1
|
Kinoshita S, Sugiyama Y, Hashimoto K, Fuse S, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Influences of GABAergic Inhibition in the Dorsal Medulla on Contralateral Swallowing Neurons in Rats. Laryngoscope 2020; 131:2187-2198. [PMID: 33146426 DOI: 10.1002/lary.29242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We aimed to examine the effect of unilateral inhibition of the medullary dorsal swallowing networks on the activities of swallowing-related cranial motor nerves and swallowing interneurons. METHODS In 25 juvenile rats, we recorded bilateral vagal nerve activity (VNA) as well as unilateral phrenic and hypoglossal activity (HNA) during fictive swallowing elicited by electrical stimulation of the superior laryngeal nerve during control and following microinjection of the GABA agonist muscimol into the caudal dorsal medulla oblongata in a perfused brainstem preparation. In 20 animals, swallowing interneurons contralateral to the muscimol injection side were simultaneously recorded extracellularly and their firing rates were analyzed during swallowing. RESULTS Integrated VNA and HNA to the injection side decreased to 49.0 ± 16.6% and 32.3 ± 17.9%, respectively. However, the VNA on the uninjected side showed little change after muscimol injection. Following local inhibition, 11 out of 20 contralateral swallowing interneurons showed either increased or decreased of their respective firing discharge during evoked-swallowing, while no significant changes in activity were observed in the remaining nine neurons. CONCLUSION The neuronal networks underlying the swallowing pattern generation in the dorsal medulla mediate the ipsilateral motor outputs and modulate the contralateral activity of swallowing interneurons, suggesting that the bilateral coordination of the swallowing central pattern generator regulates the spatiotemporal organization of pharyngeal swallowing movements. LEVEL OF EVIDENCE NA Laryngoscope, 131:2187-2198, 2021.
Collapse
Affiliation(s)
- Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Shojaee A, Taherianfard M. Effects of Gonadectomy and Avoidance Learning on the GABAAα1 Receptor Density in the Prefrontal Cortex of Male and Female Rats. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9693-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Temporal Regulation of GABA A Receptor Subunit Expression: Role in Synaptic and Extrasynaptic Communication in the Suprachiasmatic Nucleus. eNeuro 2017; 4:eN-NWR-0352-16. [PMID: 28466071 PMCID: PMC5411165 DOI: 10.1523/eneuro.0352-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Recent molecular studies suggest that the expression levels of δ and γ2 GABAA receptor (GABAAR) subunits regulate the balance between synaptic and extrasynaptic GABA neurotransmission in multiple brain regions. We investigated the expression of GABAAδ and GABAAγ2 and the functional significance of a change in balance between these subunits in a robust local GABA network contained within the suprachiasmatic nucleus of the hypothalamus (SCN). Muscimol, which can activate both synaptic and extrasynaptic GABAARs, injected into the SCN during the day phase advanced the circadian pacemaker, whereas injection of the extrasynaptic GABAA superagonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) had no effect on circadian phase. In contrast, injection of either THIP or muscimol during the night was sufficient to block the phase shifting effects of light. Gene expression analysis of the whole SCN revealed different temporal patterns in GABAAδ and GABAAγ2 mRNA expression. When examined across all subregions of the SCN, quantitative immunohistochemical analysis found no significant variations in GABAAδ protein immunoreactivity (IR) but did find significant variations in GABAAγ2 protein-IR in hamsters housed in either LD cycles or in constant darkness. Remarkably, significant interactions in the ratio of GABAAδ:GABAAγ2 subunits between lighting condition and circadian phase occurred only within one highly discrete anatomical area of the SCN; a region that functions as the input for lighting information from the retina. Taken together, these data support the hypothesis that the balance between synaptic and extrasynaptic GABAARs determines the functional response to GABA, and that this balance is differentially regulated in a region-specific manner.
