1
|
Li X, Zhang W, Ji L, Cao Y. Potential Mechanism Linking Peer Relationships and Adolescent Prosocial Behavior: Mediation of Cognitive Empathy and Moderations of OXTR and DRD2. J Youth Adolesc 2024; 53:2801-2815. [PMID: 38834755 DOI: 10.1007/s10964-024-02023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Peers are important socializers of adolescent prosocial behavior. Still, the proximal cognitive and emotional process underlying this link and the sources of individual differences in sensitivity to peer influence have yet to be explored. Utilizing the gene-gene-environment (G × G × E) approach and multi-informant measurement, this study investigated how peer relationships operate to influence adolescent prosocial behavior by examining the mediating role of cognitive and emotional empathy, and the moderating role of the OXTR and DRD2 genes. The study utilized longitudinal data from a community sample of Chinese adolescents (N = 1080, Mage = 13.32 years at T1). Results showed that cognitive empathy rather than emotional empathy mediated the link between peer acceptance/rejection and prosocial behavior. Furthermore, the association among peer acceptance, cognitive empathy, and prosocial behavior was moderated by OXTR and DRD2. Specifically, adolescents with the combinations of AA/AA or G/G genotypes of OXTR/DRD2 benefited more from peer acceptance compared to their counterparts carrying other combined genotypes. The findings highlight cognitive empathy as a proximal process linking peer interaction to prosocial behavior and lend support to the interaction between oxytocinergic and dopaminergic systems on environmental sensitivity.
Collapse
Affiliation(s)
- Xi Li
- Department of Psychology, Shandong Normal University, Jinan, 250014, Shandong Province, China
| | - Wenxin Zhang
- Department of Psychology, Shandong Normal University, Jinan, 250014, Shandong Province, China.
| | - Linqin Ji
- Department of Psychology, Shandong Normal University, Jinan, 250014, Shandong Province, China
| | - Yanmiao Cao
- Department of Psychology, Shandong Normal University, Jinan, 250014, Shandong Province, China.
| |
Collapse
|
2
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Kelberman MA, Winther KE, Medvedeva YM, Donaldson ZR. Aging leads to sex-dependent effects on pair bonding and increased number of oxytocin-producing neurons in monogamous prairie voles. Horm Behav 2024; 166:105647. [PMID: 39342749 DOI: 10.1016/j.yhbeh.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Pair bonds powerfully modulate health, which becomes particularly important when facing the detrimental effects of aging. To examine the impact of aging on relationship formation and response to loss, we examined behavior in naive 6-, 12-, and 18-month male and female prairie voles, a monogamous species that forms mating-based pair bonds. We found that older males (18-months) bonded quicker than younger voles, while similarly aged female voles increased partner directed affiliative behaviors. Supporting sex differences in bonding behaviors, we found that males were more likely to sample both partner and stranger voles while females were more likely to display partner preference during the initial 20 min of the test. We also found that male voles of all ages show enduring bonding behavior despite four weeks of partner separation while females show an overall decrease in partner-directed affiliation, including an erosion of partner preference in 12-month females. Finally, we found that the number of oxytocin, but not vasopressin, cells in the paraventricular hypothalamus increased at 18 months of age. These results establish prairie voles as a novel model to study the effects of normal and abnormal aging on pair bonding.
Collapse
Affiliation(s)
- Michael A Kelberman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kelly E Winther
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Yana M Medvedeva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
4
|
Rae M, Gomes I, Spelta LEW, Bailey A, Marcourakis T, Devi L, Camarini R. Environmental enrichment enhances ethanol preference over social reward in male swiss mice: Involvement of oxytocin-dopamine interactions. Neuropharmacology 2024; 253:109971. [PMID: 38705568 PMCID: PMC11145911 DOI: 10.1016/j.neuropharm.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.
Collapse
Affiliation(s)
- Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Lakshmi Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
5
|
Smith MA, Armas SP, Camp JD, Carlson HN. The positive reinforcing effects of cocaine and opposite-sex social contact: roles of biological sex and estrus. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06648-z. [PMID: 38992255 DOI: 10.1007/s00213-024-06648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
RATIONALE Preclinical studies report that drug use and social contact mutually influence the reinforcing effects of one another. Most of these studies have used same-sex dyads exclusively, and the role of factors related to biological sex and hormonal fluctuations are not well understood. OBJECTIVES The purpose of this study was to examine the reinforcing effects of cocaine and social contact with an opposite-sex partner in male and female rats, and how these effects are modulated by ovarian hormones. METHODS Male and female rats were trained in a nonexclusive choice procedure in which cocaine and social contact with an opposite-sex partner were simultaneously available on concurrent progressive ratio schedules of reinforcement. To examine the effects of ovarian hormones related to estrous cycling, Experiment 1 used naturally cycling, gonadally intact females, whereas Experiment 2 used ovariectomized females, and estrus was artificially induced with exogenous hormones. RESULTS In both experiments, cocaine and social contact functioned as robust reinforcers, and there were no significant effects of biological sex or estrus status of the females. The positive reinforcing effects of both cocaine and social contact increased as a function of cocaine dose, indicating that contingent cocaine administration increases the reinforcing effects of social contact. CONCLUSIONS These data suggest that cocaine use among opposite-sex partners may enhance factors that contribute to social bonding.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA.
| | - Samantha P Armas
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| | - Jacob D Camp
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| | - Hannah N Carlson
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| |
Collapse
|
6
|
Long KLP, Hoglen NEG, Keip AJ, Klinkel RM, See DL, Maa J, Wong JC, Sherman M, Manoli DS. Oxytocin receptor function regulates neural signatures of pair bonding and fidelity in the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.599940. [PMID: 38979148 PMCID: PMC11230272 DOI: 10.1101/2024.06.23.599940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The formation of enduring relationships dramatically influences future behavior, promoting affiliation between familiar individuals. How such attachments are encoded to elicit and reinforce specific social behaviors in distinct ethological contexts remains unknown. Signaling via the oxytocin receptor (Oxtr) in the nucleus accumbens (NAc) facilitates social reward as well as pair bond formation between mates in socially monogamous prairie voles 1-9 . How Oxtr function influences activity in the NAc during pair bonding to promote affiliative behavior with partners and rejection of other potential mates has not been determined. Using longitudinal in vivo fiber photometry in wild-type prairie voles and those lacking Oxtr, we demonstrate that Oxtr function sex-specifically regulates pair bonding behaviors and associated activity in the NAc. Oxtr function influences prosocial behavior in females in a state-dependent manner. Females lacking Oxtr demonstrate reduced prosocial behaviors and lower activity in the NAc during initial chemosensory investigation of novel males. Upon pair bonding, affiliative behavior with partners and neural activity in the NAc during these interactions increase, but these changes do not require Oxtr function. Conversely, males lacking Oxtr display increased prosocial investigation of novel females. Using the altered patterns of behavior and activity in the NAc of males lacking Oxtr during their first interactions with a female, we can predict their future preference for a partner or stranger days later. These results demonstrate that Oxtr function sex-specifically influences the early development of pair bonds by modulating prosociality and the neural processing of sensory cues and social interactions with novel individuals, unmasking underlying sex differences in the neural pathways regulating the formation of long-term relationships.
