1
|
Fritz K, Sanidas G, Cardenas R, Ghaemmaghami J, Byrd C, Simonti G, Valenzuela A, Valencia I, Delivoria-Papadopoulos M, Gallo V, Koutroulis I, Dean T, Kratimenos P. Hypercapnia Causes Injury of the Cerebral Cortex and Cognitive Deficits in Newborn Piglets. eNeuro 2024; 11:ENEURO.0268-23.2023. [PMID: 38233145 PMCID: PMC10913040 DOI: 10.1523/eneuro.0268-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
In critically ill newborns, exposure to hypercapnia (HC) is common and often accepted in neonatal intensive care units to prevent severe lung injury. However, as a "safe" range of arterial partial pressure of carbon dioxide levels in neonates has not been established, the potential impact of HC on the neurodevelopmental outcomes in these newborns remains a matter of concern. Here, in a newborn Yorkshire piglet model of either sex, we show that acute exposure to HC induced persistent cortical neuronal injury, associated cognitive and learning deficits, and long-term suppression of cortical electroencephalogram frequencies. HC induced a transient energy failure in cortical neurons, a persistent dysregulation of calcium-dependent proapoptotic signaling in the cerebral cortex, and activation of the apoptotic cascade, leading to nuclear deoxyribonucleic acid fragmentation. While neither 1 h of HC nor the rapid normalization of HC was associated with changes in cortical bioenergetics, rapid resuscitation resulted in a delayed onset of synaptosomal membrane lipid peroxidation, suggesting a dissociation between energy failure and the occurrence of synaptosomal lipid peroxidation. Even short durations of HC triggered biochemical responses at the subcellular level of the cortical neurons resulting in altered cortical activity and impaired neurobehavior. The deleterious effects of HC on the developing brain should be carefully considered as crucial elements of clinical decisions in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Karen Fritz
- Drexel University College of Medicine, Philadelphia, Pennsylvania 19104
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania 19134
| | - Georgios Sanidas
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Rodolfo Cardenas
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Chad Byrd
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Gabriele Simonti
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Adriana Valenzuela
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Ignacio Valencia
- Drexel University College of Medicine, Philadelphia, Pennsylvania 19104
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania 19134
| | - Maria Delivoria-Papadopoulos
- Drexel University College of Medicine, Philadelphia, Pennsylvania 19104
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania 19134
| | - Vittorio Gallo
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - Ioannis Koutroulis
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Terry Dean
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20052
| |
Collapse
|
2
|
Dumanska H, Telka M, Veselovsky N. Inhibition of high-voltage-activated calcium currents by acute hypoxia in cultured retinal ganglion cells. Front Cell Neurosci 2023; 17:1202083. [PMID: 37465211 PMCID: PMC10351036 DOI: 10.3389/fncel.2023.1202083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Hypoxia is a common factor of numerous ocular diseases that lead to dysfunctions and loss of retinal ganglion cells (RGCs) with subsequent vision loss. High-voltage-activated calcium channels are the main source of calcium entry into neurons. Their activity plays a central role in different signaling processes in health and diseases, such as enzyme activation, gene transcription, synaptic transmission, or the onset of cell death. This study aims to establish and evaluate the initial effect of the early stage of acute hypoxia on somatic HVA calcium currents in cultured RGCs. HVA calcium currents were recorded in RGCs using the whole-cell patch-clamp technique in the voltage-clamp mode. The fast local superfusion was used for a brief (up to 270 s) application of the hypoxic solution (pO2 < 5 mmHg). The switch from normoxic to hypoxic solutions and vice versa was less than 1 s. The HVA calcium channel activity was inhibited by acute hypoxia in 79% of RGCs (30 of 38 RGCs) in a strong voltage-dependent manner. The level of inhibition was independent of the duration of hypoxia or repeated applications. The hypoxia-induced inhibition of calcium currents had a strong correlation with the duration of hypoxia and showed the transition from reversible to irreversible at 75 s of hypoxia and longer. The results obtained are the first demonstration of the phenomena of HVA calcium current inhibition by acute hypoxia in RGCs and provide a conceptual framework for further research.
Collapse
|
3
|
ISAV infection promotes apoptosis of SHK-1 cells through a ROS/p38 MAPK/Bad signaling pathway. Mol Immunol 2015; 64:1-8. [DOI: 10.1016/j.molimm.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
|
4
|
Ahmad S, Elsherbiny NM, Bhatia K, Elsherbini AM, Fulzele S, Liou GI. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy. J Neuroimmunol 2014; 277:96-104. [PMID: 25457840 DOI: 10.1016/j.jneuroim.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/03/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Traumatic optic neuropathy (TON) is associated with apoptosis of retinal ganglion cells. Local productions of reactive oxygen species and inflammatory mediators from activated microglial cells have been hypothesized to underlie apoptotic processes. We previously demonstrated that the anti-inflammatory effect of adenosine, through A2A receptor activation had profound protective influence against retinal injury in traumatic optic neuropathy. This protective effect is limited due to rapid cellular re-uptake of adenosine by equilibrative nucleotside transporter-1 (ENT1) or break down by adenosine kinase (AK), the key enzyme in adenosine clearance pathway. Further, the use of adenosine receptors agonists are limited by systemic side effects. Therefore, we seek to investigate the potential role of amplifying the endogenous ambient level of adenosine by pharmacological inhibition of AK. We tested our hypothesis by comparing TON-induced retinal injury in mice with and without ABT-702 treatment, a selective AK inhibitor (AKI). The retinal-protective effect of ABT-702 was demonstrated by significant reduction of Iba-1, ENT1, TNF-α, IL-6, and iNOS/nNOS protein or mRNA expression in TON as revealed by western blot and real time PCR. TON-induced superoxide anion generation and nitrotyrosine expression were reduced in ABT-702 treated mice retinal sections as determined by immunoflourescence. In addition, ABT-702 attenuated p-ERK1/2 and p-P38 activation in LPS induced activated mouse microglia cells. The results of the present investigation suggested that ABT-702 had a protective role against marked TON-induced retinal inflammation and damage by augmenting the endogenous therapeutic effects of site- and event-specific accumulation of extracellular adenosine.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | - Nehal M Elsherbiny
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kanchan Bhatia
- Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed M Elsherbini
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University (GRU), Augusta, GA, USA
| | - Gregory I Liou
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA.
| |
Collapse
|
5
|
Sookruksawong S, Pongsomboon S, Tassanakajon A. Genomic organization of the cytosolic manganese superoxide dismutase gene from the Pacific white shrimp, Litopenaeus vannamei, and its response to thermal stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1395-1405. [PMID: 23994278 DOI: 10.1016/j.fsi.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Cytosolic manganese superoxide dismutase (cMnSOD) is an important antioxidant enzyme which catalyzes the conversion of superoxides to oxygen and hydrogen peroxide in several organisms. In the Pacific white shrimp, Litopenaeus vannamei, three cMnSOD genes (LvcMnSOD1-3) have previously been characterized. Here, the genomic structure of LvcMnSOD2 and its mRNA expression in response to thermal stress was examined. Analysis of the nucleotide sequence demonstrated that LvcMnSOD2 is comprised of 2392 bp spanning from the ATG translation start site to the stop codon and contains six exons interrupted by five introns. The 5' region upstream of the LvcMnSOD2 gene contains several putative regulatory elements but lacks the accepted TATA sequence. The putative transcription factor binding elements that may be involved in LvcMnSOD2 mRNA expression level include activator protein-1 (AP-1), cAMP response element binding protein (CREB), upstream stimulatory factor (USF), CAAT-enhancer binding protein (C/EBP), nuclear factor-κB (NF-κB) and heat shock regulatory element (HSE). In addition, we compared the 5' upstream sequences of the LvcMnSOD2 gene between two shrimp strains that are resistant or susceptible to Taura syndrome virus (TSV), respectively, which revealed the absence of the USF and C/EBP elements at positions -2125 and -1986, respectively, in the TSV-susceptible shrimp line. Moreover, genomic variations between the two shrimp strains were detected in some of the putative C/EBP, USF, HSE and NF-κB transcription factor binding elements. That these genomic variations might be involved in the TSV resistance as well as in stress responses remains to be evaluated. The presence of 15 putative HSEs suggests that the expression of LvcMnSOD2 is regulated under thermal stress. Here, we found that in response to a 1 or 3 h thermal stress (35 °C), the mRNA expression levels of LvcMnSOD2 were significantly increased and then gradually decreased in the recovering phase at room temperature (25 °C) to control levels by 3 h after the heat shock. Thus, the antioxidant system may be induced to protect cells from the oxidative damage caused by thermal stress. The genomic organization of LvcMnSOD2 likely provides a clue to the mechanisms that might regulate the antioxidant defense pathway in shrimps and so potentially in marine invertebrates.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Biotechnology Program, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | |
Collapse
|
6
|
Abstract
Hypoxia-ischemia is a leading cause of morbidity and mortality in the perinatal period with an incidence of 1/4000 live births. Biochemical events such as energy failure, membrane depolarization, brain edema, an increase of neurotransmitter release and inhibition of uptake, an increase of intracellular Ca(2+), production of oxygen-free radicals, lipid peroxidation, and a decrease of blood flow are triggered by hypoxia-ischemia and may lead to brain dysfunction and neuronal death. These abnormalities can result in mental impairments, seizures, and permanent motor deficits, such as cerebral palsy. The physical and emotional strain that is placed on the children affected and their families is enormous. The care that these individuals need is not only confined to childhood, but rather extends throughout their entire life span, so it is very important to understand the pathophysiology that follows a hypoxic-ischemic insult. This review will highlight many of the mechanisms that lead to neuronal death and include the emerging area of white matter injury as well as the role of inflammation and will provide a summary of therapeutic strategies. Hypothermia and oxygen will also be discussed as treatments that currently lack a specific target in the hypoxic/ischemic cascade.
Collapse
Affiliation(s)
- John W Calvert
- Departments of Neurosurgery and Molecular and Cellular Physiology, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | |
Collapse
|
7
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
8
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
9
|
Abstract
Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs) occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS). Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive,National University of Singapore, Singapore.