Collapse
|
4
|
Li C, Fitzgerald MEC, Del Mar N, Reiner A. Disinhibition of neurons of the nucleus of solitary tract that project to the superior salivatory nucleus causes choroidal vasodilation: Implications for mechanisms underlying choroidal baroregulation. Neurosci Lett 2016; 633:106-111. [PMID: 27663135 DOI: 10.1016/j.neulet.2016.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Preganglionic neurons in the superior salivatory nucleus (SSN) that mediate parasympathetic vasodilation of choroidal blood vessels receive a major excitatory input from the baroresponsive part of the nucleus of the solitary tract (NTS). This input appears likely to mediate choroidal vasodilation during systemic hypotension, which prevents decreases in choroidal blood flow (ChBF) due to reduced perfusion pressure. It is uncertain, however, how low blood pressure signals to NTS from the aortic depressor nerve (ADN), which fires at a low rate during systemic hypotension, could yield increased firing in the NTS output to SSN. The simplest hypothesis is that SSN-projecting NTS neurons are under the inhibitory control of ADN-receptive GABAergic NTS neurons. As part of evaluating this hypothesis, we assessed if SSN-projecting NTS neurons, in fact, receive prominent inhibitory input and if blocking GABAergic modulation of them increases ChBF. We found that SSN-projecting NTS neuronal perikarya identified by retrograde labeling are densely coated with GABAergic terminals, but lightly coated with excitatory terminals. We also found that, infusion of the GABA-A receptor antagonist GABAzine into NTS increased ChBF. Our results are consistent with the possibility that low blood pressure signals from the ADN produce vasodilation in choroid by causing diminished activity in ADN-receptive NTS neurons that tonically suppress SSN-projecting NTS neurons.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States.
| | - Malinda E C Fitzgerald
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States; Department of Ophthalmology, University of Tennessee, Memphis, TN, 38163, United States; Department of Biology, Christian Brothers University, Memphis, TN, United States.
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States.
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, 38163, United States; Department of Ophthalmology, University of Tennessee, Memphis, TN, 38163, United States.
| |
Collapse
|
5
|
Ganchrow D, Ganchrow JR, Cicchini V, Bartel DL, Kaufman D, Girard D, Whitehead MC. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol 2014; 522:1565-96. [PMID: 24151133 PMCID: PMC4090073 DOI: 10.1002/cne.23484] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2-IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
7
|
Brunton PJ, Bales J, Russell JA. Allopregnanolone and induction of endogenous opioid inhibition of oxytocin responses to immune stress in pregnant rats. J Neuroendocrinol 2012; 24:690-700. [PMID: 22340139 DOI: 10.1111/j.1365-2826.2012.02295.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In virgin rats, systemic administration of interleukin (IL)-1β (i.e. to mimic infection), increases oxytocin secretion and the firing rate of oxytocin neurones in the supraoptic nucleus (SON). However, in late pregnancy, stimulated oxytocin secretion is inhibited by an endogenous opioid mechanism, preserving the expanded neurohypophysial oxytocin stores for parturition and minimising the risk of preterm labour. Central levels of the neuroactive metabolite of progesterone, allopregnanolone, increase during pregnancy and allopregnanolone acting on GABA(A) receptors on oxytocin neurones enhances inhibitory transmission. In the present study, we tested whether allopregnanolone induces opioid inhibition of the oxytocin system in response to IL-1β in late pregnancy. Inhibition of 5α-reductase (an allopregnanolone-synthesising enzyme) with finasteride potentiated IL-1β-evoked oxytocin secretion in late pregnant rats, whereas allopregnanolone reduced the oxytocin response in virgin rats. IL-1β increased the number of magnocellular neurones in the SON and paraventricular nucleus (PVN) expressing Fos (an indicator of neuronal activation) in virgin but not pregnant rats. In immunoreactive oxytocin neurones in the SON and PVN, finasteride increased IL-1β-induced Fos expression in pregnant rats. Conversely, allopregnanolone reduced the number of magnocellular oxytocin neurones activated by IL-1β in virgin rats. Treatment with naloxone (an opioid antagonist) greatly enhanced the oxytocin response to IL-1β in pregnancy, and finasteride did not enhance this effect, indicating that allopregnanolone and the endogenous opioid mechanisms do not act independently. Indeed, allopregnanolone induced opioid inhibition over oxytocin responses to IL-1β in virgin rats. Thus, in late pregnancy, allopregnanolone induces opioid inhibition over magnocellular oxytocin neurones and hence on oxytocin secretion in response to immune challenge. This mechanism will minimise the risk of preterm labour and prevent the depletion of neurohypophysial oxytocin stores, which are required for parturition.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | | | | |
Collapse
|
8
|
Braud A, Vandenbeuch A, Zerari-Mailly F, Boucher Y. Dental Afferents Project onto Gustatory Neurons in the Nucleus of the Solitary Tract. J Dent Res 2011; 91:215-20. [DOI: 10.1177/0022034511429569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the inferior alveolar nerve (IAN) and chorda tympani (CT) projections onto gustatory neurons of the nucleus of the solitary tract (NST) in the rat by immunochemical and electrophysiological techniques. IAN afferents were retrogradely labeled. NST neurons were labeled either by retrograde tracer injection into the parabrachial nucleus (PBN) or by c-Fos mapping after CT activation. NST neurons responding to tastant stimulation were recorded in vivo before and after electrical stimulation of the IAN. Results from the immunolabeling approach showed IAN boutons “en passant” apposed to retrogradely labeled neurons from PBN and to CT-activated neurons in the NST. Recordings of single NST neurons showed that the electrical stimulation of the IAN significantly decreased CT gustatory responses. Analysis of these data provides an anatomical and physiological basis to support trigeminal dental and gustatory interactions within the brainstem.
Collapse
Affiliation(s)
- A. Braud
- UFR Odontologie, Université Paris Denis Diderot, 5, rue Garancière, 75006 Paris, France
- CRicm UMRS 975
| | - A. Vandenbeuch
- Department of Otolaryngology, University of Colorado Denver, 12700 E. 19th Ave, Aurora, CO 80045
| | | | - Y. Boucher
- UFR Odontologie, Université Paris Denis Diderot, 5, rue Garancière, 75006 Paris, France
- CRicm UMRS 975
| |
Collapse
|
9
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Brunton PJ, McKay AJ, Ochedalski T, Piastowska A, Rebas E, Lachowicz A, Russell JA. Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. J Neurosci 2009; 29:6449-60. [PMID: 19458216 PMCID: PMC6665894 DOI: 10.1523/jneurosci.0708-09.2009] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the major neuroendocrine stress response system. Corticotropin-releasing hormone (CRH) neurons in the parvocellular paraventricular nucleus (pPVN) play a key role in coordinating responses of this system to stressors. The cytokine interleukin-1beta (IL-1beta), mimicking infection, robustly activates these CRH neurons via a noradrenergic input arising from the nucleus tractus solitarii (NTS). In late pregnancy, HPA axis responses to stressors, including IL-1beta, are attenuated by a central opioid mechanism that auto-inhibits noradrenaline release in the PVN. Here we show that the neuroactive progesterone metabolite allopregnanolone induces these changes in HPA responsiveness to IL-1beta in pregnancy. In late pregnancy, inhibition of 5alpha-reductase (an allopregnanolone-synthesizing enzyme) with finasteride restored HPA axis responses (rapidly increased pPVN CRH mRNA expression, ACTH, and corticosterone secretion) to IL-1beta. Conversely, allopregnanolone reduced HPA responses in virgin rats. In late pregnancy, activity of the allopregnanolone-synthesizing enzymes (5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase) was increased in the hypothalamus as was mRNA expression in the NTS and PVN. Naloxone, an opioid antagonist, restores HPA axis responses to IL-1beta in pregnancy but had no additional effect after finasteride, indicating a causal connection between allopregnanolone and the endogenous opioid mechanism. Indeed, allopregnanolone induced opioid inhibition over HPA responses to IL-1beta in virgin rats. Furthermore, in virgin rats, allopregnanolone treatment increased, whereas in pregnant rats finasteride decreased proenkephalin-A mRNA expression in the NTS. Thus, in pregnancy, allopregnanolone induces opioid inhibition over HPA axis responses to immune challenge. This novel opioid-mediated mechanism of allopregnanolone action may alter regulation of other brain systems in pregnancy.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sabbatini M, Molinari C, Grossini E, Piffanelli V, Mary DASG, Vacca G, Cannas M. GABAA receptors expression pattern in rat brain following low pressure distension of the stomach. Neuroscience 2008; 152:449-58. [PMID: 18280049 DOI: 10.1016/j.neuroscience.2008.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 12/17/2007] [Accepted: 01/10/2008] [Indexed: 11/19/2022]