Collapse
|
7
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
8
|
Forero SA, Liu S, Shetty N, Ophir AG. Re-wiring of the bonded brain: Gene expression among pair bonded female prairie voles changes as they transition to motherhood. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12906. [PMID: 38861664 PMCID: PMC11166254 DOI: 10.1111/gbb.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Motherhood is a costly life-history transition accompanied by behavioral and neural plasticity necessary for offspring care. Motherhood in the monogamous prairie vole is associated with decreased pair bond strength, suggesting a trade-off between parental investment and pair bond maintenance. Neural mechanisms governing pair bonds and maternal bonds overlap, creating possible competition between the two. We measured mRNA expression of genes encoding receptors for oxytocin (oxtr), dopamine (d1r and d2r), mu-opioids (oprm1a), and kappa-opioids (oprk1a) within three brain areas processing salience of sociosensory cues (anterior cingulate cortex; ACC), pair bonding (nucleus accumbens; NAc), and maternal care (medial preoptic area; MPOA). We compared gene expression differences between pair bonded prairie voles that were never pregnant, pregnant (~day 16 of pregnancy), and recent mothers (day 3 of lactation). We found greater gene expression in the NAc (oxtr, d2r, oprm1a, and oprk1a) and MPOA (oxtr, d1r, d2r, oprm1a, and oprk1a) following the transition to motherhood. Expression for all five genes in the ACC was greatest for females that had been bonded for longer. Gene expression within each region was highly correlated, indicating that oxytocin, dopamine, and opioids comprise a complimentary gene network for social signaling. ACC-NAc gene expression correlations indicated that being a mother (oxtr and d1r) or maintaining long-term pair bonds (oprm1a) relies on the coordination of different signaling systems within the same circuit. Our study suggests the maternal brain undergoes changes that prepare females to face the trade-off associated with increased emotional investment in offspring, while also maintaining a pair bond.
Collapse
MESH Headings
- Animals
- Female
- Arvicolinae/genetics
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Pair Bond
- Maternal Behavior/physiology
- Nucleus Accumbens/metabolism
- Pregnancy
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Gyrus Cinguli/metabolism
- Preoptic Area/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
| | - Sydney Liu
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Netra Shetty
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
9
|
Adams JAM, Komatsu N, Navarro N, Leem E, Sun X, Zhao J, Arias-Soto OI, Landry MP. Near infrared fluorescent nanosensors for high spatiotemporal oxytocin imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593556. [PMID: 38766215 PMCID: PMC11100785 DOI: 10.1101/2024.05.10.593556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 μM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.
Collapse
|
10
|
Sadino JM, Donaldson ZR. Prairie voles as a model for adaptive reward remodeling following loss of a bonded partner. Ann N Y Acad Sci 2024; 1535:20-30. [PMID: 38594916 PMCID: PMC11334365 DOI: 10.1111/nyas.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Loss of a loved one is a painful event that substantially elevates the risk for physical and mental illness and impaired daily function. Socially monogamous prairie voles are laboratory-amenable rodents that form life-long pair bonds and exhibit distress upon partner separation, mirroring phenotypes seen in humans. These attributes make voles an excellent model for studying the biology of loss. In this review, we highlight parallels between humans and prairie voles, focusing on reward system engagement during pair bonding and loss. As yearning is a unique feature that differentiates loss from other negative mental states, we posit a model in which the homeostatic reward mechanisms that help to maintain bonds are disrupted upon loss, resulting in yearning and other negative impacts. Finally, we synthesize studies in humans and voles that delineate the remodeling of reward systems during loss adaptation. The stalling of these processes likely contributes to prolonged grief disorder, a diagnosis recently added to the Diagnostic and Statistical Manual for Psychiatry.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
11
|
Ford CL, McDonough AA, Horie K, Young LJ. Melanocortin agonism in a social context selectively activates nucleus accumbens in an oxytocin-dependent manner. Neuropharmacology 2024; 247:109848. [PMID: 38253222 PMCID: PMC10923148 DOI: 10.1016/j.neuropharm.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.
Collapse
Affiliation(s)
- Charles L Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA.
| | - Anna A McDonough
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Pierce AF, Protter DSW, Watanabe YL, Chapel GD, Cameron RT, Donaldson ZR. Nucleus accumbens dopamine release reflects the selective nature of pair bonds. Curr Biol 2024; 34:519-530.e5. [PMID: 38218185 PMCID: PMC10978070 DOI: 10.1016/j.cub.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
In monogamous species, prosocial behaviors directed toward partners are dramatically different from those directed toward unknown individuals and potential threats. Dopamine release in the nucleus accumbens has a well-established role in social reward and motivation, but how this mechanism may be engaged to drive the highly divergent social behaviors directed at a partner or unfamiliar conspecific remains unknown. Using monogamous prairie voles, we first employed receptor pharmacology in partner preference and social operant tasks to show that dopamine is critical for the appetitive drive for social interaction but not for low-effort, unconditioned consummatory behaviors. We then leveraged the subsecond temporal resolution of the fluorescent biosensor, GRABDA, to ask whether differential dopamine release might distinguish between partner and novel social access and interaction. We found that partner seeking, anticipation, and interaction resulted in more accumbal dopamine release than the same events directed toward a novel vole. Further, partner-associated dopamine release decreased after prolonged partner separation. Our results are consistent with a model in which dopamine signaling plays a prominent role in the appetitive aspects of social interactions. Within this framework, differences in partner- and novel-associated dopamine release reflect the selective nature of pair bonds and may drive the partner- and novel-directed social behaviors that reinforce and cement bonds over time. This provides a potential mechanism by which highly conserved reward systems can enable selective, species-appropriate social behaviors.
Collapse
Affiliation(s)
- Anne F Pierce
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| | - David S W Protter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Yurika L Watanabe
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Gabriel D Chapel
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Ryan T Cameron
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Zoe R Donaldson
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| |
Collapse
|
13
|
Cantini D, Choleris E, Kavaliers M. Neurobiology of Pathogen Avoidance and Mate Choice: Current and Future Directions. Animals (Basel) 2024; 14:296. [PMID: 38254465 PMCID: PMC10812398 DOI: 10.3390/ani14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Animals are under constant threat of parasitic infection. This has influenced the evolution of social behaviour and has strong implications for sexual selection and mate choice. Animals assess the infection status of conspecifics based on various sensory cues, with odours/chemical signals and the olfactory system playing a particularly important role. The detection of chemical cues and subsequent processing of the infection threat that they pose facilitates the expression of disgust, fear, anxiety, and adaptive avoidance behaviours. In this selective review, drawing primarily from rodent studies, the neurobiological mechanisms underlying the detection and assessment of infection status and their relations to mate choice are briefly considered. Firstly, we offer a brief overview of the aspects of mate choice that are relevant to pathogen avoidance. Then, we specifically focus on the olfactory detection of and responses to conspecific cues of parasitic infection, followed by a brief overview of the neurobiological systems underlying the elicitation of disgust and the expression of avoidance of the pathogen threat. Throughout, we focus on current findings and provide suggestions for future directions and research.