| | | | | |
Collapse
|
10
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Mechanism of CaM kinase IV activation during hypoxia in neuronal nuclei of the cerebral cortex of newborn piglets: the role of Src kinase. Neurochem Res 2011; 36:1512-9. [PMID: 21516343 DOI: 10.1007/s11064-011-0477-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 12/11/2022]
Abstract
The present study aims to investigate the mechanism of CaM kinase IV activation during hypoxia and tests the hypothesis that hypoxia-induced increased activity of CaM kinase IV is due to Src kinase mediated increased tyrosine phosphorylation of calmodulin and CaM kinase IV in neuronal nuclei of the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, F(i)O(2) of 0.07 for 1 h, n = 5) and hypoxic-pretreated with Src kinase inhibitor PP2 (Hx-Srci, n = 5) groups. Src inhibitor was administered (1.0 mg/kg, I.V.) 30 min prior to hypoxia. Neuronal nuclei were isolated and purified, and tyrosine phosphorylation of calmodulin (Tyr(99)) and CaM kinase IV determined by Western blot using anti-phospho-(pTyr(99))-calmodulin, anti-pTyrosine and anti-CaM kinase IV antibodies. The activity of CaM kinase IV and its consequence the phosphorylation of CREB protein at Ser(133) were determined. Hypoxia resulted in increased tyrosine phosphorylation of calmodulin at Tyr(99), tyrosine phosphorylation of CaM kinase IV, activity of CaM kinase IV and phosphorylation of CREB protein at Ser(133). The data show that administration of Src kinase inhibitor PP2 prevented the hypoxia-induced increased tyrosine phosphorylation of calmodulin (Tyr(99)) and tyrosine phosphorylation of CaM.kinase IV as well as the activity of CaM kinase IV and CREB phosphorylation at Ser(133). We conclude that the mechanism of hypoxia-induced increased activation of CaM kinase IV is mediated by Src kinase-dependent tyrosine phosphorylation of the enzyme and its activator calmodulin. We propose that Tyr(99) phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site (rich in basic amino acids) of CaM kinase IV leading to increased activation of CaM kinase IV. Similarly, tyrosine phosphorylated CaM kinase IV binds its substrate with a higher affinity and thus increased tyrosine phosphorylation leads to increased activation of CaM kinase IV resulting in increased CREB phosphorylation that triggers increased transcription of proapoptotic proteins that initiate hypoxic neuronal death.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, 245 N 15th Street, New College Building, Room 7410, Mail Stop 1029, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
11
|
Zhang L, Gavin T, Barber DS, LoPachin RM. Role of the Nrf2-ARE pathway in acrylamide neurotoxicity. Toxicol Lett 2011; 205:1-7. [PMID: 21540084 DOI: 10.1016/j.toxlet.2011.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Acrylamide (ACR) intoxication is associated with selective nerve terminal damage in the central and peripheral nervous systems. As a soft electrophile, ACR could form adducts with nucleophilic sulfhydryl groups on cysteine residues of kelch-like erythroid cell-derived protein with CNS homology-associated protein 1 (Keap1) leading to dissociation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 activation of the antioxidant-responsive element (ARE) and subsequent upregulated gene expression of phase II detoxification enzymes and anitoxidant proteins might provide protection in neuronal regions with transcriptional capabilities (e.g., cell body). In contrast, non-transcriptional cell regions (axons, nerve terminals) might be vulnerable to electrophile-induced damage. To test this possibility, immunoblot analysis was used to measure protein products of Nrf2-activated ARE genes in nerve terminals and in cytosolic/nuclear factions of neuronal cell bodies isolated from rats intoxicated at two different ACR dose-rates; i.e., 50mg/kg/d×10 days, 21mg/kg/d×38 days. To detect possible differences in cell-specific induction, the cytoprotective response to ACR intoxication was determined in hepatic cells. Results show that control brain and hepatic cell fractions exhibited distinct subcellular distributions of Nrf2, Keap1 and several ARE protein products. ACR intoxication, however, did not alter the levels of these proteins in synaptosomal, brain cytoplasm or liver cell fractions. These data indicate that ACR was an insufficient electrophilic signal for ARE induction in all subcellular fractions tested. Because a cytoprotective response was not induced in any fraction, nerve terminal vulnerability to ACR cannot be ascribed to the absence of transcription-based defense mechanisms in this neuronal region.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467-2490, United States
| | | | | | | |
Collapse
|
12
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Brain tissue energy dependence of CaM kinase IV cascade activation during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2011; 491:113-7. [PMID: 21236315 DOI: 10.1016/j.neulet.2011.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/29/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The present study aims to investigate the dependence of CaM kinase IV cascade activation during hypoxia and tests the hypothesis that hypoxia-induced tyrosine phosphorylation of CaM and CaM kinase IV, activation of CaM kinase IV and phosphorylation of CREB protein during hypoxia increases as a function of increase in cerebral tissue hypoxia as measured by decrease in tissue ATP and phosphocreatine (PCr). 3-5 days old newborn piglets were divided into normoxic (Nx, FiO₂ of 0.21 for 1h) and hypoxic (Hx, FiO₂ of 0.07 for 1h) groups. Cerebral tissue hypoxia was documented by determining the levels of high energy phosphates ATP and phosphocreatine (PCr). Cerebral cortical neuronal nuclei were isolated and purified, and tyrosine phosphorylation of calmodulin (Tyr⁹⁹), the activator of CaM kinase IV, and CaM kinase IV determined by Western blot using anti-phospho-(pTyr⁹⁹)-calmodulin, anti-pTyrosine and anti-CaM kinase IV antibodies. The activity of CaM kinase IV and its consequence the phosphorylation of CREB protein at Ser¹³³ were determined. The levels of ATP (μmole/g brain) ranged from 3.48 to 5.28 in Nx, and 0.41 to 2.26 in Hx. The levels of PCr (μmole/g brain) ranged from 2.46 to 3.91 in Nx and 0.72 to 1.20 in Hx. The pTyr⁹⁹ calmodulin (OD x mm²) ranged from 20.35 to 54.47.60 in Nx, and 84.52 to 181.42 in Hx (r²=0.5309 vs ATP and r²=0.6899 vs PCr). Expression of tyrosine phosphorylated CaM kinase IV ranged from 32.86 to 82.46 in Nx and 96.70 to 131.62 in Hx (r²=0.5132 vs ATP and r²=0.4335 vs PCr). The activity of CaM kinase IV (pmole/mg protein/min) ranged from 1263 to 3448 in Nx and 3767 to 6633 in Hx (r²=0.7113 vs ATP and r²=0.6182 vs PCr). The expression of p-CREB at Ser¹³³ ranged from 44.26 to 70.28 in Nx and 82.70 to 182.86 in Hx (r²=0.6621 vs ATP and r²=0.5485 vs PCr). The data show that hypoxia results in increased tyrosine phosphorylation of calmodulin (Tyr⁹⁹), increased tyrosine phosphorylation of CaM kinase IV, increased activity of CaM kinase IV and increased phosphorylation of CREB at Ser¹³³ as an inverse function of cerebral concentration of high energy phosphates, ATP and PCr. We conclude that the hypoxia-induced increased activation of CaM kinase IV cascade increases with the increase in the degree of cerebral tissue hypoxia as measured by cerebral tissue high energy phosphates in a curvilinear manner. The tyrosine kinases (Src kinase and EGFR kinase) mediated activation of CaM kinase IV cascade potentially results in increased CREB phosphorylation that triggers transcription of proapoptotic proteins during hypoxia.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's, Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
13
|
Doran DM, Kulkarni-Datar K, Cool DR, Brown TL. Hypoxia activates constitutive luciferase reporter constructs. Biochimie 2010; 93:361-8. [PMID: 20971156 DOI: 10.1016/j.biochi.2010.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/13/2010] [Indexed: 02/07/2023]
Abstract
Hypoxia has been identified as a contributing factor in the pathophysiology of several diseases and oxygen regulation is important during stem cell development, particularly in early embryogenesis. One aspect that has emerged is the role of hypoxia-inducible factors, or HIFs in regulating the effect of hypoxia. Studies in our laboratory sought to examine the hypoxic regulation of HIF activity in placental trophoblast cells, through the use of dual-reporter luciferase assays. Our study demonstrates that hypoxic conditions cause a significant increase in the level of constitutive luciferase reporter activity. We also show that this induction is not a cell type or species-specific phenomenon and provides an alternative method for normalizing transfection efficiency in luciferase assays under hypoxic conditions. Our results suggest that in studies dealing with hypoxic conditions, caution should be used when interpreting measurements of transcriptional activity by traditional dual-reporter assays.
Collapse
Affiliation(s)
- Diane M Doran
- Program in Microbiology and Immunology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
14
|
Mishra OP, Delivoria-Papadopoulos M. Mechanism of tyrosine phosphorylation of procaspase-9 and Apaf-1 in cytosolic fractions of the cerebral cortex of newborn piglets during hypoxia. Neurosci Lett 2010; 480:35-9. [PMID: 20570712 PMCID: PMC2910624 DOI: 10.1016/j.neulet.2010.05.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 01/12/2023]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia results in increased tyrosine phosphorylation of procaspase-9 and apoptotic protease activating factor-1 (Apaf-1) and the hypoxia-induced increased tyrosine phosphorylation of procaspase-9 and Apaf-1 is mediated by nitric oxide. To test this hypothesis, 15 newborn piglets were divided into three groups: normoxic (Nx, n=5), hypoxic (Hx, n=5) and hypoxic treated with nNOS inhibitor I (Hx+nNOS I 0.4mg/kg, i.v., 30min prior to hypoxia) [16]. The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Cytosolic fractions were isolated and tyrosine phosphorylated procaspase-9 and Apaf-1 were determined by immunoblotting using specific anti-procaspase-9, anti-Apaf-1 and anti-phosphotyrosine antibodies. ATP levels (mumoles/g brain) were 4.3+/-0.2 in the Nx and 1.4+/-0.3 in the Hx and 1.7+/-0.3 in Hx+nNOS I group (p<0.05 vs. Nx) groups. PCr levels (mumoles/g brain) were 3.8+/-0.3 in the Nx and 0.9+/-0.2 in the Hx and 1.0+/-0.4 in the Hx+nNOS I (p<0.05 vs. Nx) group. Density (ODxmm(2)) of tyrosine phosphorylatd procaspase-9 was 412+/-8 in the Nx, 1286+/-12 in the Hx (p<0.05 vs. Nx) and 421+/-10 in the Hx+nNOS I (p<0.05 vs. Hx) group. Density of tyrosine phosphorylated Apaf-1 was 11.72+/-1.11 in Nx, 24.50+/-2.33 in Hx (p<0.05 vs. Nx) and 16.63+/-1.57 in Hx+nNOS I (p<0.05 vs. Hx) group. We conclude that hypoxia results in increased tyrosine phosphorylation of procaspase-9 and Apaf-1 proteins in the cytosolic compartment and the hypoxia-induced increased tyrosine phosphorylation of procaspase-9 and Apaf-1 is mediated by nNOS derived nitric oxide. We propose that increased interaction between the tyrosine phosphorylated procaspase-9 and Apaf-1 molecules lead to increased activation of procaspase-9 to caspase-9 in the hypoxic brain that initiates programmed neuronal death.
Collapse
Affiliation(s)
- Om P Mishra
- Department of Pediatrics, Drexel University College of Medicine and St Christopher's Hospital for Children, Philadelphia, PA 19102, United States.
| | | |
Collapse
|
15
|
Mishra OP, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced activation of epidermal growth factor receptor (EGFR) kinase in the cerebral cortex of newborn piglets: the role of nitric oxide. Neurochem Res 2010; 35:1471-7. [PMID: 20532621 DOI: 10.1007/s11064-010-0208-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/26/2010] [Indexed: 01/26/2023]
Abstract
The present study aims to investigate the mechanism of EGFR kinase activation during hypoxia and tests the hypothesis that hypoxia-induced increased activation of EGFR kinase in the cerebral cortical membrane fraction of newborn piglets is mediated by nitric oxide (NO) derived from neuronal nitric oxide synthase (nNOS). Fifteen newborn piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-treated with nNOS inhibitor (Hx-nNOSi, n = 5). Hypoxia was induced by an FiO2 of 0.07 for 60 min. nNOS inhibitor I (selectivity >2,500 vs. endothelial NOS, eNOS, and >500 vs. inducible NOS, iNOS) was administered (0.4 mg/kg, i. v.) 30 min prior to hypoxia. EGFR kinase tyrosine phosphorylation at Tyr1173, an index of activation of EGFR kinase, was determined by Western blot analysis using an anti-phospho (pTyr(1173))-EGFR kinase antibody. Protein bands were analyzed by imaging densitometry and expressed as absorbance (OD x mm(2)). EGFR kinase activity was determined radiochemically using immunopurified enzyme. EGFR kinase activity was expressed as pmols/mg protein/hr. Density of phosphor (pTyr(1173))-EGFR kinase (OD x mm(2)) was 60.2 +/- 9.8 in Nx, 177.0 +/- 26.9 in Hx (P < 0.05 vs. Nx) and 79.9 +/- 15.7 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Activity of EGFR kinase (pmoles/mg protein/hr) was 4,603 +/- 155 in Nx, 8,493 +/- 427 in Hx (P < 0.05 vs. Nx) and 4,516 +/- 104 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Pretreatment with nNOS inhibitor prevented the hypoxia-induced increased phosphorylation and increased activity of EGFR kinase. We conclude that the mechanism of hypoxia-induced increased activation of EGFR kinase is mediated by nNOS-derived NO.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
16
|
Sun X, Kumar S, Tian J, Black SM. Estradiol increases guanosine 5'-triphosphate cyclohydrolase expression via the nitric oxide-mediated activation of cyclic adenosine 5'-monophosphate response element binding protein. Endocrinology 2009; 150:3742-52. [PMID: 19389836 PMCID: PMC2717883 DOI: 10.1210/en.2008-1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of studies have demonstrated that estradiol can stimulate endothelial nitric oxide synthase expression and activity, resulting in enhanced nitric oxide (NO) generation. However, its effect on the NO synthase cofactor, tetrahydrobiopterin are less clear. Cellular tetrahydrobiopterin levels are regulated, at least in part, by GTP cyclohydrolase 1 (GCH1). Thus, the purpose of this study was to determine the effect of estradiol on GCH1 expression and the regulatory mechanisms in pulmonary arterial endothelial cells. Our data indicate that 17beta-estradiol (E2) increases GCH1 transcription in a dose- and time-dependent manner, whereas estrogen receptor antagonism or NO synthase inhibition attenuated E2-stimulated GCH1 expression. Analysis of the GCH1 promoter fragment responsive to E2 revealed the presence of a cAMP response element, and we found that E2 triggers a rapid but transient elevation of phospho-cAMP response element-binding protein (CREB; <1 h) followed by a second sustained rise after 6 h. EMSA analysis revealed an increase in the binding of CREB during E2 treatment and mutation of the cAMP response element in the GCH1 promoter attenuated the E2-mediated increase in transcription. Furthermore, inhibition of the cAMP-dependent kinase, protein kinase A (PKA) completely abolished the E2-stimulated GCH1 promoter activity, whereas the stimulation of cAMP levels with forskolin increased GCH1 promoter activity, indicating the key role of cAMP in regulating GCH1 promoter activity. In conclusion, our results demonstrate that estradiol can modulate GCH1 expression via NO-mediated activation of CREB in pulmonary arterial endothelial cells. These findings provide new insight into the vascular protective effect of estradiol.