Abstract
It is known that gastric mechanoreceptor stimuli are widely integrated into neuronal circuits that involve visceral nuclei of hindbrain as well as several central brain areas. GABAergic neurons are widely represented in hindbrain nuclei controlling gastric motor functions, but limited information is available specifically about GABA(A)-responding neurons in brain visceral areas. The present investigation was designed to determine the central sensory neuronal pathways and their GABA(A)-alpha1 and -alpha3 receptor presenting neurons that respond to gastric mechanoreceptor stimulation within the entire rat brain. Low pressure gastric distension was used to deliver physiological mechanical stimuli in anesthetized rats, and different protocols of gastric distension were performed to mimic different stimulation patterns with and without sectioning vagal and/or splanchnic afferent nerves. Mapping of activated neurons was investigated using double colorimetric immunohistochemistry for GABA(A)-alpha1 or -alpha3 subunits and c-Fos. Following stomach distension, neurons expressing GABA(A) receptors with alpha1 or alpha3 subunits were detected. Low frequency gastric distension induced c-Fos expression in nucleus tractus solitarii (NTS) only, whereas in the high frequency gastric distension c-Fos positive nuclei were found in lateral reticular nucleus and in NTS in addition to some forebrain areas. In contrast, during the tonic-rapid gastric distension the neuronal activation was found in hindbrain, midbrain and forebrain areas. Moreover different protocols of gastric stimulation activated diverse patterns of neurons presenting GABA(A)-alpha1 or -alpha3 receptors within responding brain nuclei, which may indicate a probable functional significance of differential expression of GABA(A)-responding neurons. The same protocol of gastric distension performed in vagotomized rats has confirmed the primary role of the vagus in the response of activation of gastric brain areas, whereas neuronal input of splanchnic origins was shown to play an important role in modulating the mechanogastric response of brain areas.
Collapse
Affiliation(s)
- M Sabbatini
- Laboratorio di Anatomia Umana, Dipartimento Medicina Clinica e Sperimentale, Università del Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ferrari MFR, Fior-Chadi DR, Chadi G. Effects of bilateral adrenalectomy on systemic kainate-induced activation of the nucleus of the solitary tract. Regulation of blood pressure and local neurotransmitters. J Mol Histol 2008; 39:253-63. [PMID: 18196466 DOI: 10.1007/s10735-008-9161-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Sao Paulo 05508-900, Brazil.
| | | | | |
Collapse
|
13
|
|
14
|
Terai K, Soga T, Takahashi M, Kamohara M, Ohno K, Yatsugi S, Okada M, Yamaguchi T. Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience 2003; 116:1053-62. [PMID: 12617946 DOI: 10.1016/s0306-4522(02)00791-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The messenger RNA for endothelial differentiation gene 8 receptors is known to be expressed almost exclusively in the rat CNS, but the nature of the expressing cells has not been defined. Using an antibody specific for endothelial differentiation gene 8, we investigated the immunohistochemical localization of endothelial differentiation gene 8 receptors in the rat CNS. Immunopositive staining was detected in a subset of glial cells distributed throughout the brain and spinal cord, including both gray and white matter, but not in the dorsal root ganglion. The distribution and morphological similarity in comparative immunostaining for endothelial differentiation gene 8 and various glial markers suggested that endothelial differentiation gene 8 is preferentially expressed in NG2-positive oligodendrocyte progenitor cells in adult rat brains. Counts of endothelial differentiation gene 8-positive cells and NG2-positive cells in the forebrain revealed that a subset of NG2-positive cells was endothelial differentiation gene 8-positive, and that the ratio of endothelial differentiation gene 8-positive cells to NG2-positive cells varied from region to region. In 17-day-old embryonic brains, the endothelial differentiation gene 8 distribution was similar to that of an oligodendrocytic marker, 2',3'-cyclic nucleotide 3'-phosphodiesterase. These data suggest that endothelial differentiation gene 8 receptors are preferentially expressed in oligodendrocyte lineage cells including oligodendrocyte progenitor cells and immature/maturating oligodendrocytes in rat CNS, and that they might have important functions in oligodendrocytic maturation and myelination.