Collapse
Affiliation(s)
- Dante Cantini
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Elena Choleris
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Martin Kavaliers
- Department of Psychology, College of Social and Applied Human Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Psychology, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
14
|
Ávila-González D, Romero-Morales I, Caro L, Martínez-Juárez A, Young LJ, Camacho-Barrios F, Martínez-Alarcón O, Castro AE, Paredes RG, Díaz NF, Portillo W. Increased proliferation and neuronal fate in prairie vole brain progenitor cells cultured in vitro: effects by social exposure and sexual dimorphism. Biol Sex Differ 2023; 14:77. [PMID: 37919790 PMCID: PMC10623709 DOI: 10.1186/s13293-023-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Italo Romero-Morales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lizette Caro
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, USA
| | - Francisco Camacho-Barrios
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Analía E Castro
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
15
|
Bode A. Romantic love evolved by co-opting mother-infant bonding. Front Psychol 2023; 14:1176067. [PMID: 37915523 PMCID: PMC10616966 DOI: 10.3389/fpsyg.2023.1176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
For 25 years, the predominant evolutionary theory of romantic love has been Fisher's theory of independent emotion systems. That theory suggests that sex drive, romantic attraction (romantic love), and attachment are associated with distinct neurobiological and endocrinological systems which evolved independently of each other. Psychological and neurobiological evidence, however, suggest that a competing theory requires attention. A theory of co-opting mother-infant bonding sometime in the recent evolutionary history of humans may partially account for the evolution of romantic love. I present a case for this theory and a new approach to the science of romantic love drawing on human psychological, neurobiological, and (neuro)endocrinological studies as well as animal studies. The hope is that this theoretical review, along with other publications, will generate debate in the literature about the merits of the theory of co-opting mother-infant bonding and a new evolutionary approach to the science of romantic love.
Collapse
|
16
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
17
|
Taylor JH, Campbell NS, Powell JM, Elliott Albers H, Kelly AM. Distribution of Vasopressin 1a and Oxytocin Receptor Binding in the Basal Forebrain and Midbrain of Male and Female Mongolian Gerbils. Neuroscience 2023; 522:33-41. [PMID: 37172688 PMCID: PMC10330636 DOI: 10.1016/j.neuroscience.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The nonapeptide system modulates a diversity of social behaviors, including aggression, parental care, affiliation, sexual behavior, and pair bonding. Such social behaviors are regulated through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin V1a receptor (AVPR1A) in the brain. Nonapeptide receptor distributions have been mapped for several species, however, studies have demonstrated that there is substantial variation across species. Mongolian gerbils (Meriones unguiculatus) are an excellent organism for studying family dynamics, social development, pair bonding, and territorial aggression. Although an increasing number of studies are examining the neural mechanisms of social behavior in Mongolian gerbils, nonapeptide receptor distributions have yet to be characterized for this species. Here we conducted receptor autoradiography to map distributions of OXTR and AVPR1A binding throughout the basal forebrain and midbrain of female and male Mongolian gerbils. Further, we assessed whether gonadal sex influenced binding densities in brain regions important for social behavior and reward, however, we observed no effects of sex on OXTR or AVPR1A binding densities. These findings provide mapping distributions of nonapeptide receptors in male and female Mongolian gerbils, laying a foundation for future studies that seek to manipulate the nonapeptide system to examine nonapeptide-mediated social behavior.
Collapse
Affiliation(s)
- Jack H Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Noah S Campbell
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Jeanne M Powell
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
18
|
Qi XG, Wu J, Zhao L, Wang L, Guang X, Garber PA, Opie C, Yuan Y, Diao R, Li G, Wang K, Pan R, Ji W, Sun H, Huang ZP, Xu C, Witarto AB, Jia R, Zhang C, Deng C, Qiu Q, Zhang G, Grueter CC, Wu D, Li B. Adaptations to a cold climate promoted social evolution in Asian colobine primates. Science 2023; 380:eabl8621. [PMID: 37262163 DOI: 10.1126/science.abl8621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/06/2022] [Indexed: 06/03/2023]
Abstract
The biological mechanisms that underpin primate social evolution remain poorly understood. Asian colobines display a range of social organizations, which makes them good models for investigating social evolution. By integrating ecological, geological, fossil, behavioral, and genomic analyses, we found that colobine primates that inhabit colder environments tend to live in larger, more complex groups. Specifically, glacial periods during the past 6 million years promoted the selection of genes involved in cold-related energy metabolism and neurohormonal regulation. More-efficient dopamine and oxytocin pathways developed in odd-nosed monkeys, which may have favored the prolongation of maternal care and lactation, increasing infant survival in cold environments. These adaptive changes appear to have strengthened interindividual affiliation, increased male-male tolerance, and facilitated the stepwise aggregation from independent one-male groups to large multilevel societies.
Collapse
Affiliation(s)
- Xiao-Guang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jinwei Wu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lu Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | | | - Paul A Garber
- Department of Anthropology, University of Illinois, Urbana, IL, USA
| | - Christopher Opie
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Yuan Yuan
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kun Wang
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ruliang Pan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Weihong Ji
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | | | - Zhi-Pang Huang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park Development Co., Shanghai, China
| | - Arief B Witarto
- Faculty of Medicine, Universitas Pertahanan, Jabodetabek, Indonesia
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | - Cheng Deng
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiang Qiu
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Guojie Zhang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dongdong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Baoguo Li
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
19
|
Forero SA, Sailer LL, Girčytė A, Madrid JE, Sullivan N, Ophir AG. Motherhood and DREADD manipulation of the nucleus accumbens weaken established pair bonds in female prairie voles. Horm Behav 2023; 151:105351. [PMID: 37003159 PMCID: PMC10133177 DOI: 10.1016/j.yhbeh.2023.105351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Monogamous pair bonding has evolved to enhance reproductive success and ensure offspring survival. Although the behavioral and neural mechanisms regulating the formation of pair bonds have been relatively well outlined, how these relationships are regulated and maintained across the lifetime of an individual remains relatively unexplored. One way to explore this is to study the maintenance of a social bond across a major life-history transition. The transition to motherhood is among the most poignant moments in the life history of a female, and is associated with significant neural and behavioral changes and shifting priorities. The nucleus accumbens (NAc) is known to modulate social valence and is central to mammalian pair bonding. In this study, we investigated two mechanisms driving variation in bond strength in the socially monogamous prairie vole (Microtus ochrogaster). We manipulated neural activity of the NAc at two distinct stages of life-history, before and after the birth of offspring, to assess how neural activity and social contexts modulate female pair bond strength. Our results showed DREADD (Designer Receptor Exclusively Activated by Designer Drugs) inhibition of the NAc decreases affiliative behavior towards the mating partner, whereas DREADD activation of the NAc increases affiliative behavior of strangers, thereby decreasing social selectivity. We also found a robust "birth effect" on pair bond strength, such that bonds with partners were weakened after the birth of offspring, an effect not attributable to the amount of cohabitation time with a partner. Overall, our data support the hypotheses that NAc activity modulates reward/saliency within the social brain in different ways, and that motherhood comes with a cost for the bond strength between mating partners.