Collapse
Affiliation(s)
- Xutong Sun
- Program in Pulmonary Vascular Disease, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
17
|
Delivoria-Papadopoulos M, Mishra OP. Mechanism of Post-Translational Modification by Tyrosine Phosphorylation of Apoptotic Proteins During Hypoxia in the Cerebral Cortex of Newborn Piglets. Neurochem Res 2009; 35:76-84. [DOI: 10.1007/s11064-009-0032-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/27/2009] [Indexed: 11/29/2022]
|
18
|
Mishra OP, Ashraf QM, Delivoria-Papadopoulos M. Mechanism of increased tyrosine (Tyr(99)) phosphorylation of calmodulin during hypoxia in the cerebral cortex of newborn piglets: the role of nNOS-derived nitric oxide. Neurochem Res 2009; 35:67-75. [PMID: 19590958 DOI: 10.1007/s11064-009-0031-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/25/2009] [Indexed: 11/28/2022]
Abstract
The present study aims to investigate the mechanism of calmodulin modification during hypoxia and tests the hypothesis that hypoxia-induced increase in Tyr(99) phosphorylation of calmodulin in the cerebral cortex of newborn piglets is mediated by NO derived from nNOS. Fifteen piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, F(i)O(2) of 0.07 for 1 h, n = 5) and hypoxic-pretreated with nNOSi (Hx-nNOSi, n = 5) groups. nNOS inhibitor I (selectivity >2,500 vs. eNOS and >500 vs. iNOS) was administered (0.4 mg/kg, I.V.) 30 min prior to hypoxia. Cortical membranes were isolated and tyrosine phosphorylation (Tyr(99) and total) of calmodulin determined by Western blot using anti-phospho-(pTyr(99))-calmodulin and anti-pTyr antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by densitometry and expressed as absorbance. The pTyr(99) calmodulin (ODxmm(2)) was 78.55 +/- 10.76 in Nx, 165.05 +/- 12.26 in Hx (P < 0.05 vs. Nx) and 96.97 +/- 13.18 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Expression of total tyrosine phosphorylated calmodulin was 69.24 +/- 13.69 in Nx, 156.17 +/- 16.34 in Hx (P < 0.05 vs. Nx) and 74.18 +/- 3.9 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). The data show that administration of nNOS inhibitor prevented the hypoxia-induced increased Tyr(99) phosphorylation of calmodulin. Total tyrosine phosphorylation of calmodulin was similar to Tyr(99) phosphorylation. We conclude that the mechanism of hypoxia-induced modification (Tyr(99) phosphorylation) of calmodulin is mediated by NO derived from nNOS. We speculate that Tyr(99) phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site of nNOS leading to increased activation of nNOS and increased generation of NO.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
19
|
Mishra OP, Ashraf QM, Delivoria-Papadopoulos M. Tyrosine phosphorylation of neuronal nitric oxide synthase (nNOS) during hypoxia in the cerebral cortex of newborn piglets: the role of nitric oxide. Neurosci Lett 2009; 462:64-7. [PMID: 19560516 DOI: 10.1016/j.neulet.2009.06.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/01/2009] [Accepted: 06/20/2009] [Indexed: 11/30/2022]
Abstract
The present study aims to investigate the mechanism of activation of nNOS during hypoxia and tests the hypothesis that the hypoxia-induced increased tyrosine phosphorylation of nNOS in the cerebral cortical membranes of newborn piglets is mediated by nNOS-derived nitric oxide (NO). Fifteen newborn piglets were divided into normoxic (Nx, n=5), hypoxic (Hx, n=5) and hypoxic-pretreated with nNOS inhibitor I (Hx-nNOSi) groups. Hypoxia was induced by an FiO(2) of 0.07 for 60 min. nNOS inhibitor I (selectivity>2500 vs endothelial NOS and >500 vs inducible NOS) was administered (0.4 mg/kg, i.v.) 30 min prior to hypoxia. Cortical membranes were isolated and tyrosine phosphorylation of nNOS determined by Western blot. Membrane protein was immunoprecipitated with nNOS antibody, separated on 12% SDS-PAGE and blotted with anti-phosphotyrosine antibody. Protein bands were detected by enhanced chemiluminescence, analyzed by densitometry and expressed as absorbance (OD x mm(2)). Density (OD x mm(2)) of tyrosine phosphorylated nNOS was 51.66+/-14.11 in Nx, 118.39+/-14.17 in Hx (p<0.05 vs Nx) and 45.56+/-10.34 in Hx-nNOSi (p<0.05 vs Hx, p=NS vs Nx). The results demonstrate that pretreatment with nNOS inhibitor prevents the hypoxia-induced increased tyrosine phosphorylation of nNOS. We conclude that the mechanism of hypoxia-induced increased tyrosine phosphorylation of nNOS is mediated by nNOS-derived NO.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's, Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
20
|
NO-mediated activation of Src kinase during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2009; 460:61-5. [PMID: 19463892 DOI: 10.1016/j.neulet.2009.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 01/23/2023]
Abstract
The present study aims to investigate the mechanism of Src kinase activation during hypoxia and tests the hypothesis that the hypoxia-induced activation of Src kinase, as determined by Src kinase phosphorylation, in the cerebral cortical membranes of newborn piglets is mediated by NO derived from neuronal nitric oxide synthase (nNOS). Fifteen piglets were divided into normoxic (Nx, n=5), hypoxic (Hx, n=5) and hypoxic-treated with nNOS inhibitor I (Hx-nNOSi) groups. Hypoxia was induced by decreasing FiO(2) to 0.06 for 1h. nNOS inhibitor I (selectivity >2500 vs eNOS and >500 vs iNOS) was administered (0.4 mg/kg, i.v.) 30 min prior to hypoxia. Cortical membranes were isolated and phosphorylation of Src kinase was determined by Western blot analysis. Src kinase activity was determined by radioactive assay using immunopurified enzyme. Membrane proteins were separated by 12% SDS-PAGE and probed with anti-phospho (pTyr(418))-Src kinase antibody. Protein bands were detected, analyzed by densitometry and expressed as absorbance (ODxmm(2)). Density (ODxmm(2)) of phosphorylated Src kinase was 111.7+/-21.1 in Nx, 234.5+/-23.8 in Hx (p<0.05 vs Nx) and 104.7+/-18.1 in Hx-nNOSi (p<0.05 vs Hx, p=NS vs Nx). Src kinase activity (pmol/mgprotein/ h) was 2472+/-75 in Nx, 4556+/-358 in Hx (p<0.05 vs Nx) and 2259+/-207 in Hx-nNOSi (p<0.05 vs Hx, p=NS vs Nx). The data show that pretreatment with nNOS inhibitor prevents the hypoxia-induced increase in tyrosine phosphorylation and the activity of Src kinase. We conclude that the mechanism of hypoxia-induced increased activation of Src kinase is mediated by nNOS derived NO. We propose that NO mediated inhibition of protein tyrosine phosphatases SH-PTP-1 and SH-PTP-2 leads to increased tyrosine phosphorylation and activation of Src kinase in the cerebral cortex of newborn piglets.
Collapse
|
21
|
Levenbrown Y, Ashraf QM, Maounis N, Mishra OP, Delivoria-Papadopoulos M. Phosphorylation of caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets following hypoxia. Neurosci Lett 2008; 447:96-9. [PMID: 18840507 DOI: 10.1016/j.neulet.2008.09.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 11/17/2022]
Abstract
We have previously shown that hypoxia leads to increased expression and increased activity of caspase-9 in the cerebral cortex of newborn piglets. Previous studies have demonstrated the importance of caspase-9 in the initiation of the apoptotic cascade, however, the mechanism of caspase-9 activation is not well understood. Experiments were conducted on newborn piglets 2-3 days of age that were anesthetized and mechanically ventilated. Hypoxia was induced by lowering the FiO(2) to 0.05-0.07 x 1h, and was confirmed biochemically by demonstrating decreased levels of ATP and PCr in the hypoxic groups in comparison with the normoxic group. The ATP level was 1.99+/-0.66 in the hypoxic group versus 4.10+/-0.19 in the normoxic group, P<0.05, and the PCr value was 0.68+/-0.14 in the hypoxic group, compared to 2.98+/-0.39 in the normoxic group, P<0.05. The cytosol of the neuronal nuclei from the cerebral cortex was probed with anti-phosphorylated Ser(196) caspase-9 antibody, using Western blot analysis. Protein bands were analyzed using image densitometry. In both the hypoxic and normoxic samples, protein bands were demonstrated just above the 50 kDa marker. Phosphorylated caspase-9 expression in OD x mm(2) was 43.85+/-8.4 in the normoxic group and 67.6+/-9.88 in the hypoxic group, P<0.05. The results of this study demonstrate that caspase-9, a key protein in hypoxia induced apoptosis, is phosphorylated at the Ser(196) site during hypoxia. The results demonstrate that hypoxia results in a post-translational modification of caspase-9 at Ser(196), which may alter the activity of caspase-9 in the hypoxic newborn brain.
Collapse
Affiliation(s)
- Yosef Levenbrown
- Department of Pediatrics, Drexel University College of Medicine and St Christopher's Hospital for Children, Philadelphia, PA 19102, United States
| | | | | | | | | |
Collapse
|
22
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Effect of hypoxia on the expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. Neurosci Lett 2008; 438:38-41. [PMID: 18468794 DOI: 10.1016/j.neulet.2008.03.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9, a key initiator of programmed cell death, in the cytosolic fractions of the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia results in increased expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. To test this hypothesis, expression of procaspase-9 and procaspase-3 was determined in 10 newborn piglets divided into two groups: normoxic (Nx, n=5) and hypoxic (Hx, n=5). The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatinine (PCr) levels. Neuronal nuclear, mitochondrial and cytosolic fractions were isolated and the expression of procaspase-9 and procaspase-3 was determined by immunoblotting using specific anti-procaspase-9 and anti-procaspase-3 antibodies. ATP levels (micromol/g brain) were 4.34+/-0.36 in the Nx and 1.43+/-0.28 in the Hx (p<0.001 vs. Nx) groups. PCr levels (micromol/g brain) were 3.75+/-0.27 in the Nx and 0.69+/-0.26 in the Hx (p<0.001 vs. Nx) group. Cytosolic procaspase-9 density (ODxmm(2)) was 88.82+/-17.55 in the Nx and 215.54+/-22.77 in the Hx (p<0.001 vs. Nx). Mitochondrial procaspase-9 density (ODxmm(2)) was 104.67+/-12.75 in the Nx and 183.44+/-16.69 in the Hx (p<0.001 vs. Nx). Nuclear procaspase-9 density (ODxmm(2)) was 135.56+/-15.36 in the Nx and 190.66+/-29.35 in the Hx (p<0.001 vs. Nx). Cytosolic procaspase-3 density (ODxmm(2)) was 23.72+/-3.71 in the Nx and 92.44+/-8.46 in the Hx (p<0.001 vs. Nx). Mitochondrial procaspase-3 density (ODxmm(2)) was 22.12+/-2.97 in the Nx and 51.22+/-10.67 in the Hx (p<0.001 vs. Nx). Nuclear procaspase-3 density (ODxmm(2)) was 53.80+/-7.18 in the Nx and 84.67+/-5.63 in the Hx (p<0.001 vs. Nx). We conclude that procaspase-9 and procaspase-3 proteins increased in all cell compartments including cytosolic, mitochondrial and nuclear during hypoxia, indicating increased expression of procaspase-9 during hypoxia. We propose that following increased expression of procaspase-9 and procaspase-3, these molecules traffic among the various cell compartments and become available for their activation resulting in increased caspase-9 and caspase-3 activity.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
23
|
Gutsaeva DR, Carraway MS, Suliman HB, Demchenko IT, Shitara H, Yonekawa H, Piantadosi CA. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 2008; 28:2015-24. [PMID: 18305236 PMCID: PMC6671843 DOI: 10.1523/jneurosci.5654-07.2008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 12/27/2007] [Indexed: 02/06/2023] Open
Abstract
The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of mitochondrial biogenesis in the hypoxia-sensitive subcortex of wild-type (Wt) and neuronal NOS (nNOS) and endothelial NOS (eNOS)-deficient mice. Mice were exposed to hypobaric hypoxia for 6 h, and changes in immediate hypoxic transcriptional regulation of mitochondrial biogenesis was assessed in relation to mitochondrial DNA (mtDNA) content and mitochondrial density. There were no differences in cerebral blood flow or hippocampal PO2 responses to acute hypoxia among these strains of mice. In Wt mice, hypoxia increased mRNA levels for peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1 alpha), nuclear respiratory factor-1, and mitochondrial transcription factor A. After 24 h, new mitochondria, localized in reporter mice expressing mitochondrial green fluorescence protein, were seen primarily in hippocampal neurons. eNOS-/- mice displayed lower basal levels but maintained hypoxic induction of these transcripts. In contrast, nuclear transcriptional regulation of mitochondrial biogenesis in nNOS-/- mice was normal at baseline but did not respond to hypoxia. After hypoxia, subcortical mtDNA content increased in Wt and eNOS-/- mice but not in nNOS-/- mice. Hypoxia stimulated PGC-1alpha protein expression and phosphorylation of protein kinase A and cAMP response element binding (CREB) protein in Wt mice, but CREB only was activated in eNOS-/- mice and not in nNOS-/- mice. These findings demonstrate that hypoxic preconditioning elicits subcortical mitochondrial biogenesis by a novel mechanism that requires nNOS regulation of PGC-1alpha and CREB.
