27/2022]
Abstract
The effects of galanin and galanin fragments have been studied on neurons in various brain regions of rodents using electrophysiological techniques. Here, we mainly review reports published during the last six years, that is after the second galanin symposium in 1998. These papers deal with locus coeruleus (LC), the hippocampal formation (HF), hypothalamus, the nucleus of the diagonal band of Broca (DBB) and the dorsal vagal complex (DVC). In most cases galanin has an inhibitory effect by increasing a potassium conductance or reducing a calcium conductance. In LC, beside a direct inhibitory effect, galanin exerts an indirect effect enhancing the noradrenaline-induced hyperpolarization. In the HF, galanin (1-15), but not galanin (1-29), induces hyperpolarization in CA3 pyramidal neurons. Inhibitory effects of galanin on several forms of synaptic plasticity including long-term potentiation, frequency facilitation and paired-pulse facilitation have also been demonstrated in normal and transgenic animals. In the hypothalamic arcuate nucleus galanin has a presynaptic action inhibiting glutamate release, as well as a postsynaptic effect via the galanin R1 receptor. In the DVC, galanin inhibits dorsal vagal motor neurons projecting to the stomach by activation of a postsynaptic galanin receptor. However, excitatory effects of galanin have also been reported in several regions, such as the DBB nucleus, where galanin increases excitability by decreasing a K+ conductance. Taken together, electrophysiological studies have further supported the role of galanin as a neurotransmitter/neuromodulator in the brain.
Collapse
Affiliation(s)
- Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, S-171 71, Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Abstract
The shift in the balance between the inhibition and the excitation in favor of the latter is a major mechanism of the evolvement of epileptic seizures. On the neurotransmitter level two major players contribute to such misbalance: an inhibitory transmitter gamma-aminobutyric acid, and an excitatory amino acid glutamate. Neuropeptides are powerful modulators of classical neurotransmitters, and thus represent an intriguing tool for restoring the balance between the inhibition and the excitation, through either blocking or activating peptide receptors depending on whether a peptide is pro- or anticonvulsant. Galanin, a 29-amino acid residues neuropeptide which inhibits glutamate release in the hippocampus, is a likely member of the anticonvulsant peptide family. During the past decade growing evidence has been suggesting that galanin is in fact a powerful inhibitor of seizure activity. This review summarizes the state of research of galanin in epilepsy, beginning with the first simple experiments which showed that central injection of galanin agonists inhibited seizures, and that seizures themselves affected galanin signaling in the hippocampus; exploring the impact of active manipulation with the expression of galanin and galanin receptors on seizures, using transgenic animals, antisense and peptide-expressing vector approaches; and concluding with the recent advances in pharmacology, which led to the synthesis of non-peptide galanin receptor agonists with anticonvulsant properties. We also address recently established functions of galanin in seizure-associated neuronal degeneration and neuronal plasticity.
Collapse
Affiliation(s)
- Andrey M Mazarati
- West Los Angeles VA Medical Center, Research 151, Los Angeles, CA 90073, USA.
| |
Collapse
|
22
|
Diez M, Danner S, Frey P, Sommer B, Staufenbiel M, Wiederhold KH, Hökfelt T. Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing β-amyloid precursor protein (APP) with the Swedish double mutation (APP23). Neurobiol Dis 2003; 14:579-94. [PMID: 14678773 DOI: 10.1016/j.nbd.2003.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The role of neuropeptides and the significance of peptidergic mechanisms in neurodegenerative diseases are still unclear. In the periphery, nerve injury results in dramatic changes in the expression of neuropeptides. An important question regards to what extent similar changes occur, and similar mechanisms operate, after lesions and/or degeneration in the brain. The purpose of this work is, therefore, to study neuropeptides with regard to their presence and distribution in the APP23 mouse (HuAPP(751) K670M/N671L under the murine Thy-1 promoter), a model for Alzheimer's disease, or cerebral amyloidosis, using the immunohistochemical technique. In addition, tyrosine hydroxylase and acetylcholinesterase were analyzed. This study shows marked neuropeptide changes in the hippocampal formation and the ventral cortex, whereas the dorsolateral neocortex was less affected. There was a considerable variation with regard to peptide expression among animals of the same age which was related to the variation in Abeta deposition. Dystrophic and varicose fibers containing galanin, neuropeptide Y, enkephalin, and especially cholecystokinin were commonly seen in close proximity to amyloid plaques. In addition, generalized changes were observed, such as increases of enkephalin and neuropeptide Y in stratum lacunosum moleculare and of neuropeptide Y, enkephalin, and dynorphin in mossy fibers. In contrast, cholecystokinin was decreased in mossy fibers. Comparatively small differences were observed between wild-type and transgenic mice with regard to tyrosine hydroxylase (noradrenergic but also dopaminergic fibers) and acetylcholine esterase (mainly cholinergic fibers). The increase of neuropeptides in dystrophic fibers in this model may represent a response to nerve injury caused by the amyloid accumulation and may reflect attempts to counteract degeneration by initiating protective and/or regenerative processes.
Collapse
Affiliation(s)
- Margarita Diez
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|