Collapse
Affiliation(s)
| | | | - Aistė Girčytė
- Department of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - Jesus E Madrid
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Nicole Sullivan
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
20
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Danoff JS, Whelan EA, Connelly JJ. Is oxytocin receptor signaling really dispensable for social attachment? COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 14:100178. [PMID: 36872951 PMCID: PMC9981807 DOI: 10.1016/j.cpnec.2023.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Joshua S Danoff
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| | - Emma A Whelan
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| | - Jessica J Connelly
- Department of Psychology, Program in Fundamental Neuroscience, University of Virginia, United States
| |
Collapse
|
22
|
Wu R, Xu Z, Song Z, Tai F. Providing or receiving alloparental care promote partner preference and alter central oxytocin and dopamine systems in adult mandarin voles. Horm Behav 2023; 152:105366. [PMID: 37116234 DOI: 10.1016/j.yhbeh.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Juveniles of cooperative breeding species usually remain in the natal area and provide care to younger siblings, a behavior considered one form of alloparenting in the natural condition. Previous studies have demonstrated the effects of providing or receiving alloparental care on adult behaviors, including anxiety-like behavior, social interaction, and parental behavior, but little is known about the influences on species-typical bonding behaviors, such as pair-bond formation. In this study, we explored this concept using socially monogamous mandarin voles (Lasiopodomys mandarinus). As the oxytocin (OT) and dopamine systems are involved in alloparental and pair-bonding behaviors, we also examined the levels of central OT and tyrosine hydroxylase (TH), as well as OT receptor (OTR) and dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and amygdala to investigate the underlying mechanisms. Our results show that mandarin voles providing alloparental care to younger siblings displayed facilitation of partner preference formation, lower levels of OT expression in the paraventricular nucleus of the hypothalamus (PVN) and lateral hypothalamus (LH), and increased OTR and D2R mRNA expression in the NAcc compared to controls. Individuals receiving alloparental care also demonstrated facilitation of partner preference formation in adult voles. Additionally, alloparental care enhanced OT expression in the PVN, anterior medial preoptic nucleus (MPOAa), medial amygdala (MeA), and TH expression in the ventral tegmental area (VTA) and zona incerta (ZI). Furthermore, males displayed decreased D1R mRNA expression in the NAcc, whereas females showed slightly increased D2R expression in the amygdala. These results demonstrate that providing or received alloparental care can promote partner preference formation in monogamous species and that these changes are associated with altered OT and dopamine levels and their receptors in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zedong Xu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhen Song
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
23
|
Lee NS, Kim CY, Beery AK. Peer Social Environment Impacts Behavior and Dopamine D1 Receptor Density in Prairie Voles (Microtus ochrogaster). Neuroscience 2023; 515:62-70. [PMID: 36796749 DOI: 10.1016/j.neuroscience.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form selective, long-lasting relationships with mates and with same-sex peers. It is unknown to what extent mechanisms supporting 'peer relationships' are similar to those involved in mate relationships. The formation of pair bonds is dependent on dopamine neurotransmission, whereas the formation of peer relationships is not, providing evidence of relationship type-specificity. The current study assessed endogenous structural changes in dopamine D1 receptor density in male and female voles across different social environments, including long-term same-sex partnerships, new same-sex partnerships, social isolation, and group housing. We also related dopamine D1 receptor density and social environment to behavior in social interaction and partner preference tests. Unlike prior findings in mate pairs, voles paired with new same-sex partners did not exhibit upregulated D1 binding in the nucleus accumbens (NAcc) relative to controls paired from weaning. This is consistent with differences in relationship type: D1 upregulation in pair bonds aids in maintaining exclusive relationships through selective aggression, and we found that formation of new peer relationships did not enhance aggression. Isolation led to increases in NAcc D1 binding, and even across socially housed voles, individuals with higher D1 binding exhibited increased social avoidance. These findings suggest that elevated D1 binding may be both a cause and a consequence of reduced prosociality. These results highlight the neural and behavioral consequences of different non-reproductive social environments and contribute to growing evidence that the mechanisms underlying reproductive and non-reproductive relationship formation are distinct. Elucidation of the latter is necessary to understand mechanisms underlying social behavior beyond a mating context.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Claire Y Kim
- Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals (Basel) 2022; 12:ani12243589. [PMID: 36552508 PMCID: PMC9774276 DOI: 10.3390/ani12243589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.
Collapse
|
25
|
Althammer F, Wimmer MC, Krabichler Q, Küppers S, Schimmer J, Fröhlich H, Dötsch L, Gruber T, Wunsch S, Schubert T, Kirchner MK, Stern JE, Charlet A, Grinevich V, Schaaf CP. Analysis of the hypothalamic oxytocin system and oxytocin receptor-expressing astrocytes in a mouse model of Prader-Willi syndrome. J Neuroendocrinol 2022; 34:e13217. [PMID: 36458331 DOI: 10.1111/jne.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.
Collapse
Affiliation(s)
| | | | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Stephanie Küppers
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jonas Schimmer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Henning Fröhlich
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Dötsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Gruber
- Van Andel Institute, Grand Rapids, MI, USA
| | - Selina Wunsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Schubert
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg, France
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
26
|
Abstract
Motherhood goes through preparation, onset and maintenance phases until the natural weaning. A variety of changes in hormonal/neurohormonal systems and brain circuits are involved in the maternal behavior. Hormones, neuropeptides, and neurotransmitters involved in maternal behavior act via G-protein-coupled receptors, many of which in turn activate plasma membrane enzymes including phospholipase C (PLC) β isoforms. In this study, we examined the effect of PLCβ1 knockout (KO) on maternal behavior. There was little difference between PLCβ1-KO and wild-type (WT) dams in the relative time spent in maternal behavior during the period between 24 h prepartum and 12 h postpartum (-24 h ∼ PPH 12). After PPH 18, however, PLCβ1-KO dams neglected their pups so that they all died in 2-3 days. In the pup retrieval test, latency was not different during the period within PPH 12, but after PPH 18, PLCβ1-KO dams could not finish pup retrieval in a given time. During both periods, FosB expression in the nucleus accumbens (NAcc) of PLCβ1-KO dams was significantly lower than WT, but not different in the medial preoptic area (mPOA). Given that mPOA activity is required for initiation of maternal behavior, and that NAcc is known to be involved in maternal motivation and maintenance of maternal behavior, our results suggest that PLCβ1 signaling is essential for transition from the onset to maintenance phase of maternal behavior.
Collapse
Affiliation(s)
- Hea-jin Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jaewon Jang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hae-Young Koh
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea, Hae-Young Koh Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
27
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
28
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
29
|
Fan P, Zhang Z, Liu Y, Xiong Y. Parent-Performed Infant Massage for Improving Parental Mental State Within 18 Months Postpartum: A Systematic Review. J Psychosoc Nurs Ment Health Serv 2022; 61:52-59. [PMID: 36099486 DOI: 10.3928/02793695-20220906-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the current review was to assess whether parent-performed infant massage (PPIM) could effectively improve the mental state of parents during the postpartum period. Several international electronic databases were thoroughly searched for relevant articles. Included studies observed the influence of PPIM on the mental state of parents of healthy full-term infants within 18 months postpartum or medically stable preterm infants during hospitalization after birth. Nine studies were included, which observed one or more aspects of parental mental state, including depression, anxiety, parental stress, or general mood state. Characteristics of participants, massage protocols, and outcome measures were heterogenous; hence, results regarding the influence of PPIM on parental mental state were inconsistent. Upon further investigation, 10-minute, home-based PPIM for at least 4 weeks is advisable for maternal depression within 5 months postpartum. Moreover, PPIM in a neonatal intensive care unit is advisable for improving the general mood of mothers of preterm infants. Additional methodologically rigorous studies are needed to provide stronger evidence. [Journal of Psychosocial Nursing and Mental Health Services, 61(4), 52-59.].