Collapse
Affiliation(s)
- Diana R. Gutsaeva
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 197376, Russia, and
| | - Martha Sue Carraway
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hagir B. Suliman
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ivan T. Demchenko
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 197376, Russia, and
| | - Hiroshi Shitara
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113 8613, Japan
| | - Hiromichi Yonekawa
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113 8613, Japan
| | - Claude A. Piantadosi
- Departments of Medicine, Anesthesiology, and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
24
|
Effect of hypoxia on expression of apoptotic proteins in nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets: the role of nuclear Ca++ -influx. Neurochem Res 2008; 33:1196-204. [PMID: 18293086 DOI: 10.1007/s11064-007-9568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2007] [Indexed: 02/03/2023]
Abstract
We have shown that hypoxia results in increased influx of nuclear Ca++ and increased expression of nuclear apoptotic proteins. The present study tests the hypothesis that hypoxia alters the distribution of pro-apoptotic proteins Bad and Bax, and the anti-apoptotic proteins Bcl-xl, and Bcl-2 in the nuclear, mitochondrial and cytosolic compartments of the cerebral cortex of newborn piglets and the administration of Clonidine, an inhibitor of high affinity nuclear Ca++ -ATPase, will prevent the hypoxia-induced increase in apoptotic proteins' expression. Studies were conducted in 19 newborn piglets, 6 normoxic (Nx), 7 hypoxic and 6 Clonidine-treated hypoxic (Hx-Clo). Tissue hypoxia was documented biochemically by measuring cerebral tissue ATP and phosphocreatine (PCr) levels. Bax and Bad protein expression increased in all the three compartments during hypoxia, while there was no significant change in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. In Clonidine pretreated hypoxic group, the hypoxia-induced increased expression of pro-apoptotic proteins Bad and Bax was prevented in all the three fractions. We conclude that hypoxia results in increased expression of pro-apoptotic proteins in nuclear, mitochondrial and cytosolic compartments and that the increased expression of pro-apoptotic proteins during hypoxia is nuclear Ca++ -influx-dependent. We propose that during hypoxia the increased ratio of (pro-apoptotic Bad and Bax/anti-apoptotic Bcl-xl and Bcl-2) in all the three compartments, will lead to altered mitochondrial and nuclear membrane permeability as well as caspase-9 activation in the cytosolic compartment.
Collapse
|
25
|
Chiang MC, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets. Neurochem Res 2008; 33:1232-7. [PMID: 18253826 DOI: 10.1007/s11064-007-9574-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
Abstract
We have previously shown that hypoxia results in increased activity of caspase-9, caspase-3 and fragmentation of nuclear DNA in the cerebral cortex of newborn piglets. The present study tested the hypothesis that mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets is mediated by caspase-9-dependent caspase-3 activation. Newborn piglets were randomly assigned to normoxic, hypoxic, and hypoxic pretreated with a highly selective caspase-9 inhibitor, Z-LEHD-FMK groups. The data showed that cerebral tissue hypoxia results in increased expression of caspase-activated DNase (CAD) protein in the nucleus and fragmentation of nuclear DNA. A pretreatment with Z-LEHD-FMK attenuated the expression of CAD protein in the nucleus and the fragmentation of nuclear DNA. Based on these results, we conclude that the mechanism by which the nuclear DNA was fragmented is mediated by caspase-9-dependent caspase-3 activation and the consequence of caspase-activated DNase activation in the cerebral cortex of newborn piglets.
Collapse
Affiliation(s)
- Ming-Chou Chiang
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 245 N. 15th Street, Room 7410, 7th Floor New College Building, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
26
|
Maulik D, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on protein tyrosine phosphatase activity and expression of protein tyrosine phosphatases PTP-1B, PTP-SH1 and PTP-SH2 in the cerebral cortex of guinea pig fetus. Neurosci Lett 2008; 432:174-8. [DOI: 10.1016/j.neulet.2007.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/07/2007] [Accepted: 11/11/2007] [Indexed: 01/03/2023]
|
27
|
Delivoria-Papadopoulos M, Gorn M, Ashraf QM, Mishra OP. ATP and cytochrome c-dependent activation of caspase-9 during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2007; 429:115-9. [PMID: 17976908 DOI: 10.1016/j.neulet.2007.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/28/2007] [Accepted: 09/30/2007] [Indexed: 11/25/2022]
Abstract
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, in the cytosolic fraction of the cerebral cortex of newborn piglets. The present study examines the mechanism of caspase-9 activation during hypoxia and tests the hypothesis that the ATP and cytochrome c-dependent activation of caspase-9 increases in the cytosol of the cerebral cortex of newborn piglets. Newborn piglets were divided into normoxic (Nx, n=4), and hypoxic (Hx, n=4) groups. Anesthetized, ventilated animals were exposed to an FiO(2) of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Cytosolic fraction was isolated and passed through a G25-Sephadex column to remove endogenous ATP and cytochrome c. Fractions were collected and protein determined by UV spectrophotometry at 280 nm. Eluted high-molecular weight samples from normoxic and hypoxic animals were divided into four subgroups: subgroup 1 (control), incubated without added ATP and cytochrome c; subgroup 2, incubated with added ATP; subgroup 3, incubated with added cytochrome c; and subgroup 4, incubated with added ATP and cytochrome c. The incubation was carried out at 37 degrees C for 30 min. Following incubation, the protein was separated by 12% SDS-PAGE and active caspase-9 was detected using specific active caspase-9 antibody. Protein bands were detected by enhanced chemiluminescence. Protein density was determined by imaging densitometry and expressed as absorbance (OD x mm(2)). ATP (mumol/g brain) level was 4.7 +/- 0.18 in normoxic, as compared to 1.53 +/- 0.16 in hypoxic (p < 0.05 vs. Nx). PCr (mumol/g brain) level was 4.03 +/- 0.11 in the normoxic and 1.1 +/- 0.3 in the hypoxic brain (p < 0.05 vs. Nx). In the normoxic preparations, active caspase-9 density increased by 9, 4 and 20% in the presence of ATP, cytochrome c and ATP+cytochrome c, respectively. In the hypoxic preparations, active caspase-9 density increased by 30, 45 and 60% in the presence of ATP, cytochrome c and ATP+cytochrome c, respectively. These results show that incubation with ATP, cytochrome c and ATP+cytochrome c result in a significantly increased activation of caspase-9 in the hypoxic group (p < 0.05). We conclude that the ATP and cytochrome c dependent activation of caspase-9 is increased during hypoxia. We propose that the ATP and cytochrome c sites of apoptotic protease activating factor I that mediate caspase-9 activation are modified during hypoxia.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19102, United States.
| | | | | | | |
Collapse
|
28
|
Delivoria-Papadopoulos M, Mishra OP. Mechanism of activation of caspase-9 and caspase-3 during hypoxia in the cerebral cortex of newborn piglets: the role of nuclear Ca2+ -influx. Neurochem Res 2007; 32:401-5. [PMID: 17268855 DOI: 10.1007/s11064-006-9229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity Ca2+-ATPase-dependent increase in nuclear Ca2+ -influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+ -influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+ -ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets. Thirteen newborn piglets were divided into three groups, normoxic (Nx, n=4), hypoxic (Hx, n=4), and hypoxic treated with clonidine (100 mg/kg) (Hx-Cl, n=5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic substrates. ATP (micromoles/g brain) was 4.6 +/- 0.3 in Nx, 1.7 +/- 0.4 in Hx (P < 0.05 vs. Nx), and 1.5 +/- 0.2 in Hx-Cl (P < 0.05 vs. Nx). PCr (micromoles/g brain) was 3.6 +/- 0.4 in Nx, 1.1 +/- 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 +/- 0.2 in Hx-Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 +/- 0.0642 in Nx and increased to 0.808 +/- 0.080 (P < 0.05 vs. Nx and Hx-Cl) in the Hx and 0.562 +/- 0.050 in the Hx-Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h) was 22.0 +/- 1.3 in Nx and 32 +/- 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 +/- 3.2 in the Hx-Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+ -ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine, Neonatal Research Laboratory, NCB, Mail Stop #1029, 245 N 15th Street, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
29
|
Chiang MC, Ashraf QM, Ara J, Mishra OP, Delivoria-Papadopoulos M. Mechanism of caspase-3 activation during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2007; 421:67-71. [PMID: 17553617 DOI: 10.1016/j.neulet.2007.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 11/18/2022]
Abstract
We have previously shown that the activity and the expression of caspase-9 and caspase-3 were increased during hypoxia in the cerebral cortex of newborn piglets. The present study was conducted to test the hypothesis that the hypoxia-induced activation of caspase-3 in the cerebral cortex of newborn piglets is mediated by caspase-9. Twenty-two newborn piglets were randomly assigned to four groups: normoxic (Nx), normoxic pretreated with a selective caspase-9 inhibitor, Z-Leu-Glu(OMe)-His-Asp(OMe)-Fluoromethyl ketone (Z-LEHD-FMK) (Nx+LEHD), hypoxic (Hx), and hypoxic pretreated with Z-LEHD-FMK (Hx+LEHD). Cerebral tissue hypoxia was confirmed biochemically by measuring ATP and phosphocreatine. Caspase-9 and -3 activities were determined spectrofluorometrically. The expression of caspase-9 and -3 proteins was measured by Western blot analysis using active enzyme specific antibodies. Cytosolic caspase-9 activity (nmol/mg protein/h) was 3.70+/-0.40 in Nx, 3.56+/-0.31 in Nx+LEHD (p=NS versus Nx), 4.99+/-0.64 in Hx (p<0.05 versus Nx), and 3.73+/-0.80 in Hx+LEHD (p<0.05 versus Hx, p=NS versus Nx). Cytosolic caspase-3 activity (nmol/mg protein/h) was 7.80+/-1.17 in Nx, 8.15+/-0.87 in Nx+LEHD (p=NS versus Nx), 13.07+/-0.78 in Hx (p<0.05 versus Nx), and 10.05+/-2.09 in Hx+LEHD (p<0.05 versus Hx) The density (ODxmm(2)) of active caspase-9 protein was 18.52+/-1.89 in Nx, 20.53+/-1.12 in Nx+LEHD (p=NS versus Nx), 32.36+/-5.03 in Hx (p<0.05 versus Nx), and 19.94+/-3.59 in Hx+LEHD (p<0.05 versus Hx, p=NS versus Nx). The density (ODxmm(2)) of active caspase-3 protein was 55.87+/-8.73 in Nx, 55.69+/-8.18 in Nx+LEHD (p=NS versus Nx), 94.10+/-12.05 in Hx (p<0.05 versus Nx), and 56.12+/-14.56 in Hx+LEHD (p<0.05 versus Hx, p=NS versus Nx). These data show that administration of a selective caspase-9 inhibitor, Z-LEHD-FMK, prior to hypoxia prevents the hypoxia-induced increase in caspase-3 activity and the expression of active caspase-3 protein. We conclude that the hypoxia-induced activation of caspase-3 during hypoxia in the cerebral cortex of newborn piglets is mediated by caspase-9.