Collapse
Affiliation(s)
- K Terai
- Neuroscience Research, Yamanouchi Pharmaceutical Co, Ltd, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Heck WL, Basaraba AM, Slusarczyk A, Schweitzer L. Early GABA(A) receptor clustering during the development of the rostral nucleus of the solitary tract. J Anat 2003; 202:387-96. [PMID: 12739616 PMCID: PMC1571086 DOI: 10.1046/j.1469-7580.2003.00169.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While there is an abundance of gamma-aminobutyric acid (GABA) in the gustatory zone of the nucleus of the solitary tract of the perinatal rat, we know that GABAergic synapse formation is not complete until well after birth. Our recent results have shown that GABA(B) receptors are present at birth in the cells of the nucleus; however, they do not redistribute and cluster at synaptic sites until after PND10. The present study examined the time course of appearance and redistribution of GABA(A) receptors in the nucleus. GABA(A) receptors were also present at birth. However, in comparison to GABA(B) receptors, GABA(A) receptors underwent an earlier translocation to synaptic sites. Extrasynaptic label, for example, of GABA(A) receptors was non-existent compared to GABA(B) receptors at PND10 and well-defined clusters of GABA(A) receptors could be seen as early as PND1. We propose that while GABA(A), receptors may play an early neurotransmitter role at the synapse, GABA(B) receptors may play a non-transmitter neurotrophic role.
Collapse
Affiliation(s)
- W L Heck
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
16
|
Wasserman AM, Ferreira M, Sahibzada N, Hernandez YM, Gillis RA. GABA-mediated neurotransmission in the ventrolateral NTS plays a role in respiratory regulation in the rat. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1423-41. [PMID: 12429562 DOI: 10.1152/ajpregu.00488.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our purpose was to determine whether endogenously released GABA in the ventrolateral nucleus of the solitary tract (vlNTS) of the rat influences respiration. Experiments were carried out in anesthetized, vagotomized and spontaneously breathing rats, and diaphragm electromyogram activity was measured while drugs affecting GABAergic neurotransmission were microinjected into the vlNTS and medial NTS (mNTS). Bilateral microinjection of nipecotic acid, 5 or 25 nmol, into the vlNTS (but not in the mNTS) produced dose-dependent increases in inspiratory duration (Ti) frequently culminating in apneustic breathing. Neither unilateral microinjection of bicuculline nor CGP-35348 (GABA(B) receptor antagonist) reversed this response; however, a combination of both GABA receptor antagonists effectively reversed apneustic breathing. Bilateral microinjection of either muscimol or baclofen into the vlNTS mimicked the effect of nipecotic acid. Microinjection of the bicuculline produced apnea, whereas microinjection of CGP-35348 produced a decrease in Ti and an increase in expiratory duration. Immunohistochemical analysis of the vlNTS region revealed GABA(A) receptors densely localized to processes, whereas GABA(B) immunoreactivity was localized to cell bodies. Our data indicate that GABA activity in the vlNTS is important for respiratory function.