Collapse
|
30
|
Haakenson CM, Balthazart J, Madison FN, Ball GF. The neural distribution of the avian homologue of oxytocin, mesotocin, in two songbird species, the zebra finch and the canary: A potential role in song perception and production. J Comp Neurol 2022; 530:2402-2414. [PMID: 35599378 PMCID: PMC9283256 DOI: 10.1002/cne.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
The avian homologue of oxytocin (OT), formerly called mesotocin, influences social behaviors in songbirds and potentially song production. We sought to characterize the distribution of OT peptide in the brain of two songbird species: canaries (Serinus canaria) and zebra finches (Taeniopygia guttata). To visualize OT, we performed immunocytochemistry using an antibody previously shown to identify OT in avian species. In both canaries and zebra finches, dense OT-ir perikarya were located in the paraventricular nucleus (PVN), preoptic area (POA), supraoptic nucleus (SON), and medial bed nucleus of the stria terminalis (BNSTm). We also observed morphologically distinct OT-ir cells scattered throughout the mesopallium. OT-ir fibers were observed in the PVN, ventral medial hypothalamus (VMH), periaqueductal gray (PAG), intercollicular nucleus (ICo), and ventral tegmental area (VTA). We also observed punctate OT-ir fibers in the song control nucleus HVC. In both male and female canaries, OT-ir fibers were present in the lateral septum (LS), but innervation was greater in males. We did not observe this sex difference in zebra finches. Much of the OT staining observed is consistent with general distributions within the vertebrate hypothalamus, indicating a possible conserved function. However, some extra-hypothalamic distributions, such as perikarya in the mesopallium, may be specific to songbirds and play a role in song perception and production. The presence of OT-ir fibers in HVC and song control nuclei projecting dopaminergic regions provides anatomical evidence in support of the idea that OT can influence singing behavior-either directly via HVC or indirectly via the PAG, VTA, or POA.
Collapse
Affiliation(s)
- Chelsea M. Haakenson
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA NeurosciencesUniversity of LiegeLiegeBelgium
| | - Farrah N. Madison
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- Department of BiologyHope CollegeHollandMichiganUSA
| | - Gregory F. Ball
- Program in Neuroscience and Cognitive Science, Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
31
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
32
|
Paletta P, Bass N, Kavaliers M, Choleris E. The role of oxytocin in shaping complex social behaviours: possible interactions with other neuromodulators. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210058. [PMID: 35858107 PMCID: PMC9272141 DOI: 10.1098/rstb.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 08/31/2023] Open
Abstract
This review explores the role of oxytocin in the mediation of select social behaviours, with particular emphasis on female rodents. These behaviours include social recognition, social learning, pathogen detection and avoidance, and maternal care. Specific brain regions where oxytocin has been shown to directly mediate various aspects of these social behaviours, as well as other proposed regions, are discussed. Possible interactions between oxytocin and other regulatory systems, in particular that of oestrogens and dopamine, in the modulation of social behaviour are considered. Similarities and differences between males and females are highlighted. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
- Department of Psychology, Western University, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| |
Collapse
|
33
|
Putnam PT, Chang SWC. Oxytocin does not stand alone. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210047. [PMID: 35858106 PMCID: PMC9272150 DOI: 10.1098/rstb.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Rokicki J, Kaufmann T, de Lange AMG, van der Meer D, Bahrami S, Sartorius AM, Haukvik UK, Steen NE, Schwarz E, Stein DJ, Nærland T, Andreassen OA, Westlye LT, Quintana DS. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology 2022; 47:1550-1560. [PMID: 35347267 PMCID: PMC9205980 DOI: 10.1038/s41386-022-01305-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
Abstract
Oxytocin plays a vital role in social behavior and homeostatic processes, with animal models indicating that oxytocin receptor (OXTR) expression patterns in the brain influence behavior and physiology. However, the developmental trajectory of OXTR gene expression is unclear. By analyzing gene expression data in human post-mortem brain samples, from the prenatal period to late adulthood, we demonstrate distinct patterns of OXTR gene expression in the developing brain, with increasing OXTR expression along the course of the prenatal period culminating in a peak during early childhood. This early life OXTR expression peak pattern appears slightly earlier in a comparative macaque sample, which is consistent with the relative immaturity of the human brain during early life compared to macaques. We also show that a network of genes with strong spatiotemporal couplings with OXTR is enriched in several psychiatric illness and body composition phenotypes. Taken together, these results demonstrate that oxytocin signaling plays an important role in a diverse set of psychological and somatic processes across the lifespan.
Collapse
Affiliation(s)
- Jaroslav Rokicki
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.10392.390000 0001 2190 1447Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Ann-Marie G. de Lange
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.9851.50000 0001 2165 4204LREN, Centre for Research in Neurosciences - Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland ,grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Dennis van der Meer
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5012.60000 0001 0481 6099School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shahram Bahrami
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Alina M. Sartorius
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K. Haukvik
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.55325.340000 0004 0389 8485Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emanuel Schwarz
- grid.7700.00000 0001 2190 4373Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Terje Nærland
- grid.55325.340000 0004 0389 8485NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Daniel S. Quintana
- grid.5510.10000 0004 1936 8921NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Luo PX, Zakharenkov HC, Torres LY, Rios RA, Gegenhuber B, Black AM, Xu CK, Minie VA, Tran AM, Tollkuhn J, Trainor BC. Oxytocin receptor behavioral effects and cell types in the bed nucleus of the stria terminalis. Horm Behav 2022; 143:105203. [PMID: 35636023 PMCID: PMC9827713 DOI: 10.1016/j.yhbeh.2022.105203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/12/2023]
Abstract
Oxytocin is a neuropeptide that can produce anxiolytic effects and promote social approach. However, emerging evidence shows that under some conditions, oxytocin can instead induce anxiety-related behaviors. These diverse effects of oxytocin appear to be mediated by circuit-specific actions. Recent data showed that inhibition of oxytocin receptors (OTRs) in the bed nucleus of the stria terminalis (BNST) was sufficient to increase social approach and decrease social vigilance in female California mice (Peromyscus californicus) exposed to social defeat stress. As a member of the G-protein coupled receptor family, OTRs can induce distinct downstream pathways by coupling to different G-protein isoforms. We show that infusion of carbetocin, a biased OTR-Gq agonist, in the BNST reduced social approach in both female and male California mice. In both females and males, carbetocin also increased social vigilance. To gain insight into cell types that could be mediating this effect, we analyzed previously published single-cell RNAseq data from the BNST and nucleus accumbens (NAc). In the NAc, we and others showed that OTR activation promotes social approach behaviors. In the BNST, Oxtr was expressed in over 40 cell types, that span both posterior and anterior subregions of the BNST. The majority of Oxtr-expressing neurons were GABAergic. In the anterior regions of BNST targeted in our carbetocin experiments, Cyp26b1-expressing neurons had high average Oxtr expression. In the NAc, most Oxtr+ cells were D1 dopamine receptor-expressing neurons and interneurons. These differences in Oxtr cell type distribution may help explain how activation of OTR in BNST versus NAc can have different effects on social approach and social vigilance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | - Lisette Y Torres
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Roberto A Rios
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alexis M Black
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Christine K Xu
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Vanessa A Minie
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Amy M Tran
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Brian C Trainor
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
36
|