Collapse
Affiliation(s)
- Ming-Chou Chiang
- Department of Pediatrics, Chang Gung University College of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | | | | | | | | |
Collapse
|
30
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Differential expression of apoptotic proteins following hypoxia-induced CREB phosphorylation in the cerebral cortex of newborn piglets. Neurochem Res 2007; 32:1256-63. [PMID: 17401658 DOI: 10.1007/s11064-007-9301-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/30/2007] [Indexed: 12/16/2022]
Abstract
The present study investigates the correlation between the hypoxia-induced phosphorylation of cyclic AMP response element binding protein and the expression of apoptotic proteins (proapoptotic proteins Bax and Bad and antiapoptotic proteins Bcl-2 and Bcl-xl) during hypoxia in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx) and hypoxic (Hx, FiO(2)=0.06 for 1 h) groups. Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Ser(133) phosphorylation of cyclic AMP response element binding (CREB) protein was determined by Western blot analysis using a specific anti-phosphorylated Ser(133)-CREB protein antibody. The expression of apoptotic proteins was determined by using specific anti-Bax, anti-Bad, anti-Bcl-2 and anti-Bcl-xl antibodies. ATP and PCr values (mumoles/g brain) in Hx were significantly different from Nx (ATP: 4.40 +/- 0.39 in Nx vs. 1.19 +/- 0.44 in Hx, P<0.05 vs. Nx; PCr: 3.60 +/- 0.40 in Nx vs. 0.70 +/- 0.31 in Hx, P<0.05 vs. Nx). Ser(133) phosphorylated CREB protein (OD x mm(2)) was 74.55 +/- 4.75 in Nx and 127.13 +/- 19.36 in Hx (P<0.05 vs. Nx). The expression of proapoptotic proteins Bax and Bad increased and strongly correlated with the increase in CREB protein phosphorylation (correlation coefficient r=0.82 and r=0.85, respectively). The expression of antiapoptotic proteins Bcl-2 and Bcl-xl did not show correlation with CREB protein phosphorylation. We conclude that cerebral hypoxia results in differential regulation of CREB protein-mediated expression of proapoptotic and antiapoptotic proteins in the cerebral cortex of newborn piglets. We propose that the increased expression of proapoptotic vs antiapoptotic genes will lead to an increased potential for apoptotic programmed cell death in the Hx newborn brain.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine, New College Building, 7th Floor, Room 7410, 245N 15th Street, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
31
|
Hornick K, Chang E, Zubrow AB, Mishra OP, Delivoria-Papadopoulos M. Mechanism of Ca(2+)/calmodulin-dependent protein kinase IV activation and of cyclic AMP response element binding protein phosphorylation during hypoxia in the cerebral cortex of newborn piglets. Brain Res 2007; 1150:40-5. [PMID: 17428448 DOI: 10.1016/j.brainres.2007.02.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/15/2007] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
Previously we showed that hypoxia results in increased neuronal nuclear Ca(2+) influx, Ca(2+)/calmodulin-dependent protein kinase IV activity (CaM KIV) and phosphorylation of c-AMP response element binding (CREB) protein. The aim of the present study was to understand the importance of neuronal nuclear Ca(2+) in the role of CaM KIV activation and CREB protein phosphorylation associated with hypoxia. To accomplish this the present study tests the hypothesis that clonidine administration will block increased nuclear Ca(2+) influx by inhibiting high affinity Ca(2+)/ATPase and prevent increased CaM KIV activity and CREB phosphorylation in the neuronal nuclei of the cerebral cortex of hypoxic newborn piglets. To accomplish this piglets were divided in three groups: normoxic, hypoxic, and hypoxic-treated with clonidine. The piglets that were in the Hx+Cl group received clonidine 5 min prior to hypoxia. Cerebral tissue hypoxia was confirmed biochemically by tissue levels of ATP and phosphocreatine (PCr). The data show that clonidine prevents hypoxia-induced increase in CaM KIV activity and CREB protein phosphorylation. We conclude that the mechanism of hypoxia-induced activation of CaM KIV and CREB phosphorylation is nuclear Ca(2+) influx mediated. We speculate that nuclear Ca(2+) influx is a key step that triggers CREB mediated transcription of apoptotic proteins and hypoxic mediated neuronal death.
Collapse
Affiliation(s)
- Kristie Hornick
- Drexel University College of Medicine Division of Neonatology Department of Pediatrics Mail Stop 1029 245 N, 15th Street Philadelphia, PA 19102, USA.
| | | | | | | | | |
Collapse
|
32
|
Oehlers LP, Perez AN, Walter RB. Detection of hypoxia-related proteins in medaka (Oryzias latipes) brain tissue by difference gel electrophoresis and de novo sequencing of 4-sulfophenyl isothiocyanate-derivatized peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:120-33. [PMID: 16905368 DOI: 10.1016/j.cbpc.2006.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/08/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
Two-dimensional fluorescence-based difference gel electrophoresis (DIGE) was used in combination with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) to identify a set of hypoxia-related biomarker proteins in medaka (Oryzias latipes) brain tissue. Each of the proteins were identified via de novo sequencing of tryptic peptides derivatized with 4-sulfophenyl isothiocyanate (SPITC), which N-terminally sulfonates peptides and promotes facile post-source decay peptide fragmentation, resulting in greatly simplified spectra consisting mainly of y-series fragment ions. We also report that addition of the non-ionic surfactant n-octyl-beta-d-glucopyranoside significantly improves SPITC-derivatized peptide recoveries. In addition, we found that a MALDI matrix consisting of the sodium-tolerant matrix 2,4,6-trihydroxyacetophenone, diammonium citrate, and alpha-cyano-4-hydroxycinnamic acid also improves ionization of SPITC-peptides, presumably by reducing ionization suppression effects from matrix contaminants, especially sodium cations. The DIGE experiments and analyses resulted in detection of six abundant proteins and related isozymes up-regulated (>1.49, p<0.005) in hypoxic medaka brain tissues, including two hemoglobin beta subunit forms, four carbonic anhydrase 2 forms, calbindin, aldolase, succinate dehydrogenase, and glutathione-S-transferase.
Collapse
Affiliation(s)
- Leon P Oehlers
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University San Marcos, San Marcos, TX 78666, USA
| | | | | |
Collapse
|
33
|
Huang P, Qi Z, Bu X, Zhang N, Han S, Fang L, Li J. Neuron-specific phosphorylation of mitogen- and stress-activated protein kinase-1 involved in cerebral hypoxic preconditioning of mice. J Neurosci Res 2007; 85:1279-87. [PMID: 17330274 DOI: 10.1002/jnr.21242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated the involvement of mitogen-activated protein kinase (MAPK) cascade pathways in the development of cerebral ischemic/hypoxic preconditioning (I/HPC). However, the role of mitogen- and stress-activated protein kinase 1 (MSK1), an important downstream kinase of MAPK signaling pathways, in cerebral I/HPC is unclear. By using Western blot and immunostaining methods, we applied our unique "autohypoxia"-induced I/HPC mouse model to investigate the effects of repetitive hypoxic exposure (H0-H6, n=6 for each group) on phosphorylation and protein expression levels of MSK1 in the brain of mice. We found that the levels of phosphorylation on threonine 645 (Thr645) and serine 375 (Ser375) of MSK1, but not the protein expression, increased significantly both in hippocampus and in cortex of mice from H1-H6 groups (P<0.05) over that of the normoxic group (H0, n=6). Similarly, enhanced phosphorylations on Thr645 and Ser375 of MSK1 were also observed by immunostaining in both the cortex and the hippocampus of mice following three series of hypoxic exposures (H3). In addition, we found by using double-immunofluorescence labeling that phosphorylated Thr645-MSK1 colocalized with a neuron-specific protein, neurogranin, in both cortex and hippocampus of I/HPC mice (H3). These results suggest that the increased neuron-specific phosphorylation of MSK1 on Thr645 and Ser375, not protein expression, might be involved in the development of cerebral I/HPC in mice.
Collapse
Affiliation(s)
- Ping Huang
- Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Parker J, Ashraf QM, Akhter W, Mishra OP, Delivoria-Papadopoulos M. Effect of post-hypoxic reoxygenation on DNA fragmentation in cortical neuronal nuclei of newborn piglets. Neurosci Lett 2006; 412:273-7. [PMID: 17174473 PMCID: PMC1847413 DOI: 10.1016/j.neulet.2006.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Previous studies have shown an increased fragmentation of genomic DNA following hypoxia in cortical neuronal nuclei of newborn piglets. The present study tests the hypothesis that DNA fragmentation following hypoxia persists during reoxygenation in cortical neuronal nuclei of newborn piglets. To test this hypothesis, DNA fragmentation was assessed in 36 newborn piglets divided into six groups: normoxic (Nx), hypoxic (Hx) and hypoxic/reoxygenated for 6, 12, 24h and 7 days. The Hx groups were exposed to 7% oxygen for 1h followed by reoxygenation to room air for 6, 12, 24h and 7 days. Cerebral tissue hypoxia was confirmed biochemically by ATP and phosphocreatine (PCr) levels. Nuclei were isolated and purified using discontinuous sucrose gradient. DNA was isolated by phenol/chloroform/isoamyl-alcohol extraction method. ATP/PCr (micromol/g brain) were 4.11+/-0.15/3.67+/-0.30 for Nx, 1.31+/-0.68/0.74+/-0.30 for Hx, 3.81+/-0.11/3.24+/-0.14 for 6h reoxygenation, 4.21+/-0.12/3.27+/-0.09 for 12h reoxygenation and 4.63+/-0.09/3.75+/-0.27 for 24h reoxygenation and 4.31+/-0.12/3.70+/-0.21 for 7 days reoxygenation. There was a significant difference in the ATP and PCr values between Nx and Hx groups (p<0.05) and between Hx and hypoxic reoxygenated groups (p<0.05). DNA fragments (OD/mm(2)) increased from 1776+/-267 in the Nx group to 3211+/-285 in the Hx group (p<0.05). In the reoxygenation groups, DNA fragments (OD/mm(2)) decreased to 2018+/-249 after 6h (p<0.05 versus Hx) but increased to 3408+/-206, 2782+/-406 and 3256+/-302 after 12, 24h and 7 days, respectively. The data show a decrease in DNA fragmentation in the early phase (6h) of reoxygenation but is comparable to acute hypoxia during the later phases (12, 24h and 7 days) of reoxygenation. We propose that the biphasic pattern of DNA fragmentation during reoxygenation occurs by an initial oxidative DNA injury followed by an enzymatic cleavage of DNA by endonucleases activation.
Collapse
Affiliation(s)
- Jeffrey Parker
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, 245 N. 15th Street, MS 1029, Philadelphia, PA 19102, USA.
| | | | | | | | | |
Collapse
|
35
|
Mishra OP, Zubrow AB, Ashraf QM, Delivoria-Papadopoulos M. Nuclear Ca(++)-influx, Ca (++)/calmodulin-dependent protein kinase IV activity and CREB protein phosphorylation during post-hypoxic reoxygenation in neuronal nuclei of newborn piglets: the role of nitric oxide. Neurochem Res 2006; 31:1463-71. [PMID: 17091402 DOI: 10.1007/s11064-006-9204-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 10/12/2006] [Indexed: 11/30/2022]
Abstract
The present study tests the hypothesis that post-hypoxic reoxygenation results in an nitric oxide (NO)-mediated increase in nuclear Ca(++)-influx, increased calmodulin kinase (CaM kinase) IV activity, and increased Ser(133) phosphorylation of cyclic AMP response element binding (CREB) protein in neuronal nuclei of the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx), hypoxic (Hx, FiO(2) = 0.07 for 1 h), hypoxic with 6 h reoxygenation (Hx + reox), and Hx + reox injected with 7-nitroindazole sodium salt (7-NINA), a nNOS inhibitor, immediately after hypoxia (Hx + 7-NINA). Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Nuclear Ca(++)-influx was determined using (45)Ca(++) and CaM kinase IV activity determined by (33)P-incorporation into syntide-2. Ser(133) phosphorylation of CREB protein was determined by Western blot analysis using a specific anti-phosphorylated Ser(133)-CREB protein antibody. ATP and PCr values in Hx, Hx + reox, and Hx + 7-NINA were significantly different from Nx (P < 0.05 versus Nx). Ca(++)-influx (pmoles/mg protein/min) was 3.79 +/- 0.91 in Nx; 11.81 +/- 2.54 in Hx (P < 0.05 versus Nx), 16.55 +/- 3.55 in Hx + reox (P < 0.05 versus Nx), and 12.40 +/- 2.93 in Hx + 7-NINA (P = NS versus Hx). CaM kinase IV activity (pmoles/mg protein/min) was 1,220 +/- 76 in Nx, 2,403 +/- 254 in Hx (P < 0.05 versus Nx), 1,971 +/- 147 in Hx + reox (P < 0.05 versus Hx), and 1,939 +/- 125 Hx + 7-NINA (P < 0.05 versus Hx). Ser(133) phosphorylated CREB protein expression (OD x mm(2)) was 87 +/- 2 in Nx, 203 +/- 24 in Hx (P < 0.05 versus Nx), 186 +/- 23 in Hx + reox (P < 0.05 Nx, P = NS versus Hx), and 128 +/- 10 in Hx + 7-NINA (P < 0.05 versus Hx and Hx + reox). The results show that post-Hx administration of 7-NINA prevents the increased nuclear Ca(++)-influx and CREB protein phosphorylation at Ser(133) during reox. We conclude that post-Hx increase in nuclear Ca(++)-influx leading to increased phosphorylation of CREB protein is mediated by NO derived from nNOS. However, hypoxia-induced increase in CaM Kinase IV activity decreased during the post-Hx reox. We propose that hypoxia-induced increase in CaM Kinase IV activity leads to increased phosphorylation of CREB protein and transcription of proapoptotic genes during post-Hx reox resulting in Hx neuronal death.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, New College Building, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Preterm and ill term infants are at risk for brain injury and subsequent neurodevelopmental delay as a result of many perinatal factors. Outlined in this article are the basic science mechanisms by which hypoxia, hypocapnia, and hypercapnia may result in neuronal injury in the newborn brain.