Collapse
Affiliation(s)
- Adam M Wasserman
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
17
|
Huang RQ, Dillon GH. Functional analysis of GABA(A) receptors in nucleus tractus solitarius neurons from neonatal rats. Brain Res 2001; 921:183-94. [PMID: 11720725 DOI: 10.1016/s0006-8993(01)03117-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To gain insight into specific GABA(A) receptor configurations functionally expressed in the nucleus tractus solitarius (NTS), we conducted several physiological and pharmacological assessments. NTS neurons were characterized in thin brain slices from 1-14 day old rats using whole-cell patch clamp recordings. GABA(A-) receptor-mediated currents were detected in all neurons tested, with an average EC(50) of 22.2 microM. GABA currents were consistently stimulated by diazepam (EC(50)=63 nM), zolpidem (EC(50)=85 nM), loreclezole (EC(50)=10.1 microM) and the neurosteroid 5alpha-pregnan-3alpha-hydroxy-20-one (3alpha-OH-DHP). In contrast, GABA-gated currents of the NTS were inhibited by the divalent cation Zn(2+) (IC(50)=33.6 microM) picrotoxin (IC(50)=2.4 microM) and blockade of endogenous protein tyrosine kinase. GABA-activated currents were insensitive to furosemide (10-1000 microM) in all NTS neurons tested. Collectively, the data suggest that in neonatal rats, the predominant alpha subunit isoform present in GABA(A) receptors of the NTS appears to be the alpha1 and/or alpha2 subunit. beta2 and/or beta3 subunits are the major beta isoform, while the predominant gamma subunit is likely gamma2. Our data suggest the contribution to NTS GABA currents by alpha3-alpha6, beta1, gamma1 and delta subunits, if present, is minor by comparison.
Collapse
Affiliation(s)
- R Q Huang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | |
Collapse
|
18
|
Kasparov S, Davies KA, Patel UA, Boscan P, Garret M, Paton JF. GABA(A) receptor epsilon-subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat. J Physiol 2001; 536:785-96. [PMID: 11691872 PMCID: PMC2278908 DOI: 10.1111/j.1469-7793.2001.00785.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2001] [Accepted: 06/28/2001] [Indexed: 11/30/2022] Open
Abstract
1. Benzodiazepines (BZ) and barbiturates both potentiate chloride currents through GABA(A) receptors to enhance inhibition. However, unlike barbiturates BZ do not impair autonomic control of heart rate. We hypothesised that BZ might not significantly potentiate GABAergic transmission in the caudal nucleus of the solitary tract (cNTS), which is critically important for mediating the baroreceptor reflex. 2. In rat brain slices the BZ agonists chlordiazepoxide and midazolam (2 and 50 microM) did not significantly enhance currents evoked by GABA in voltage-clamped cNTS neurones. Chlordiazepoxide (50 microM) reversibly increased electrically evoked IPSPs in 5/10 rostral NTS (rNTS) neurones but only in 2/10 cNTS neurones. Pentobarbitone (50-100 microM) was effective in enhancing GABA(A)-mediated responses in all NTS neurones. An inverse BZ agonist, methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM; 1 or 10 microM), failed to depress GABA-induced currents in the cNTS. 3. Microinjections of midazolam (10 and 100 microM solutions) into the cNTS did not affect the baroreceptor reflex (P > 0.2) while pentobarbitone (100 microM) significantly and reversibly depressed it (gain decrease to 53 +/- 11 % of control, P < 0.01). 4. Reverse transcriptase polymerase chain reaction revealed the presence of alpha(1), alpha(2), beta(2), beta(3) and gamma(2) GABA(A) receptor subunit mRNA in the cNTS. No alternatively spliced variants of the alpha(1)- and gamma(2)-subunits were revealed. Moreover, GABA(A) epsilon-unit mRNA was found in both the cNTS and rNTS as two alternatively spliced transcripts. 5. Immunocytochemical analysis revealed numerous GABA(A) epsilon-subunit-positive neurones within the cNTS with significantly fewer epsilon-subunit-positive cells in the rNTS. 6. As incorporation of the epsilon-subunit in recombinant GABA(A) receptors may confer BZ insensitivity we propose that the paucity of BZ actions in the cNTS is due to a high level of epsilon-subunit expression. This is the first demonstration of a possible physiological impact of the epsilon-subunit on native GABA(A) receptors.