Korann V, Jacob A, Lu B, Devi P, Thonse U, Nagendra B, Maria Chacko D, Dey A, Padmanabha A, Shivakumar V, Dawn Bharath R, Kumar V, Varambally S, Venkatasubramanian G, Deshpande G, Rao NP. Effect of Intranasal Oxytocin on Resting-state Effective Connectivity in Schizophrenia. Schizophr Bull 2022; 48:1115-1124. [PMID: 35759349 PMCID: PMC9434443 DOI: 10.1093/schbul/sbac066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Evidence from several lines of research suggests the critical role of neuropeptide oxytocin in social cognition and social behavior. Though a few studies have examined the effect of oxytocin on clinical symptoms of schizophrenia, the underlying neurobiological changes are underexamined. Hence, in this study, we examined the effect of oxytocin on the brain's effective connectivity in schizophrenia. METHODS 31 male patients with schizophrenia (SCZ) and 21 healthy male volunteers (HV) underwent resting functional magnetic resonance imaging scans with intra-nasal oxytocin (24 IU) and placebo administered in counterbalanced order. We conducted a whole-brain effective connectivity analysis using a multivariate vector autoregressive granger causality model. We performed a conjunction analysis to control for spurious changes and canonical correlation analysis between changes in connectivity and clinical and demographic variables. RESULTS Three connections, sourced from the left caudate survived the FDR correction threshold with the conjunction analysis; connections to the left supplementary motor area, left precentral gyrus, and left frontal inferior triangular gyrus. At baseline, SCZ patients had significantly weaker connectivity from caudate to these three regions. Oxytocin, but not placebo, significantly increased the strength of connectivity in these connections. Better cognitive insight and lower negative symptoms were associated with a greater increase in connectivity with oxytocin. CONCLUSIONS These findings provide a preliminary mechanistic understanding of the effect of oxytocin on brain connectivity in schizophrenia. The study findings provide the rationale to examine the potential utility of oxytocin for social cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | - Bonian Lu
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Priyanka Devi
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Umesh Thonse
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Bhargavi Nagendra
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dona Maria Chacko
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Avyarthana Dey
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anantha Padmanabha
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Rose Dawn Bharath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Vijay Kumar
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | | | - Naren P Rao
- To whom correspondence should be addressed; tel: +91-80-26995879, e-mail:
| |
Collapse
|
37
|
Shih HC, Kuo ME, Wu CW, Chao YP, Huang HW, Huang CM. The Neurobiological Basis of Love: A Meta-Analysis of Human Functional Neuroimaging Studies of Maternal and Passionate Love. Brain Sci 2022; 12:brainsci12070830. [PMID: 35884637 PMCID: PMC9313376 DOI: 10.3390/brainsci12070830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Maternal and passionate love are both crucial for reproduction and involve attachment behaviors with high rewards. Neurobiological studies of attachment in animal and human neuroimaging studies have suggested that the coordination of oxytocinergic and vasopressinergic pathways, coupled with the dopaminergic reward system, contribute to the formation and maintenance of maternal and passionate love. In the present study, we carried out a quantitative meta-analysis of human neuroimaging to identify common and dissociable neural substrates associated with maternal and passionate love, using the activation likelihood estimation (ALE) approach. The ALE results showed significant activation of the brain regions in the left ventral tegmental area (VTA), right thalamus, left substantia nigra, and the left putamen for maternal love, but in the bilateral VTA for passionate love. The meta-analytic neuroimaging evidence suggests the greater involvement of cognitive–affective regulation in maternal attachment and the greater desire to combine liking and wanting in romantic love behaviors. The conjunction analysis highlights the functional convergence of the VTA across the two types of human love, indicating a shared neurobiological mechanism of maternal and passionate love with evolutionary roots. Our findings suggest that the processing of both maternal and passionate love involve the affective and motivational regulation associated with dopaminergic systems; our neuroimaging evidence supports the notion that maternal and passionate love share a common evolutionary origin and neurobiological basis in the human brain.
Collapse
Affiliation(s)
- Hsuan-Chu Shih
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (H.-C.S.); (M.-E.K.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Mu-En Kuo
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (H.-C.S.); (M.-E.K.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei 106052, Taiwan;
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Hsu-Wen Huang
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong, China;
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (H.-C.S.); (M.-E.K.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: ; Tel.: +886-3571-2121
| |
Collapse
|
38
|
Itskovich E, Bowling DL, Garner JP, Parker KJ. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 2022; 27:2640-2649. [PMID: 35338314 PMCID: PMC9167259 DOI: 10.1038/s41380-022-01515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023]
Abstract
Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this "improvement" reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.
Collapse
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel L. Bowling
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
39
|
Zeevi L, Irani M, Catana C, Feldman Barrett L, Atzil S. Maternal dopamine encodes affective signals of human infants. Soc Cogn Affect Neurosci 2022; 17:503-509. [PMID: 34750627 PMCID: PMC9071406 DOI: 10.1093/scan/nsab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Mothers are highly responsive to their offspring. In non-human mammals, mothers secrete dopamine in the nucleus accumbens (NAcc) in response to their pups. Yet, it is still unknown which aspect of the offspring behavior elicits dopaminergic responses in mothers. Here, we tested whether infants' affective signals elicit dopaminergic responses in the NAcc of human mothers. First, we conducted a behavioral analysis on videos of infants' free play and quantified the affective signals infants spontaneously communicated. Then, we presented the same videos to mothers during a magnetic resonance-positron emission tomography scan. We traced the binding of [11C]raclopride to free D2/3-type receptors to assess maternal dopaminergic responses during the infant videos. When mothers observed videos with many infant signals during the scan, they had less [11C]raclopride binding in the right NAcc. Less [11C]raclopride binding indicates that less D2/3 receptors were free, possibly due to increased endogenous dopamine responses to infants' affective signals. We conclude that NAcc D2/3 receptors are involved in maternal responsiveness to affective signals of human infants. D2/3 receptors have been associated with maternal responsiveness in nonhuman animals. This evidence supports a similar mechanism in humans and specifies infant-behaviors that activate the maternal dopaminergic system, with implications for social neuroscience, development and psychopathology.
Collapse
Affiliation(s)
- Lior Zeevi
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Merav Irani
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lisa Feldman Barrett
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Shir Atzil
- Department of Psychology, Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
40
|
Herschberger MR, Perkeybile AM. Effects of a D2 receptor antagonist on repeated pair bond formation in the male prairie vole. Horm Behav 2022; 141:105149. [PMID: 35248868 PMCID: PMC9081227 DOI: 10.1016/j.yhbeh.2022.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Repeated formation and subsequent dissolution of romantic relationships is common in humans across a lifetime. The socially monogamous prairie vole (Microtus ochrogaster) is used to study mechanisms of these bonds. At least in the laboratory, male prairie voles form bonds with a new female partner after loss of a previous partner. Initial bond formation depends on activation of dopamine D2-like receptors in the nucleus accumbens. Blocking activity of this receptor subtype disrupts formation of an animal's first pair bond. It is not known if these same D2-like receptors facilitate pair bonding with a subsequent partner after previous partner loss. This study examined the effects of D2-like receptor blockade on repeated pair bonding in male prairie voles. Males were paired with an initial female and allowed to mate before being separated. After a 5-day separation, males were then treated with either saline or eticlopride, a selective D2-receptor antagonist, prior to being paired with a second female and being allowed to mate. After a second separation, males were tested to determine if they developed a preference for spending time with their first or second mate. Eticlopride-treated males spent more time in a cage containing one of their previous partners compared to time in an empty cage but did not form a selective preference for either partner. Saline-treated males preferred their second, more recent partner. D2 receptor antagonism, then, disrupts bond formation in a second pairing but does not help to maintain a bond with the initial partner.