Collapse
Affiliation(s)
- Karen I Fritz
- Department of Pediatrics, Division of Neonatology, St. Christopher's Hospital for Children, Front and Erie Streets, Philadelphia, PA 19134, USA.
| | | |
Collapse
|
37
|
Katsetos CD, Parikh NA, Fritz KI, Legido A, Delivoria-Papadopoulos M, Mishra OP. Effect of 7-nitroindazole sodium on the cellular distribution of neuronal nitric oxide synthase in the cerebral cortex of hypoxic newborn piglets. Neurochem Res 2006; 31:899-906. [PMID: 16804757 DOI: 10.1007/s11064-006-9094-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Cerebral hypoxia results in generation of nitric oxide (NO) free radicals by Ca(++)-dependent activation of neuronal nitric oxide synthase (nNOS). The present study tests the hypothesis that the hypoxia-induced increased expression of nNOS in cortical neurons is mediated by NO. To test this hypothesis the cellular distribution of nNOS was determined immunohistochemically in the cerebral cortex of hypoxic newborn piglets with and without prior exposure to the selective nNOS inhibitor 7-nitroindazole sodium (7-NINA). Studies were conducted in newborn piglets, divided into normoxic (n = 6), normoxic treated with 7-NINA (n = 6), hypoxic (n = 6) and hypoxic pretreated with 7-NINA (n = 6). Hypoxia was induced by lowering the FiO(2) to 0.05-0.07 for 1 h. Cerebral tissue hypoxia was documented by decrease of ATP and phosphocreatine levels in both the hypoxic and 7-NINA pretreated hypoxic groups (P < 0.01). An increase in the number of nNOS immunoreactive neurons was observed in the frontal and parietal cortex of the hypoxic as compared to the normoxic groups (P < 0.05) which was attenuated by pretreatment with 7-NINA (P < 0.05 versus hypoxic). 7-NINA affected neither the cerebral energy metabolism nor the cellular distribution of nNOS in the cerebral cortex of normoxic animals. We conclude that nNOS expression in cortical neurons of hypoxic newborn piglets is NO-mediated. We speculate that nNOS inhibition by 7-NINA will protect against hypoxia-induced NO-mediated neuronal death.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mishra OP, Zubrow AB, Ashraf QM, Delivoria-Papadopoulos M. Effect of nitric oxide synthase inhibition during post-hypoxic reoxygenation on Bax and Bcl-2 protein expression and DNA fragmentation in neuronal nuclei of newborn piglets. Brain Res 2006; 1101:20-8. [PMID: 16781684 DOI: 10.1016/j.brainres.2006.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 05/05/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have shown that cerebral tissue hypoxia results in increased generation of oxygen-free radicals including nitric oxide (NO), expression of the proapoptotic protein Bax and fragmentation of nuclear DNA. The present study tests the hypothesis that post-hypoxic reoxygenation for 6 h following hypoxia (FiO2=0.06 for 1 h) results in continued hypoxia-induced, NO-mediated expression of the Bax protein and nuclear DNA fragmentation in the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx), hypoxic (Hx, FiO2=0.06 for 1 h), hypoxic with 6 h reoxygenation (Hx+reox) and hypoxic with 6 h reoxygenation injected with 7-nitroindazole sodium salt (7-NINA), a selective nNOS inhibitor, immediately after hypoxia (Hx+7-NINA). Cerebral tissue hypoxia was documented by levels of ATP and phosphocreatine (PCr). Bax and Bcl-2 were analyzed by Western blot and DNA fragmentation was determined by agarose gel electrophoresis. ATP and PCr values in Hx, Hx+reox and Hx+7-NINA were significantly different from Nx (P<0.05 vs. Nx). Bax protein (ODxmm2) was 128.9+/-38.7 in Nx; 223.6+/-45.8 in Hx (P<0.05 vs. Nx); 340.5+/-73.2 in Hx+reox (P<0.05 vs. Nx, Hx and Hx+7-NINA); and 202.2+/-34.8 in Hx+7-NINA (P=NS vs. Hx). Bcl-2 protein (ODxmm2) was 14.9+/-2.7 in Nx, 12.4+/-2.1 in Hx, (P<0.05 vs. Nx), 15.7+/-3.8 in Hx+reox, (P<0.05 vs. Hx) and 13.1+/-2.2 in Hx+7-NINA (P=NS among groups). Nuclear DNA fragmentation (ODxmm2) was 147+/-15 in Nx; 797+/-84 in Hx (P<0.05 vs. Nx); 1134+/-127 in Hx+reox (P<0.05 vs. Nx, Hx and Hx+7-NINA); and 778+/-146 in Hx+7-NINA (P=NS vs. Hx, P<0.05 vs. Hx+reox). The results show that post-hypoxic reoxygenation results in increased expression of Bax protein without affecting Bcl-2 protein and increased fragmentation of nuclear DNA, which are prevented by 7-NINA. We conclude that during post-hypoxic reoxygenation the increase in Bax protein expression and fragmentation of nuclear DNA are mediated by NO derived from nNOS. We propose that in addition to NO-mediated nuclear DNA damage, the hypoxia-induced increased ratio of Bax/Bcl-2 protein will lead to caspase-activated cascade of hypoxic neuronal death during post-hypoxic reoxygenation.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Room 701, 7th Floor Heritage Building, 3300 Henry Avenue, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
39
|
Mishra OP, Randis T, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience 2006; 141:1339-49. [PMID: 16777344 DOI: 10.1016/j.neuroscience.2006.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/25/2006] [Accepted: 05/04/2006] [Indexed: 01/05/2023]
Abstract
The present study tests the hypothesis that cerebral hypoxia results in increased ratio of Bax/Bcl-2, activation of caspase-9, lipid peroxidation, and DNA fragmentation in mitochondria of the cerebral cortex of newborn piglets and that the inhibition of nitric oxide synthase by N-nitro-L-arginine during hypoxia will prevent the events leading to mitochondrial DNA fragmentation. To test this hypothesis, six piglets, 3-5 days old, were divided into three groups: normoxic (n=5), hypoxic (n=5), and hypoxic-nitric oxide synthase (n=4). Hypoxic animals were exposed to a FiO2 of 0.6 for 60 min. Nitric oxide synthase (40 mg/kg) was infused over 60 min prior to hypoxia. Tissue hypoxia was confirmed by measuring levels of ATP and phosphocreatine. Cerebral cortical tissue mitochondria were isolated and purified using a discontinuous ficoll gradient. Mitochondrial Bax and Bcl-2 proteins were determined by Western blot. Caspase-9 activity in mitochondria was determined spectro-fluorometrically using fluorogenic substrate for caspase-9. Fluorescent compounds, an index of mitochondrial membrane lipid peroxidation, were determined spectrofluorometrically. Mitochondrial DNA was isolated and separated by electrophoresis on 1% agarose gel and stained with ethidium bromide. ATP levels (micromol/g brain) were 4.52+/-0.34 in normoxic, 1.18+/-0.29 in hypoxic (P<0.05) and 1.00+/-0.26 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic). Phosphocreatine levels (micromol/g brain) were 3.61+/-0.33 in normoxic, 0.70+/-0.20 in hypoxic (P<0.05 vs. normoxic) and 0.57+/-0.14 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic, P=NS vs. hypoxic). Bax density in mitochondrial membranes was 160+/-28 in normoxic and 324+/-65 in hypoxic (P<0.001 vs. normoxic). Bcl-2 density mitochondria was 96+/-18 in normoxic and 98+/-20 in hypoxic (P=NS vs. normoxic). Mitochondrial caspase-9 activity (nmol/mg protein/h) was 1.32+/-0.23 in normoxic and 2.25+/-0.24 in hypoxic (P<0.01 vs. normoxic). Levels of fluorescent compounds (microg of quinine sulfate/g protein) were 12.48+/-4.13 in normoxic and 37.92+/-7.62 in hypoxic (P=0.003 vs. normoxic). Densities (ODxmm2) of low molecular weight DNA fragments were 143+/-38 in normoxic, 365+/-152 in hypoxic, (P<0.05 vs. normoxic) and 163+/-25 in hypoxic-nitric oxide synthase animals (P<0.05 vs. hypoxic, P=NS vs. normoxic). The data demonstrate that hypoxia results in increased mitochondrial proapoptotic protein Bax, increased mitochondrial caspase-9 activity, increased mitochondrial lipid peroxidation, and increased fragmentation of DNA in mitochondria of the cerebral cortex of newborn piglets. The administration of a nitric oxide synthase inhibitor, nitric oxide synthase, prior to hypoxia prevented fragmentation of mitochondrial DNA, indicating that the hypoxia-induced mitochondrial DNA fragmentation is NO-mediated. We propose that NO free radicals generated during hypoxia lead to NO-mediated altered expression of Bax leading to increased ratio of pro-apoptotic/anti-apoptotic protein resulting in modification of mitochondrial membrane, and subsequently Ca2+-influx and fragmentation of mitochondrial DNA.
Collapse
Affiliation(s)
- O P Mishra
- Department of Pediatrics, Room 701, 7th Floor Heritage Building, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
40
|
Mishra OP, Mishra R, Ashraf QM, Delivoria-Papadopoulos M. Nitric oxide-mediated mechanism of neuronal nitric oxide synthase and inducible nitric oxide synthase expression during hypoxia in the cerebral cortex of newborn piglets. Neuroscience 2006; 140:857-63. [PMID: 16581191 DOI: 10.1016/j.neuroscience.2006.02.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 02/04/2006] [Accepted: 02/23/2006] [Indexed: 11/26/2022]
Abstract
Previously, we have shown that hypoxia results in increased generation of nitric oxide free radicals in the cerebral cortex of newborn piglets that may be due to up-regulation of nitric oxide synthases, neuronal nitric oxide synthase and inducible nitric oxide synthase. The present study tests the hypothesis that hypoxia results in increased expression of neuronal nitric oxide synthase and inducible nitric oxide synthase in the cerebral cortex of newborn piglets and that the increased expression is nitric oxide-mediated. Newborn piglets, 2-4 days old, were divided to normoxic (n=4), hypoxic (n=4) and hypoxic-treated with 7-nitro-indazole-sodium salt, a selective neuronal nitric oxide synthase inhibitor (hypoxic-7-nitro-indazole-sodium salt, n=6, 1 mg/kg, 60 min prior to hypoxia). Piglets were anesthetized, ventilated and exposed to an FiO2 of 0.21 or 0.07 for 60 min. Cerebral tissue hypoxia was documented biochemically by determining ATP and phosphocreatine. The expression of neuronal nitric oxide synthase and inducible nitric oxide synthase was determined by Western blot using specific antibodies for neuronal nitric oxide synthase and inducible nitric oxide synthase. Protein bands were detected by enhanced chemiluminescence, analyzed by imaging densitometry and the protein band density expressed as absorbance (OD x mm(2)). The density of neuronal nitric oxide synthase in the normoxic, hypoxic and hypoxic-7-nitro-indazole-sodium salt groups was: 41.56+/-4.27 in normoxic, 61.82+/-3.57 in hypoxic (P<0.05) and 47.80+/-1.56 in hypoxic-7-nitro-indazole-sodium salt groups (P=NS vs normoxic), respectively. Similarly, the density of inducible nitric oxide synthase in the normoxic, hypoxic and hypoxic-7-nitro-indazole-sodium salt groups was: 105.21+/-9.09, 157.71+/-13.33 (P<0.05 vx normoxic), 117.84+/-10.32 (p=NS vx normoxic), respectively. The data show that hypoxia results in increased expression of neuronal nitric oxide synthase and inducible nitric oxide synthase proteins in the cerebral cortex of newborn piglets and that the hypoxia-induced increased expression is prevented by the administration of 7-nitro-indazole-sodium salt. Furthermore, the neuronal nitric oxide synthase inhibition prevented the inducible nitric oxide synthase expression for a period of 7 days after hypoxia. Since administration of 7-nitro-indazole-sodium salt prevents nitric oxide generation by inhibiting neuronal nitric oxide synthase, we conclude that the hypoxia-induced increased expression of neuronal nitric oxide synthase and inducible nitric oxide synthase is mediated by neuronal nitric oxide synthase derived nitric oxide. We speculate that during hypoxia nitric oxide-mediated up-regulation of nitric oxide synthases will continue the perpetual cycle of nitric oxide generation-->NOS up-regulation-->nitric oxide generation resulting in hypoxic neuronal death.