Collapse
Affiliation(s)
- S Kasparov
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Terai K, Iwai A, Kawabata S, Sasamata M, Miyata K, Yamaguchi T. Apolipoprotein E deposition and astrogliosis are associated with maturation of beta-amyloid plaques in betaAPPswe transgenic mouse: Implications for the pathogenesis of Alzheimer's disease. Brain Res 2001; 900:48-56. [PMID: 11325345 DOI: 10.1016/s0006-8993(01)02202-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transgenic mouse expressing the human beta-amyloid precursor protein with the 'Swedish' mutation, Tg2576, was used to investigate the mechanism of beta-amyloid (Abeta) deposition. Previously, we have reported that the major species of Abeta in the amyloid plaques of Tg2576 mice are Abeta1-40 and Abeta1-42. Moreover, Abeta1-42 deposition precedes Abeta1-40 deposition, while Abeta1-40 accumulates in the central part of the plaques later in the pathogenic process. Those data indicate that Abeta deposits in Tg2576 mice have similar characteristics to those in Alzheimer's disease. In the present study, to understand more fully the amyloid deposition mechanism implicating Alzheimer's disease pathogenesis, we examined immunohistochemically the distributions of apolipoprotein E (apoE) and Abeta in amyloid plaques of aged Tg2576 mouse brains. Our findings suggest that Abeta1-42 deposition precedes apoE deposition, and that Abeta1-40 deposition follows apoE deposition during plaque maturation. We next examined the relationship between apoE and astrogliosis associated with amyloid plaques using a double-immunofluorescence method. Extracellular apoE deposits were always associated with reactive astrocytes whose processes showed enhancement of apoE-immunoreactivity. Taken together, the characteristics of amyloid plaques in Tg2576 mice are similar to those in Alzheimer's disease with respect to apoE and astrogliosis. Furthermore, apoE deposition and astrogliosis may be necessary for amyloid plaque maturation.
Collapse
Affiliation(s)
- K Terai
- Applied Pharmacology Research, Yamanouchi Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Terai K, Iwai A, Kawabata S, Tasaki Y, Watanabe T, Miyata K, Yamaguchi T. β-amyloid deposits in transgenic mice expressing human β-amyloid precursor protein have the same characteristics as those in Alzheimer's disease. Neuroscience 2001; 104:299-310. [PMID: 11377835 DOI: 10.1016/s0306-4522(01)00095-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transgenic mouse expressing the human beta-amyloid precursor protein with the "Swedish" mutation, Tg2576, was used to investigate the mechanism of amyloid-beta peptide (Abeta) deposition. We characterized Abeta deposits in the cerebral cortex biochemically and pathologically. A surface-enhanced laser desorption/ionization affinity mass spectrometric study using the 6E10 monoclonal antibody demonstrated that the major species of Abeta in a formic acid-extracted fraction of the cortex were Abeta(1-38), Abeta(1-40) and Abeta(1-42). Immunohistochemistry using antibodies to the carboxy-terminal epitopes of Abeta(1-40) and Abeta(1-42), as well as 6E10, showed that plaques containing Abeta(1-42) were more numerous than those containing Abeta(1-40) throughout the cortex. Laser confocal analysis of the immunoreactivities in the plaques demonstrated that Abeta(1-40) was preferentially located in the central part of the Abeta(1-42) positive plaques. Enzyme-linked immunosorbent assay measurements of Abeta(1-40) and Abeta(1-42) showed that Abeta(1-40) was several-fold more abundant than Abeta(1-42). From these data we suggest that Abeta(1-42) deposition may precede Abeta(1-40) deposition, while Abeta(1-40) begins to deposit in the central part of the plaques and accumulates there. Furthermore, localization of Abeta(1-40) corresponded almost exactly to congophilic structures, which were associated with aberrant swollen synapses detected with antibodies to synaptophysin and alpha-synuclein. Thus, Abeta deposits in Tg2576 mice have similar characteristics to those in Alzheimer's disease.