Collapse
Affiliation(s)
- Madison R Herschberger
- Department of Biology, Indiana University, Biology Building, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Lindley Hall, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA; Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA.
| |
Collapse
|
41
|
Vitale EM, Smith AS. Neurobiology of Loneliness, Isolation, and Loss: Integrating Human and Animal Perspectives. Front Behav Neurosci 2022; 16:846315. [PMID: 35464141 PMCID: PMC9029604 DOI: 10.3389/fnbeh.2022.846315] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
In social species such as humans, non-human primates, and even many rodent species, social interaction and the maintenance of social bonds are necessary for mental and physical health and wellbeing. In humans, perceived isolation, or loneliness, is not only characterized by physical isolation from peers or loved ones, but also involves negative perceptions about social interactions and connectedness that reinforce the feelings of isolation and anxiety. As a complex behavioral state, it is no surprise that loneliness and isolation are associated with dysfunction within the ventral striatum and the limbic system - brain regions that regulate motivation and stress responsiveness, respectively. Accompanying these neural changes are physiological symptoms such as increased plasma and urinary cortisol levels and an increase in stress responsivity. Although studies using animal models are not perfectly analogous to the uniquely human state of loneliness, studies on the effects of social isolation in animals have observed similar physiological symptoms such as increased corticosterone, the rodent analog to human cortisol, and also display altered motivation, increased stress responsiveness, and dysregulation of the mesocortical dopamine and limbic systems. This review will discuss behavioral and neuropsychological components of loneliness in humans, social isolation in rodent models, and the neurochemical regulators of these behavioral phenotypes with a neuroanatomical focus on the corticostriatal and limbic systems. We will also discuss social loss as a unique form of social isolation, and the consequences of bond disruption on stress-related behavior and neurophysiology.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
42
|
Kitano K, Yamagishi A, Horie K, Nishimori K, Sato N. Helping behavior in prairie voles: A model of empathy and the importance of oxytocin. iScience 2022; 25:103991. [PMID: 35310938 PMCID: PMC8931361 DOI: 10.1016/j.isci.2022.103991] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Several studies suggest that rodents show empathic responses and helping behavior toward others. We examined whether prairie voles would help conspecifics who were soaked in water by opening a door to a safe area. Door-opening latency decreased as task sessions progressed. Female and male voles stayed close to the soaked voles' side at equal rates and opened the door with similar latencies. When the conspecific was not soaked in water, the door-opening latency did not decrease. This suggests that the distress of the conspecific is necessary for learning to open the door and that the door-opening performed by prairie voles corresponds to helping behavior. Additionally, we examined the helping behavior in prairie voles in which oxytocin receptors were genetically knocked out. Oxytocin receptor knockout voles demonstrated less learning of the door-opening behavior and less interest in soaked conspecifics. This suggests that oxytocin is important for the emergence of helping behavior. Prairie voles demonstrated helping behavior toward a cagemate in distress There was no difference in helping behavior depending on the helper’s sex Learning of the helping behavior was prevented when cagemates were not in distress Oxytocin receptor knockout prairie voles demonstrated less helping behavior
Collapse
Affiliation(s)
- Kota Kitano
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Atsuhito Yamagishi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
- Corresponding author
| |
Collapse
|
43
|
Meng P, Li C, Duan S, Ji S, Xu Y, Mao Y, Wang H, Tian J. Epigenetic Mechanism of 5-HT/NE/DA Triple Reuptake Inhibitor on Adult Depression Susceptibility in Early Stress Mice. Front Pharmacol 2022; 13:848251. [PMID: 35370730 PMCID: PMC8968447 DOI: 10.3389/fphar.2022.848251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic, remitting and debilitating disease and the etiology of MDD is highly complicated that involves genetic and environmental interactions. Despite many pharmacotherapeutic options, many patients remain poorly treated and the development of effective treatments remains a high priority in the field. LPM570065 is a potent 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) triple reuptake inhibitor and both preclinical and clinical results demonstrate significant efficacy against MDD. This study extends previous findings to examine the effects and underlying mechanisms of LPM570065 on stress vulnerability using a "two-hit" stress mouse model. The "two-hit" stress model used adult mice that had experienced early life maternal separation (MS) stress for social defeat stress (SDS) and then they were evaluated in three behavioral assays: sucrose preference test, tail suspension test and forced swimming test. For the mechanistic studies, methylation-specific differentially expressed genes in mouse hippocampal tissue and ventral tegmental area (VTA) were analyzed by whole-genome transcriptome analysis along with next-generation bisulfite sequencing analysis, followed by RT-PCR and pyrophosphate sequencing to confirm gene expression and methylation. LPM570065 significantly reversed depressive-like behaviors in the mice in the sucrose preference test, the tail suspension test, and the forced swimming test. Morphologically, LPM570065 increased the density of dendritic spines in hippocampal CA1 neurons. Hypermethylation and downregulation of oxytocin receptor (Oxtr) in the hippocampal tissues along with increased protein expression of Dnmt1 and Dnmt3a in mice that experienced the "two-hit" stress compared to those that only experienced adulthood social defeat stress, and LPM570065 could reverse these changes. Combined, these results suggest that methylation specificity of the gene Oxtr in the hippocampus may play an important role in early life stress-induced susceptibility to depression and that the5-HT/NE/DA triple reuptake inhibitor LPM570065 may reduce depression susceptibility via the reversal of the methylation of the gene Oxtr.
Collapse
Affiliation(s)
| | - Chunmei Li
- *Correspondence: Chunmei Li, ; Jingwei Tian,
| | | | | | | | | | | | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
44
|
Gustison ML, Phelps SM. Individual differences in social attachment: A multi-disciplinary perspective. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12792. [PMID: 35170839 PMCID: PMC8916993 DOI: 10.1111/gbb.12792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 01/23/2023]
Abstract
Social behavior varies across both individuals and species. Research to explain this variation falls under the purview of multiple disciplines, each with its own theoretical and empirical traditions. Integration of these disciplinary traditions is key to developing a holistic perspective. Here, we review research on the biology of social attachment, a phenomena in which individuals develop strong affective connections to one another. We provide a historical overview of research on social attachment from psychological, ethological and neurobiological perspectives. As a case study, we describe work on pair-bonding in prairie voles, a socially monogamous rodent. This specific topic takes advantage of many biological perspectives and techniques to explain social bonds. Lastly, we conclude with an overview of multi-dimensional conceptual frameworks that can be used to explain social phenomena, and we propose a new framework for research on individual variation in attachment behavior. These conceptual frameworks originate from philosophy, physics, ethology, cognitive science and neuroscience. The application and synthesis of such frameworks offers a rich opportunity to advance understanding of social behavior and its mechanisms.
Collapse
Affiliation(s)
- Morgan L. Gustison
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| | - Steven M. Phelps
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
- Institute for NeuroscienceThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
45
|
Sharp JL, Smith MA. The Effects of Drugs on Behavior Maintained by Social Contact: Role of Monoamines in Social Reinforcement. Front Behav Neurosci 2022; 15:805139. [PMID: 35264935 PMCID: PMC8899311 DOI: 10.3389/fnbeh.2021.805139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Drug use is highly concordant among members of adolescent and young adult peer groups. One potential explanation for this observation is that drugs may increase the reinforcing effects of social contact, leading to greater motivation to establish and maintain contact with other members of the peer group. Several classes of drugs, particularly drugs that increase synaptic dopamine, increase the reinforcing effects of contextual stimuli, but the extent to which these drugs enhance the reinforcing effects of social contact is not known. The purpose of this study was to determine the extent to which drugs that increase synaptic dopamine, norepinephrine, and serotonin enhance the positive reinforcing effects of social contact. To this end, male and female Long-Evans rats were pretreated with acute doses of the selective dopamine reuptake inhibitor, WIN-35,428, the selective norepinephrine reuptake inhibitor, atomoxetine, the selective serotonin reuptake inhibitor, fluoxetine, the non-selective monoamine reuptake inhibitor, cocaine, and the non-selective monoamine releasers d-amphetamine and (±)-MDMA. Ten minutes later, the positive reinforcing effects of 30-s access to a same-sex social partner was examined on a progressive ratio schedule of reinforcement. To determine whether the reinforcement-altering effects of these drugs were specific to the social stimulus, the reinforcing effects of a non-social stimulus (30-s access to an athletic sock of similar size and coloring as another rat) was determined in control subjects. WIN-35,428, d-amphetamine, and cocaine, but not atomoxetine, fluoxetine, or MDMA, dose-dependently increased breakpoints maintained by a social partner under conditions in which responding maintained by a non-social stimulus was not affected. These data indicate that increases in extracellular dopamine, but not extracellular norepinephrine or serotonin, increases the positive reinforcing effects of social contact in both male and female rats. These data also provide support for the hypothesis that some drugs with high abuse liability increase the motivation to establish and maintain contact with social peers.