Collapse
Affiliation(s)
- O P Mishra
- Department of Pediatrics, Drexel University College of Medicine, and St. Christopher's Hospital for Children, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
41
|
Mishra OP, Delivoria-Papadopoulos M. Effect of neuronal nitric oxide synthase inhibition on caspase-9 activity during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2006; 401:81-5. [PMID: 16545906 DOI: 10.1016/j.neulet.2006.02.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/04/2006] [Accepted: 02/23/2006] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9, a key initiator of programmed cell death. We have also shown increased nitric oxide (NO) free radical generation during hypoxia in the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia-induced increase in caspase-9 activity in the cerebral cortex of newborn piglets is mediated by NO derived from neuronal nitric oxide synthase (nNOS). To test this hypothesis, cytosolic caspase-9 activity was determined in 15 newborn piglets divided into three groups: normoxic (Nx, n=5), hypoxic (Hx, n=5), and Hx pretreated with 7-nitroindazole sodium salt (7-NINA), a selective nNOS inhibitor, 1mg/kg, i.p., 1h prior to hypoxia (Hx+7NI, n=5). The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatinine (PCr) levels. The cytosolic fraction was obtained from the cerebral cortical tissue following centrifugation at 100,000 x g for 1h and caspase-9 activity was assayed using Ac-Leu-Glu-His-Asp-amino-4-methyl coumarin, a specific fluorogenic substrate for caspase-9. Caspase-9 activity was determined spectroflourometrically at 460 nm using 380 nm as excitation wavelength. ATP levels (micromol/g brain) were 4.35+/-0.21 in the Nx 1.43+/-0.28 in the Hx (p<0.05 versus Nx), and 1.73+/-0.33 in the Hx+7-NINA group (p<0.05 versus Nx, p=NS versus Hx). PCr levels (micromol/g brain) were 3.80+/-0.26 in the Nx, 0.96+/-0.20 in the Hx (p<0.05 versus Nx), and 1.09+/-0.39 in the Hx+7 NINA group (p<0.05 versus Nx, p=NS versus Hx). Cytosolic caspase-9 activity (nmol/mg protein/h), increased from 1.27+/-0.15 in the Nx to 2.13+/-0.14 in the Hx (p<0.05 versus Nx) compared to 1.10+/-0.21 in the Hx+7-NINA group (p<0.05 versus Hx, p=NS versus Nx). Caspase-3 activity (nmol/mg protein/h) also increased from 9.39+/-0.73 in Nx to 18.94+/-3.64 in Hx (p<0.05 versus Nx) compared to 8.04+/-1.05 in the Hx+7-NINA group (p<0.05 versus Hx, p=NS versus Nx). The data show that administration of 7-NINA, an nNOS inhibitor, prevented the hypoxia-induced increase in caspase-9 activity that leads to increase in caspase-3 activity. Since nNOS inhibition blocked the increase in caspase-9 activity during hypoxia, we conclude that hypoxia-induced increase in caspase-9 activity is mediated by nNOS derived NO. We propose that the NO generated during hypoxia leads to activation of caspase-9 and results in initiation of caspase-cascade-dependent hypoxic neuronal death.
Collapse
Affiliation(s)
- Om P Mishra
- Department of Pediatrics, Drexel University College of Medicine and St Christopher's Hospital for Children, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
42
|
Zhang JX, Chen XQ, Du JZ, Chen QM, Zhu CY. Neonatal exposure to intermittent hypoxia enhances mice performance in water maze and 8-arm radial maze tasks. ACTA ACUST UNITED AC 2005; 65:72-84. [PMID: 16010673 DOI: 10.1002/neu.20174] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hypoxia has generally been reported to impair learning and memory. Here we established a hypoxia-enhanced model. Intermittent hypoxia (IH) was simulated at 2 km (16.0% O2) or 5 km (10.8% O2) in a hypobaric chamber for 4 h/day from birth to 1, 2, 3, or 4 week(s), respectively. Spatial learning and memory ability was tested in the Morris water maze (MWM) task at ages of postnatal day 36 (P36)-P40 and P85-89, respectively, and in the 8-arm maze task at P60-68. The long-term potentiation (LTP), synaptic density, and phosphorylated cAMP-responsive element-binding protein (p-CREB) level in the hippocampus were measured in mice at P36 under the IH for 4 weeks (IH-4w). The results showed that IH for 3 weeks (IH-3w) and IH-4w at 2 km significantly reduced the escape latencies of mice at P36-40 in the MWM task with significantly enhanced retention, and this spatial enhancement was further confirmed by the 8-arm maze test in mice at P60-68. The improvement in MWM induced by IH-4w at 2 km was still maintained in mice at P85-89. IH-4w at 2 or 5 km significantly increased amplitude of LTP, the number of synapse, and the p-CREB level in the hippocampus of P36 mice. These results indicated that IH (4 h/day) exposure to neonatal mice at 2 km for 3 or 4 weeks enhanced mice spatial learning and memory, which was related to the increased p-CREB, LTP, and synapses of hippocampus in this model.
Collapse
Affiliation(s)
- Jia-Xing Zhang
- Division of Neurobiology and Physiology, College of Life Sciences, Yuquan Campus,Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
43
|
Maulik D, Mishra OP, Delivoria-Papadopoulos M. Effect of post-hypoxic MgSO(4) administration in utero on Ca(2+)-influx and Ca(2+)/calmodulin kinase IV activity in cortical neuronal nuclei. Neurosci Lett 2005; 386:127-32. [PMID: 16006037 DOI: 10.1016/j.neulet.2005.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/26/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
Previously we have demonstrated that in utero hypoxia results in increased nuclear Ca(2+)-influx and increased CaM kinase IV activity in neuronal nuclei of the guinea pig fetus. The present study tests the hypothesis that maternal treatment with magnesium sulfate (MgSO(4)) following in utero hypoxia will attenuate the hypoxia-induced increase in Ca(2+)-influx and CaM kinase IV activity in neuronal nuclei of the fetal guinea pig brain during recovery. Pregnant guinea pigs at 60 days of gestation were divided into four groups: normoxic (Nx=5), hypoxic (Hx, n=4), untreated post-hypoxic 24h recovery (Rec, n=8) and Mg(2+)-treated post-hypoxic 24h recovery (Mg(2+)-Rec, n=8). Maternal hypoxia was induced by decreasing FiO(2) to 8% for 1h. Recovery groups received either saline or 300 mg/kg MgSO(4) (i.p.) followed by 100mg/kg/h i.p. for 4h. Fetal cerebral tissue hypoxia was documented by ATP and phosphcreatine (PCr) levels. Neuronal nuclei were isolated and nuclear Ca(2+)-influx as well as CaM kinase activity was determined. Nuclear Ca(2+) influx (pmol/mg protein) was 4.84+/-0.83 in Nx, 12.50+/-2.97 (p<0.05) in Hx, 7.83+/-1.78 in Rec group (p<0.05 versus Nx and Hx) and 5.02+/-1.77 in Mg(2+)-Rec group (p<0.05 versus Rec group, p<0.05 versus Hx, p=NS versus Nx). CaM kinase IV activity (pmol/mg protein/min) was 1197+/-62 in Nx, 2524+/-132 (p<0.05 versus Nx) in Hx, 1830+/-141 (p<0.05 versus Nx and Hx) in Rec and 1938+/-118 in Mg(2+)-Rec group (p<0.05 versus Hx and Nx, p=n.s. versus Rec). The data show that MgSO(4) administration following in utero hypoxia prevents hypoxia-induced increase in neuronal nuclear Ca(2+)-influx but has no effect on CaM kinase activity in the guinea pig fetus during recovery. We conclude that post-hypoxic administration of Mg(2+) prevents hypoxia-induced modification of neuronal nuclear membrane function.
Collapse
Affiliation(s)
- Dev Maulik
- Department of Obstetrics and Gynecology, Winthrop University Hospital, 259 First Street, Mineola, NY 11501, USA.
| | | | | |
Collapse
|
44
|
Lopez CJ, Qayyum I, Mishra OP, Delivoria-Papadopoulos M. Effect of nitration on protein tyrosine phosphatase and protein phosphatase activity in neuronal cell membranes of newborn piglets. Neurosci Lett 2005; 386:78-81. [PMID: 16039061 DOI: 10.1016/j.neulet.2005.04.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 04/28/2005] [Accepted: 04/30/2005] [Indexed: 10/25/2022]
Abstract
Protein tyrosine phosphatase predominantly determines the status of protein tyrosine kinase-dependent phosphorylation of specific proteins and controls the survival and death of neurons. Previous studies have shown that protein tyrosine phosphatase activity is decreased during hypoxia in cortical membranes of the newborn piglet. We have also shown that nitric oxide (NO) free radicals are generated during hypoxia, and may result in modification of protein tyrosine phosphatase via peroxynitrite-mediated modification. The present study tests the hypothesis that the hypoxia-induced decrease in protein tyrosine phosphatase activity is NO-mediated. To test this hypothesis, in vitro experiments were conducted by measuring protein tyrosine phosphatase activity in the presence of an NO donor, sodium nitroprusside (SNP), or peroxynitrite. Since 3-nitrotyrosine is produced as a consequence of peroxynitrite reactions, we have also examined the effect of 3-nitrotyrosine on protein phophatase activity. Cerebral cortical P(2) membranes were prepared from seven normoxic newborn piglets and each sample was divided into three aliquots: a control group, a SNP group (exposed to 200 microM SNP), and a peroxynitrite group (exposed to 100 microM peroxynitrite). Protein tyrosine phosphatase activity was determined spectrophotometrically in the presence or absence of 2 microM bpV(phen), a highly selective inhibitor of protein tyrosine phosphatase. The protein tyrosine phosphatase activity was 198+/-25 nmol/mg protein/h in the normoxic group, 177+/-30 nmol/mg protein/h in the SNP group (p=NS versus normoxic) and 77+/-20 nmol/mg protein/h in the peroxynitrite group (p<0.001 versus normoxic). The results show that peroxynitrite but not SNP exposure results in decreased protein tyrosine phosphatase activity in vitro. Furthermore 3-nitrotyrosine (100 microm), a product of peroxynitrite, decreased the enzyme activity from 926+/-102 to 200+/-77 (p<0.001). We conclude that protein tyrosine phosphatase regulation is mediated by peroxynitrite. We propose that hypoxia-induced NO production leading to peroxynitrite formation is a potential mechanism of protein tyrosine phosphatase inactivation in vivo. The NO-induced decrease in protein tyrosine phosphatase and protein phosphatase activity, leading to Bcl-2 protein phosphorylation and loss of its antiapoptotic activity may be a NO-mediated mechanism of programmed cell death in the hypoxic brain.
Collapse
Affiliation(s)
- Carlos J Lopez
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
45
|
Abedin N, Ashraf Q, Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on the expression of pro- and anti-apoptotic proteins in neuronal nuclei of the guinea pig fetus during gestation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:32-7. [PMID: 15862625 DOI: 10.1016/j.devbrainres.2005.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 01/24/2005] [Accepted: 01/26/2005] [Indexed: 01/03/2023]
Abstract
The present study investigates the expression of apoptotic proteins Bax, Bad, Bcl-2, and Bcl-xl following hypoxia in the cerebral cortex of the guinea pig fetus as a function of gestational age. Normoxic (Nx, n = 6) and hypoxic (Hx, n = 6) guinea pig fetuses at 35 and 60 days gestation were studied. Bax expression (OD X mm(2)) was 96.9 +/- 9.5 (Nx 35 days), 116.5 +/- 8.3 (Hx 35 days), P < 0.05 and 116.2 +/- 3.4 (Nx 60 days, 144.6 +/- 11.7 (Hx 60 days), P < 0.05. Bad expression (OD X mm(2)) was 78.6 +/- 2.6 (Nx 35 days), 102.9 +/- 5.8 (Hx 35 days), P < 0.05 and 101.5 +/- 4.3 (Nx 60 days), 139.8 +/- 7.9 (Hx 60 days), P < 0.05 vs. Nx 60 days, also significantly higher from preterm hypoxia P < 0.007. Expression of Bcl-2 (OD X mm(2)) was 27.4 +/- 2.0 (Nx 35 days), 28.0 +/- 2.4 (Hx 35 days), and 27.4 +/- 2.7 (Nx 60 days), 29.7 +/- 2.3 (Hx 60 days). Expression of Bcl-xl (OD X mm(2)) was 51.0 +/- 4.4 (Nx 35 days), 46.1 +/- 8.0 (Hx 35 days) and 50.0 +/- 1.4 (Nx 60 days), 54.9 +/- 7.4 (Hx 60 days). Hypoxia resulted in increased expression of the proapoptotic proteins Bax and Bad by 20% and 30% in the preterm as compared to 24% and 38% at term, without altering the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. We conclude that the hypoxia-induced increased expression of Bax and Bad is greater at term compared to preterm. Furthermore, the hypoxia-induced increase in proapoptotic as compared to antiapoptotic proteins at term will accelerate the ongoing active process of programmed cell death at term compared to preterm gestation.