Collapse
Affiliation(s)
- K Terai
- Applied Pharmacology Research, Yamanouchi Pharmaceutical Co. Ltd, 21, Miyukigaoka, Tsukuba, 305-8585, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Brown M, Renehan WE, Schweitzer L. Changes in GABA-immunoreactivity during development of the rostral subdivision of the nucleus of the solitary tract. Neuroscience 2001; 100:849-59. [PMID: 11036219 DOI: 10.1016/s0306-4522(00)00355-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
GABA plays an important role in the processing of gustatory information in the rostral nucleus of the solitary tract. The following study used post-embedment immunohistochemistry in the rat brainstem to localize GABA at both the light and electron microscopic levels to characterize the developmental distribution of GABA and synaptogenesis of GABA-immunoreactive terminals in the rostral nucleus of the solitary tract. During the first postnatal week, GABA is present in the rostral nucleus of the solitary tract, but less of it is synaptic than any time later in development. Of the few synaptic terminals present at postnatal day 1, less than 20% are GABA-immunoreactive. This proportion more than doubles to reach adult levels by postnatal day 10. By weaning (postnatal day 20), GABA-immunoreactive cells are found in nearly the same density as in the adult. Development continues after weaning and is characterized by a disproportionate loss of non-GABA-containing cells. Finally, one previously identified subtype of GABA-immunoreactive terminal matures very late during the postweaning phase of development. The study provides the first analysis of the development of GABA-related circuitry in the rostral nucleus of the solitary tract using anatomical methods. These data provide the background with which to view the emerging physiology of developing taste neurons.
Collapse
Affiliation(s)
- M Brown
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
22
|
Saha S, Sieghart W, Fritschy JM, McWilliam PN, Batten TF. Gamma-aminobutyric acid receptor (GABA(A)) subunits in rat nucleus tractus solitarii (NTS) revealed by polymerase chain reaction (PCR) and immunohistochemistry. Mol Cell Neurosci 2001; 17:241-57. [PMID: 11161482 DOI: 10.1006/mcne.2000.0919] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of mRNAs encoding seven GABA(A) receptor subunits (alpha1, alpha2, alpha3, alpha5, beta2, beta3, gamma2) in the nucleus tractus solitarii (NTS) of rat medulla oblongata was examined by reverse transcription-polymerase chain reaction (RT-PCR). All subunit mRNAs, except alpha5, were clearly detected. Band densities produced by alpha1, alpha3, beta3, and gamma2 subunits were greater than those corresponding to beta2 and alpha2 transcripts. The localization of these subunits in tissue sections through NTS was examined by immunohistochemistry. The differential patterns of immunoreactivity in neuronal somata and dendrites of NTS neurons were generally in agreement with the PCR results, confirming that mRNA expression is correlated with receptor protein synthesis. At ultrastructural level, alpha1, alpha3, beta2/3, and gamma2 subunits were localized in both cytoplasmic and subsynaptic sites, the latter often apposed to GABA immunoreactive synapses. These results suggest that ionotropic receptors comprising the alpha1, alpha3, beta2/3, and gamma2 may mediate inhibitory GABA responses in the NTS.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Rao H, Pio J, Kessler JP. Postnatal development of synaptophysin immunoreactivity in the rat nucleus tractus solitarii and caudal ventrolateral medulla. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:281-5. [PMID: 9878786 DOI: 10.1016/s0165-3806(98)00178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptophysin (SY) is a major integral membrane protein of small synaptic vesicles. In the present study, SY immunohistochemistry was used to investigate the postnatal development of the rat nucleus tractus solitarii (NTS) and nucleus ambiguus/ventrolateral medulla (NA/VLM). Whatever the age of the animal, SY immunoreactivity showed a typical pattern of punctate staining reminiscent of presynaptic terminal labeling. In the NTS and the NA/VLM, SY immunoreactive puncta were few at birth and increased in number during the first postnatal days. These changes were quantified by measuring the volumetric fraction occupied by SY immunoreactive puncta at various postnatal ages. Using volumetric fraction data, an index of the total volume occupied SY immunoreactivity in each region was then calculated. Between birth and adulthood, this index increased by 6-fold in the NTS and by 7-fold in the NA/VLM, suggesting that most of the synaptic development of these regions occurs postnatally.
Collapse
Affiliation(s)
- H Rao
- Neurobiologie et Neurophysiologie Fonctionnelles, URA CNRS 1832, Case 351, Faculté Saint-Jérôme, F13397, Marseille, Cédex 20, France
| | | | | |
Collapse
|