Collapse
|
46
|
Jarosova R, Douglass AD, Johnson MA. Optimized Sawhorse Waveform for the Measurement of Oxytocin Release in Zebrafish. Anal Chem 2022; 94:2942-2949. [PMID: 35107979 PMCID: PMC9087480 DOI: 10.1021/acs.analchem.1c04879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxytocin is a nonapeptide hormone involved in numerous physiological functions. Real-time electrochemical measurements of oxytocin in living tissue are challenging due to electrode fouling and the large potentials needed to oxidize the tyrosine residue. Here, we used fast-scan cyclic voltammetry at carbon-fiber microelectrodes and flow injection analysis to optimize a waveform for the measurement of oxytocin. This optimized waveform employed an accumulation potential of -0.6 V, multiple scan rates, and a 3 ms holding potential at a positive, oxidizing potential of +1.4 V before linearly scanning the potential back to -0.6 V (versus Ag/AgCl). We obtained a limit of quantitation of 0.34 ± 0.02 μM, and our electrodes did not foul upon multiple injections. Moreover, to demonstrate the utility of our method, we measured the release of oxytocin, evoked by light application and mechanical perturbation, in whole brains from genetically engineered adult zebrafish that express channelrhodopsin-2 selectively on oxytocinergic neurons. Collectively, this work expands the toolkit for the measurement of peptides in living tissue preparations.
Collapse
Affiliation(s)
- Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045,Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Adam D. Douglass
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, 84112 USA
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045,Corresponding author: , Tel. 785-864-4269
| |
Collapse
|
47
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
48
|
Forero SA, Ophir AG. Multi-Level Effects Driving Cognitive and Behavioral Variability among Prairie Voles: Insights into Reproductive Decision-Making from Biological Levels of Organization. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:225-240. [PMID: 35051922 PMCID: PMC9256755 DOI: 10.1159/000522109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
Abstract
Behavioral phenotypes play an active role in maximizing fitness and shaping the evolutionary trajectory of species by offsetting the ecological and social environmental factors individuals experience. How these phenotypes evolve and how they are expressed is still a major question in ethology today. In recent years, an increased focus on the mechanisms that regulate the interactions between an individual and its environment has offered novel insights into the expression of alternative phenotypes. In this review, we explore the proximate mechanisms driving the expression of alternative reproductive phenotypes in the male prairie vole (Microtus ochrogaster) as one example of how the interaction of an individual's social context and internal milieu has the potential to alter behavior, cognition, and reproductive decision-making. Ultimately, integrating the physiological and psychological mechanisms of behavior advances understanding into how variation in behavior arises. We take a "levels of biological organization" approach, with prime focus placed on the level of the organism to discuss how cognitive processes emerge as traits, and how they can be studied as important mechanisms driving the expression of behavior.
Collapse
|
49
|
Hertenstein E, Trinca E, Schneider CL, Wunderlin M, Fehér K, Riemann D, Nissen C. Augmentation of Psychotherapy with Neurobiological Methods: Current State and Future Directions. Neuropsychobiology 2022; 80:437-453. [PMID: 33910218 DOI: 10.1159/000514564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Psychotherapy and pharmacotherapy are first-line treatments for mental disorders. Despite recent improvements, only approximately 50% of the patients reach sustained remission, indicating a need for novel developments. The main concept put forward in this systematic review and hypothesis article is the targeted co-administration of defined neurobiological interventions and specific psychotherapeutic techniques. METHODS We conducted a systematic literature search for randomized controlled trials comparing the efficacy of augmented psychotherapy to psychotherapy alone. RESULTS Thirty-five trials fulfilled the inclusion criteria. The majority (29 trials) used augmentation strategies such as D-cycloserine, yohimbine, or sleep to enhance the effects of exposure therapy for anxiety disorders. Fewer studies investigated noninvasive brain stimulation with the aim of improving cognitive control, psychedelic compounds with the aim of enhancing existentially oriented psychotherapy, and oxytocin to improve social communication during psychotherapy. Results demonstrate small augmentation effects for the enhancement of exposure therapy - however, some of the studies found negative results. Other methods are less thoroughly researched, and results are mixed. CONCLUSIONS This approach provides an open matrix for further research and has the potential to systematically guide future studies.
Collapse
Affiliation(s)
| | - Ersilia Trinca
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | | | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kristoffer Fehér
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Dieter Riemann
- Clinic of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
50
|
Seraphin SB, Sanchez MM, Whitten PL, Winslow JT. The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta). Horm Behav 2022; 137:105078. [PMID: 34823146 PMCID: PMC11302405 DOI: 10.1016/j.yhbeh.2021.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Dopamine (DA) is a critical neuromodulator of behavior. With propensities for addiction, hyper-activity, cognitive impairment, aggression, and social subordinance, monkeys enduring early maternal deprivation evoke human disorders involving dopaminergic dysfunction. To examine whether DA system alterations shape the behavioral correlates of adverse rearing, male monkeys (Macaca mulatta) were either mother-reared (MR: N = 6), or separated from their mothers at birth and nursery-reared (NR: N = 6). Behavior was assessed during 20-minute observations of subjects interacting with same- or differently-reared peers. Cerebrospinal fluid (CSF) biogenic amines, and serum testosterone (T), cortisol (CORT), and prolactin (PRL) were collected before and after pharmacologic challenge with saline or the DA receptor-2 (DRD2) antagonist Raclopride (RAC). Neuropeptide correlations observed in MR were non-existent in NR monkeys. Compared to MR, NR showed reduced DA tone; higher basal serum T; and lower CSF serotonin (5-HT). RAC increased PRL, T and CORT, but the magnitude of responses varied as a function of rearing. Levels of PRL significantly increased following RAC in MR, but not NR. Elevations in T following RAC were only significant among MR. Contrastingly, the net change (RAC CORT - saline CORT) in CORT was greater in NR than MR. Finally, observations conducted during the juvenile phase in a novel play-arena revealed more aggressive, self-injurious, and repetitive behaviors, which negatively correlated with indexes of dopaminergic tone in NR monkeys. In conclusion, early maternal deprivation alters brain DA systems, and thus may be associated with characteristic cognitive, social, and addiction outcomes.
Collapse
Affiliation(s)
- Sally B Seraphin
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States.
| | - Mar M Sanchez
- Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322-1003, United States
| | - Patricia L Whitten
- Department of Anthropology, Emory University, 207 Anthropology Building, 1557 Dickey Drive, Atlanta, GA 30322-1003, United States; Center for Behavioral Neuroscience and Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30322-0001, United States
| | - James T Winslow
- NIMH IRP Neurobiology Primate Core, NIHAC Bldg. 110, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892-0001, United States
| |
Collapse
|