Collapse
Affiliation(s)
- Naheed Abedin
- Drexel University College of Medicine, MCP Hospital, Neonatal Research, 3300 Henry Avenue Philadelphia, PA 19133, USA.
| | | | | | | |
Collapse
|
46
|
Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on the expression and activity of mitogen-activated protein (MAP) kinase-phosphatase-1 (MKP-1) and MKP-3 in neuronal nuclei of newborn piglets: the role of nitric oxide. Neuroscience 2005; 129:665-73. [PMID: 15541888 DOI: 10.1016/j.neuroscience.2004.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2004] [Indexed: 11/20/2022]
Abstract
Mitogen-activated protein kinase-1 (MAPK-1) and MAPK-3 regulate survival and programmed cell death of neurons under stress conditions. The activity of MAPK-1 and MAPK-3 is regulated by dual specificity phosphatases: MKP-1 and MKP-3. In previous studies, we have shown that cerebral hypoxia results in increased activation of MAPK-1 and MAPK-3. Furthermore, we have shown that the hypoxia-induced activation of MAPK is nitric oxide (NO)-mediated. The present study tested the hypothesis that hypoxia results in altered expression and activity of MKP-1 and MKP-3 in neuronal nuclei and the administration of 7-nitro-indazole (7-NINA; 1 mg/kg, 60 min prior to hypoxia), a selective nNOS inhibitor, will prevent the hypoxia-induced alteration in the expression and activity of MKP-1 and MKP-3. To test this hypothesis expression and activity of MKP-1 and MKP-3 were determined in neuronal nuclei of normoxic (Nx; n=5), hypoxic (Hx; n=5) and 7-NINA-pretreated-hypoxic (7-NINA-Hx; n=5). Hypoxia was achieved by exposing the animals to an FiO2 of 0.07 for 60 min. Cerebral tissue hypoxia was documented biochemically by determining ATP and phosphocreatine levels. Neuronal nuclei were isolated using discontinuous sucrose gradient centrifugation and purified. Nuclear proteins were analyzed by Western blot using specific antibodies for MKP-1 and MKP-3 (Santa Cruz, CA, USA). The protein band density was determined by imaging densitometry and expressed as OD x mm2. The density of MKP-1 was 61.57+/-5.68, 155.86+/-44.02 and 69.88+/-25.54 in the Nx, Hx and 7-NINA-Hx groups, respectively (P<0.05, ANOVA). Similarly, the density of MKP-3 was 66.46+/-5.88, 172.04+/-33.10 and 116.88+/-14.66 in the Nx, Hx and 7-NINA-Hx groups, respectively (P<0.05, ANOVA). The data show an increased expression of MKP-1 and MKP-3 during hypoxia in neuronal nuclei of newborn piglets and the administration of 7-NINA, an nNOS inhibitor, prevented the hypoxia-induced increased expression of MKP-1 and MKP-3. The activity of MKP-1 (pmol/min) was 176.17+/-16.95 in Nx, 97.56+/-10.64 in Hx and 130+/-14.42 in the 7-NINA-Hx groups, respectively (P<0.05, ANOVA). Similarly the activity of MKP-3 was 104.11+/-12.17 in Nx, 36.29+/-16.88 in Hx and 77.89+/-20.18 in the 7-NINA groups, respectively (P<0.05, ANOVA). The results demonstrate that cerebral hypoxia results in increased expression of MKP-1 and MKP-3 expression that was prevented by the administration of 7-NINA. In contrast, hypoxia resulted in decreased activity of MKP-1 and MKP-3 that was prevented by the administration of a nNOS inhibitor. We conclude that hypoxia-induced decrease in MKP-1 and MKP-3 activity is not due to altered expression but due to NO-mediated modification of the cysteine residue at the active site of these dual specificity phosphatases, a mechanism of their inactivation that leads to activation of MAP kinases.
Collapse
Affiliation(s)
- O P Mishra
- Department of Pediatrics, Room 701, 7th Floor Heritage Building, Neonatal Research Laboratory, MCP, Drexel University College of Medicine and St. Christopher's Hospital for Children, 3300 Henry Avenue, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
47
|
Truttmann AC, Ashraf Q, Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on protein phosphatase 2A activity, subcellular distribution and expression in cerebral cortex of newborn piglets. Neuroscience 2004; 127:355-63. [PMID: 15262326 DOI: 10.1016/j.neuroscience.2004.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2004] [Indexed: 11/27/2022]
Abstract
Protein phosphatase (PP) 2A (PP2A), a major serine/threonine phosphatase highly active in the brain, is known to regulate programmed cell death by different mechanisms including downregulation of Ca++/calmodulin-dependent kinase IV (CaMK IV). Previous studies have shown that CaMK IV activity is increased following cerebral hypoxia. In the present study, we tested the hypothesis that PP2A activity and expression in neuronal nuclei are decreased following hypoxia in newborn piglets. PP and PP2A activities were determined in cerebral subcellular fractions spectrophotometrically using a serine phosphopeptide in the presence or absence of microcystine. The activity of CaMK IV in neuronal nuclei was determined by 33P-incorporation into syntide 2 in the presence or absence of either 1 mM EGTA or 0.8 mM CaCl2 and 1 mM calmodulin. The expressions of PP2A and CaMK IV were measured using Western blot. Following hypoxia, nuclear Ca++-dependent kinase IV activity increased two-fold (P<0.001), whereas PP2A and PP activities significantly decreased (P<0.05) in the neuronal nuclei and membranes but not in the cytosol (P=NS). The distribution of the activity of PP2A was 60% in the cytosol, 35% in membranes and 5% in the neuronal nuclei. The expression of PP2A protein showed a 14% increase and for CaMK IV protein a 100% increase during hypoxia. We propose that due to the decreased activity of PP and PP2A following hypoxia in the neuronal nuclei there is a shift in the balance of the phosphorylation/dephosphorylation system toward increased phosphorylated state thereby increasing activity of the nuclear CaMK IV, modulator of programmed cell death. Since there is only slight increase in the PP2A protein expression, we conclude that the changes observed in the activity of PP2A are due to hypoxia-induced modification of the enzyme itself. We also provide evidence that PP2A is a potential regulator of CaMK IV during hypoxia.
Collapse
Affiliation(s)
- A C Truttmann
- Division of Neonatology, Department of Pediatrics, University Hospital Lausanne, CHUV, 1011, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
48
|
Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on protein tyrosine kinase activity in cortical membranes of newborn piglets—the role of nitric oxide. Neurosci Lett 2004; 372:114-8. [PMID: 15531099 DOI: 10.1016/j.neulet.2004.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased tyrosine phosphorylation of cerebral cortical cell membrane proteins as well as nuclear membrane anti-apoptotic protein, Bcl-2. The present study tests the hypothesis that hypoxia results in increased protein tyrosine kinase activity in cortical cell membranes of newborn piglets and that the inhibition of neuronal NOS by administration of 7-nitroindazole sodium salt (7-NINA), a selective inhibitor of nitric oxide synthase (NOS), will prevent the hypoxia-induced increase in protein tyrosine kinase activity. To test this hypothesis, protein tyrosine kinase activity was determined in cerebral cortical membranes of 2- to 4-day-old newborn piglets divided into normoxic (n=6), hypoxic (n=5) and 7-NINA-treated hypoxic (n=5) (7-NINA, 1mg/kg, i.p., prior to hypoxia) groups. Tissue hypoxia was achieved by exposing the animals to an FiO(2) of 0.07 for 60 min and was documented biochemically by determining tissue ATP and phosphocreatine (PCr) levels. Cortical P(2) membranes were isolated and protein tyrosine kinase activity determined by (33)P incorporation into a specific peptide substrate for 15 min at 37 degrees C in a medium containing 100 mM HEPES, pH 7.0, 1mM EDTA, 125 mM MgCl(2), 25 mM MnCl(2), 2mM DTT, 0.2 mM sodium orthovanadate, 2mM EGTA, 150 microM tyrosine kinase peptide substrate [Lys 19] cdc2(6-20)-NH(2), (33)P-ATP, and 10 microg of membrane protein. Protein tyrosine kinase activity was determined by the difference between (33)P incorporation in the presence and absence of specific peptide substrate and expressed as pmol/mg protein/h. The ATP values in the normoxic, hypoxic and 7-NINA-treated hypoxic animals were ATP: 4.57+/-0.45 micromol/g, 1.29+/-0.23 micromol/g (p<0.05 versus normoxic) and 1.50+/-0.14 micromol/g brain (p<0.05 versus normoxic), respectively. The PCr values in the normoxic, hypoxic and 7-NINA-treated hypoxic animals were: 3.77+/-0.36 micromol/g, 0.77+/-0.13 micromol/g (p<0.05 versus normoxic) and 1.02+/-0.24 micromol/g brain (p<0.05 versus normoxic), respectively. Protein tyrosine kinase activity in the normoxic, hypoxic and the 7-NINA-treated groups was 378+/-77 pmol/mg protein/h, 854+/-169 pmol/mg protein/h (p<0.05 versus normoxic) and 464+/-129 pmol/mg protein/h (p<0.05 versus hypoxic), respectively. The data show that cerebral tissue hypoxia results in increased protein tyrosin kinase activity in cortical membranes of newborn piglets and pretreatment with 7-NINA prevents the hypoxia-induced increase in protein tyrosine kinase activity. We conclude that the hypoxia-induced increase in protein tyrosine kinase activity is NO-mediated. We propose that the hypoxia-induced increase in protein tyrosine kinase activity leading to increased phosphorylation of Bcl-2 is a critical link to hypoxic neuronal injury pathway.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Neonatal Research Laboratory, Drexel University College of Medicine, MCP, Room 701, 7th Floor Heritage Building, 3300 Henry Avenue, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
49
|
Zubrow AB, Delivoria-Papadopoulos M, Fritz KI, Mishra OP. Effect of neuronal nitric oxide synthase inhibition on CA2+/calmodulin kinase kinase and CA2+/calmodulin kinase IV activity during hypoxia in cortical nuclei of newborn piglets. Neuroscience 2004; 125:937-45. [PMID: 15120853 DOI: 10.1016/j.neuroscience.2004.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 11/25/2022]
Abstract
The present study tests the hypothesis that cerebral tissue hypoxia results in increased Ca(2+)/calmodulin (CaM) kinase kinase activity and that the administration of nitric oxide synthase inhibitors (N-nitro-l-arginine [NNLA], or 7-nitroindazole sodium [7-NINA]) prior to the onset of hypoxia will prevent the hypoxia-induced increase in the enzyme activity. To test this hypothesis, CaM kinase kinase and CaM kinase IV activities were determined in normoxic, hypoxic, NNLA-treated hypoxic, and 7-NINA-treated hypoxic piglets. Hypoxia was induced (FiO(2)=0.05-0.08x1 h) and confirmed biochemically by tissue levels of ATP and phosphocreatine. CaM kinase kinase activity was determined in a medium containing protein kinase and phosphatase inhibitors, calmodulin, and a specifically designed CaM kinase kinase target peptide. CaM kinase IV activity was determined by (33)P-incorporation into syntide-2 in a buffer containing protein kinase and phosphatase inhibitors. Compared with normoxic animals, ATP and phosphocreatine levels were significantly lower in all hypoxic piglets whether or not pretreated with nitric oxide synthase inhibitors. There was a significant difference among CaM kinase kinase activity (pmol/mg protein/min) in normoxic (76.84+/-14.1), hypoxic (138.86+/-18.2, P<0.05 vs normoxia), NNLA-pretreated hypoxic (91.34+/-19.3; P=NS vs normoxia, P<0.05 vs hypoxia) and 7-NINA-pretreated hypoxic animals (100.12+/-23.3; P=NS vs normoxia, P<0.05 vs hypoxia). There was a significant difference among CaM kinase IV activity (pmol/mg protein/min) in normoxia (1270.80+/-126.1), hypoxia (2680.80+/-136.7; P<0.05 vs normoxia), NNLA-pretreated hypoxia (1666.00+/-154.8; P<0.05 vs normoxia, P<0.05 vs hypoxia), and 7-NINA-pretreated hypoxic (1712.9+/-231.5; P=NS vs normoxia, P<0.05 vs hypoxia). We conclude that the hypoxia-induced increase in CaM kinase kinase and CaM kinase IV activity is mediated by neuronal NOS-derived NO.
Collapse
Affiliation(s)
- A B Zubrow
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Front Street at Erie Avenue, Philadelphia, PA 19134, USA.
| | | | | | | |
Collapse
|
50
|
Ashraf QM, Haider SH, Katsetos CD, Delivoria-Papadopoulos M, Mishra O. Nitric oxide-mediated alterations of protein tyrosine phosphatase activity and expression during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2004; 362:108-12. [PMID: 15193765 DOI: 10.1016/j.neulet.2004.02.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 02/25/2004] [Accepted: 03/03/2004] [Indexed: 11/23/2022]
Abstract
The present study tested the hypothesis that the hypoxia-induced decrease in protein tyrosine phosphatase (PTP) activity in the membranes and increased activity and expression of PTPs (PTP-1B, PTP-SH1 and 2) in the cytosol of the cerebral cortex of newborn piglets are mediated by nitric oxide (NO). To test this hypothesis, PTP activity in cell membranes and activity and expression were measured in the cytosol of normoxic (Nx, n = 5), hypoxic (Hx, n = 5), and 7-nitro-indazole sodium salt (7-NINA), a selective inhibitor of neuronal nitric oxide synthase (nNOS), pretreated hypoxic (7-NINA+Hx, n = 6) newborn piglets. PTP activity in cortical cell membranes was lower in the Hx group as compared to the Nx group and this decrease was prevented in the 7-NINA+Hx group. The density of cytosolic PTP-1B, cytosolic PTP-SH1 and PTP-SH2 was increased in the Hx group and this increase was prevented in the 7-NINA+Hx group. Immunohistochemistry results show an increased immunoreactivity to PTP-1B in the Hx as compared to Nx animals. The data show that pretreatment with 7-NINA, a selective inhibitor of nNOS, prevents the hypoxia-induced decrease in PTP activity in membranes. nNOS inhibition also prevented the hypoxia-induced increase in PTP activity and expression in cytosol, and therefore we conclude that modification of PTP during hypoxia is NO-mediated.
Collapse
Affiliation(s)
- Qazi M Ashraf
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19129, USA.
| | | | | | | | | |
Collapse
|